

The Pipeline Decomposition Tree: An Analysis Tool For
Multiprocessor Implementation Of

Image Processing Applications

ABSTRACT
Modern embedded systems for image processing involve increas-
ingly complex levels of functionality under real-time and resource-
related constraints. As this complexity increases, the application of
single-chip multiprocessor technology is attractive. To address the
challenges of mapping image processing applications onto embed-
ded multiprocessor platforms, this paper presents a novel data
structure called the pipeline decomposition tree (PDT), and an asso-
ciated scheduling framework, which we refer to as PDT scheduling.
PDT scheduling exploits both heterogeneous data parallelism and
task-level parallelism, which are important considerations for
scheduling image processing applications. This paper develops the
PDT representation for system synthesis, and presents methods
using the PDT to derive customized pipelined architectures that are
streamlined for the given implementation constraints.

Categories and Subject Descriptors
C.3 [Real-time embedded systems]

General Terms
Design

Keywords
Design space exploration, system-level models, multiprocessor
scheduling.

1. INTRODUCTION
The proliferation of embedded systems that involve image process-
ing, such as digital cameras and video-conferencing systems, exhib-
its trends towards the integration of multiple image processing
operations to provide diverse functionalities, and the application of
embedded multiprocessor technology to provide the required per-
formance. This paper presents a novel data structure called the
pipeline decomposition tree (PDT), and an associated scheduling

framework, which we refer to as PDT scheduling, for mapping
image processing applications onto embedded multiprocessor sys-
tems. PDT scheduling is based on a model of the target implemen-
tation as a coarse-grained (task-level), pipelined architecture. PDT
scheduling spreads functional operations over the underlying pipe-
line through construction and iterative analysis of the PDT. Intu-
itively, the PDT can be viewed as a kind of depth first search tree
whose nodes are mapped to stages of the targeted pipeline. Any
number of nodes of the PDT can be mapped to a single stage of the
pipeline. PDT scheduling ultimately generates schedules with dif-
ferent latency/throughput trade-offs to effectively explore the multi-
dimensional space of signal processing performance
considerations. Furthermore, the PDT scheduling process can take
into consideration various scheduling constraints, such as con-
straints on the number of available processors, and the amounts of
on-chip and off-chip memory, as well as performance-related con-
straints (i.e., constraints involving latency and throughput).

 The PDT scheduling approach places special emphasis on
distinguishing and taking into account different modes of parallel-
ism — task-level parallelism, as well as homogeneous and hetero-
geneous data parallelism — that must be exploited carefully to
achieve efficient implementation of image processing applications.
Data parallelism is a specialized form of parallel processing that
allows multiple copies of a single task to execute simultaneously on
multiple processing units. Heterogeneous data parallelism is an
extension of data parallelism that allows for variability in the sizes
of the memory regions to which data parallelism is applied. Under
heterogeneous data parallelism, each copy of a task handles differ-
ent sizes of blocks from the input data stream.

Although concepts related to the PDT and PDT scheduling
can be applied to various domains of signal processing, including
speech processing, high fidelity audio processing, and digital com-
munications, the emphasis in PDT on data parallelism consider-
ations makes the technique especially well suited to image
processing.

Throughout the process of PDT scheduling, different inter-
processor communication (IPC) architectures (point-to-point com-
munication links or shared buses), and memory architectures
(shared-memory or distributed memory architectures) are consid-
ered in an effort to achieve the most effective balance under the
given constraints and available modes of parallelism.

2. RELATED WORK
In most practical contexts, scheduling applications onto mul-

tiprocessors environments is NP hard. Many deterministic heuris-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee.
CODES+ISSS'06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

Dong-Ik Ko
Department of Electrical and Computer Engineering,

and Institute for Advanced Computer Studies,
University of Maryland, College Park, 20742, USA.

dik@eng.umd.edu

Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering,

and Institute for Advanced Computer Studies,
University of Maryland, College Park, 20742, USA.

ssb@eng.umd.edu

52

tics and evolutionary algorithm techniques have been proposed in
this area (e.g., see [4][5]). In some cases, evolutionary algorithms
are used in conjunction with deterministic approaches to yield their
complementary advantages, and systematic methods have been
developed also to perform such integration between evolutionary
and deterministic approaches [2]. In particular, evolutionary
approaches provide robust, easily adaptive methods for global
search, while deterministic approaches are effective at exploiting
application-specific insights that often provide for derivation of
good solutions very rapidly, as well as effective local optimization.
The PDT approach can be viewed as a deterministic approach that
can be used in isolation as a fast, effective heuristic, and can also be
combined with evolutionary algorithms when more thorough, com-
putationally-intensive optimization is desired. This paper focuses
on the former application of PDT scheduling; integration with evo-
lutionary algorithms or other randomized search methods is a useful
direction for further investigation.

A number of important deterministic techniques have been
proposed in previous work related to embedded multiprocessor
implementation of signal processing applications. Banerjee et al.
[3] presented a two-step approach for coarse-grain pipeline sched-
uling by separating partitioning and process allocation for heteroge-
neous architectures. Hoang and Rabaey [6] developed a heuristic
algorithm by innovative modeling and incorporation of interproces-
sor communication costs into the framework of coarse-grain pipe-
lining. Konstantinides, Kaneshiro, and Tani [9] addressed detailed
issues in modeling input/output (I/O) operations by decomposing I/
O into sequential and parallel components.

PDT scheduling is different from these approaches in its deep
integration of data parallelism configurations with task-level paral-
lelism and coarse-grained pipeline implementation. Our PDT
approach is motivated by the fundamental importance of data paral-
lelism in performance optimization of image processing applica-
tions.

Incorporation of homogeneous data parallelism (parallelism
across uniform-sized segments of data) and task duplication is
reviewed in [10] in the context of non-pipelined schedules. In this
paper, we develop novel techniques to model and exploit heteroge-
neous data parallelism, and to incorporate such an extended data
parallelism formulation into the pipeline scheduling process.

Subhlok and Vondran [14] have previously considered the
integration of data parallelism with task-level parallelism for multi-
processor scheduling. However, this work focuses mainly on appli-
cations that can be represented as linearly-chained dataflow graphs.
Applying data parallelism and task parallelism to applications that
have more general dataflow topologies causes various complica-
tions that are not addressed by the techniques of Subhlok.

In contrast, this paper targets general application dataflow
topologies, including those with linear and non-linear data depen-
dencies, and configures data parallelism and task parallelism appro-
priately based on the dataflow topology as well as the given
implementation constraints. As with the techniques described
above, we assume that for each task in the application dataflow
graph, a reasonable estimate of the task’s execution time is pro-
vided. Furthermore, as is common in the application of dataflow
graphs to signal processing applications, we assume iterative exe-
cution of the dataflow graph, where the graph is executed repeat-
edly on an input data stream that is of indefinite (unbounded)
length.

To demonstrate our proposed methods, we have applied them
to complex morphological operations, Laplacian pyramid computa-
tion, Gaussian pyramid computation, and multi-resolution splines,
which are all important image processing subsystems. The morpho-
logical operations that we have considered include opening, clos-
ing, gradient, Laplacian, smoothing and top-hat.

3. DATA PARALLELISM
3.1 Heterogeneous data parallelism
Data parallelism allows multiple copies of a single task to run on
multiple processing units by task duplication when the operation of
each task is independent. Each copied task processes a sub region
of the whole data frame. The whole data frame can be divided into
sub regions with different offsets. Finally the whole data frame is
processed by each copied task in parallel. The sizes of data sub
regions are identical for all copied tasks in conventional application
of data parallelism.

Heterogeneous data parallelism is an extension of data paral-
lelism that allows for dynamic change of the sub region size
depending on the availability of resources, and the nature of the
data parallel computations. In heterogeneous data parallelism, the
whole data frame can be viewed as a collection of copy sets, where
the size of the copy sets may or may not be the same. Each copy set
consists of some number of sub regions that have identical sizes.
Each copied task is allocated to handle a different copy set area.
Inside each copy set, each task handles different sub regions. The
size of sub regions within a copy set is the same, and can be
obtained by dividing the size of the copy set by the number of task
copies assigned to the corresponding copy set. The number of task
copies within a copy set may vary from 1 to some number ,
depending on the availability of processors. Each task copy corre-
sponds to a separate invocation of the task, and in this way, differ-
ent invocations of a single task processes different sub regions, and
are allocated to different copy sets.

Figure 1 illustrates duplication of a task under conven-

tional (homogeneous) and heterogeneous data parallelism. In Fig-
ure 1a, each invocation of task processes different sequential

data frames. The first invocation of task , which we denote by

, processes the th data frame, whereas

Figure 1. Task duplication under conventional data parallelism
and under heterogeneous data parallelism.

a) Task duplication under conventional data parallelism.

b) Task duplication under heterogeneous data parallelism.

)(1
1

−n
kAI

)(2
n

kAI

)(1
3

+n
kAI

…

1−kA 1+kA

)(1
1

−n
kAI

)(2
n

kAI

)(1
3

+n
kAI

…

1−kA 1+kA

)(1
n

kAI

)(2
n

kAI

)(3
n

kAI

)(
1

n
kC S AI

…

C o p y s e t 1

… …

C o p y s e t 2 C o p y s e t i

… …

)(
11

n
kC S AI +

)(
12

n
kC SC S AI +

)(
12

n
kC S AI +

)(
13

n
kC S AI +

)(
11

n
kC S

AI i

m
m∑ −+

)(
1

n
kC SC S

AI i

m
mi ∑ −+

)(
12

n
k

C S
AI i

m
m∑ −+

)(
13

n
k

C S
AI i

m
m∑ −+

)(1
n

kAI

)(2
n

kAI

)(3
n

kAI

)(
1

n
kC S AI

…

C o p y s e t 1

… …

C o p y s e t 2 C o p y s e t i

… …

)(
11

n
kC S AI +

)(
12

n
kC SC S AI +

)(
12

n
kC S AI +

)(
13

n
kC S AI +

)(
11

n
kC S

AI i

m
m∑ −+

)(
1

n
kC SC S

AI i

m
mi ∑ −+

)(
12

n
k

C S
AI i

m
m∑ −+

)(
13

n
k

C S
AI i

m
m∑ −+

N

Ak

Ak

Ak

I
1

Ak
n 1–() n 1–() I

2
Ak

n()

53

and process the th and th data frames, respec-

tively. Therefore, as the number of invocations increases, the buffer
size between and increases too.

In Figure 1b, the overall data frame is divided into several
copy sets. Each copy set consists of varying-size sub regions, and is
processed by different invocations of task . Decisions on the
number of invocations of a task in each copy set, the size of a copy
set, and the sizes of sub regions within the copy sets are based on
the availability of (idle) processors.

For a given task , the following equations characterize the
sizes of its copy sets:

, (1)

, and (2)

. (3)

Here, characterizes the area processed by invocation of task
 within its th copy set for th data frame. This value is the

same for all within the associated copy set. repre-
sents the area processed within the th copy set, and is the
number of task invocations within the th copy set ().
is the total number of copy sets for processing th data frame,

.

3.2 Clustering
Our heuristic scheduling algorithm for multiprocessors integrates
both data parallelism — in heterogeneous form where appropriate
— and task parallelism in a pipelined way based on user-specified
constraints. To aid in this process, tasks that immediately follow a
common predecessor task (in the application dataflow graph) are
grouped into a single cluster for better utilization of shared memory
architectures. This transformation step is skipped for distributed
memory architectures.

After clustering, a new graph called the cluster dependency
graph, which is acyclic is generated based on the dataflow relation-
ships between clusters. The cluster dependency graph is used for
partitioning clusters into stages of a pipeline. Each partition con-
sists of a group of clusters. During partitioning, clusters are allo-
cated to stages of the target pipeline. Clusters in each partition form
a new cluster dependency graph within the corresponding partition.
A cluster dependency graph satisfies a topological sort within each
partition. We describe the partitioning process is in more detail in
Section 4.2.

4. THE PIPELINE DECOMPOSITION TREE
In the macro-pipelined scheduling model that we target, the
throughput is given by the reciprocal , where is the
latency of the bottleneck stage in the synthesized pipeline. The
overall latency, is given by , where is the number of pipe-
line stages. Thus, in general, a derived pipeline configuration can
be latency-optimal or throughput-optimal, or it can provide some
trade-off between latency- and throughput-optimal performance
based on the given resource constraints.

Ideally, the throughput can be improved by simply increasing
the number of stages in the synthesized pipeline by sacrificing
latency. However, an improperly decomposed pipeline degrades

both throughput and latency. This paper provides a new representa-
tion called the pipeline decomposition tree (PDT) for exploring
different macro-pipeline configurations and their associated
latency/throughput trade-offs.

The process of PDT-based design space exploration can be
viewed as a form of depth first search. Starting from the application
dataflow graph, the PDT partitions the graph into two acyclic sub-
graphs. The objective is that clusters in each partition subgraph
have relatively weak inter-cluster dependencies, so that each parti-
tion has more potential parallelism. Inter-cluster dependency
becomes highest when all clusters in a subgraph are linearly linked
(i.e., connected in a chain). On the other hand, cluster dependency
is weakest when all clusters in a partition are independent.

Equations (4) and (5), which define expressions to minimize
during the PDT construction process, are used to decompose a
graph into two subgraphs and so that the cluster dependen-
cies in each subgraph are evenly distributed, and the subgraphs and
have similar overall execution times :

, and (4)

. (5)

Here, each cluster in each subgraph (or) should
satisfy:

 , or , and

 , .

Furthermore, the expressions used to assess cluster dependen-
cies are given by

, and , (6)

where

; (7)

 represents the th subgraph; represents the degree of

inter-cluster dependency in subgraph ; represents the

weighted sum (in terms of execution time) of critical path edges
within subgraph ; represents the weighted sum of edges in

non-critical paths within partition ; represents the number of

critical path clusters within subgraph ; represents the number

of clusters in non-critical paths within subgraph .
Furthermore, the symbol represents a cluster chain,

which is a maximal linear subgraph (i.e., no linear subgraph prop-
erly contains it) that contains two or more clusters within a parti-
tion. Each partition can have one or more isolated s. The
symbol represents a set of s that reside along non-criti-
cal paths within partition . Thus, can be expressed as

, (8)

where is the number of s on non-critical paths, and

 is the length of in terms of cumulative execution

time.
As stated above, measures the degree of inter-clus-

I
3

Ak
n 1+() n n 1+()

Ak 1– Ak 1+

Ak

Ak

SRi region Ip Ak
n()() p, j CSm 1–

m 1=

i

∑+= =

region CSi() CSi SRi×=

framen region CSi()
i 1=

M

∑=

SRi p

Ak i n

j region CSi()
i CSi

i CS
0

0= M

n

framen

1 L
b

⁄() Lb

nsLb ns

π
1

π
2

executeTime *()
min Dep π

1
() Dep π

2
()–()

min executeTime π
1

() executeTime π
2

()–()

τi π
1

π
2

i f τi π
1

⊂ successors τi() π
1

⊂ successors τi() π
2

⊂

i f τi π
2

⊂ successors τi() π
2

⊂

Dep π() eπcp
i eπ

cp
•+= Dep π() eπcp

2
eπ

cp

2
+=

eπcp
j

j 1=

πcp

∑= eπ
cp

k

k 1=

CHj π
cp

,

∑
j 1=

CHπ
cp

∑=,

πi i Dep π()

π eπcp

π eπ
cp

π πcp

π π
cp

π
CH

π CH

CHπ
cp

CH

π CHπ
cp

CHπ
cp

CH
1 π

cp
, CH

2 π
cp

, … CH CHπ
cp

π
cp

,, , ,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

CHπ
cp

CH

CHk π
cp

, CHk π
cp

,

Dep π()

54

ter dependency within partition . In this formulation, is
in general a complex number. The real part of represents
the weighted sum (in terms of task execution times) of critical path
edges, while the imaginary part represents the weighted sum of
edges in non-critical paths. The real part corresponds to a potential
lower bound on the latency of the associated partition; this bound
can be further reduced by exploiting heterogeneous data parallel-
ism, as will be addressed later in the paper. The imaginary part
characterizes the dependency degree of clusters on non-critical
paths. Lower values for the components of result in more
parallelism during scheduling.

4.1 Mapping of PDT Nodes into Pipeline Structures
During the process of constructing the PDT, partitions are

constructed recursively, and information about all partitions in the
resulting hierarchy is stored. Partitions in intermediate levels pro-
vide for various pipeline organizations with various corresponding
trade-offs between latency and throughput.

Intermediate-level PDT partitions can be mapped to different
stages of various pipelines. The method we use for mapping parti-
tions to stages is based on the distribution of .
Therefore, partitions at different depth levels of the PDT can be
flexibly configured to generate various sets of pipelines. Figure 2
illustrates how pipelines can be constructed from PDT nodes at dif-
ferent depths. In this example, PL 1 has the best latency, PL3 pro-
vides the best throughput, and PL2 provides a trade-off between
latency and throughput.

4.2 Critical Path Based Partitioning from the PDT
Based on the PDT representation developed above, this section
introduces a novel heuristic technique, called critical path based
partitioning (CPAP). CPAP divides a PDT-based partition into two
sub-partitions in a manner that is driven by the formulations of
Equations 4 and 5.

Our CPAP technique partitions clusters into sub-partitions by
cutting critical paths of cluster dependency graphs evenly in terms
of the estimated execution time of the clusters. With CPAP, the con-
sideration of over- and under-loaded pipeline stages can be reduced
before scheduling. CPAP is recursively applied to each level of the
PDT for dividing partitions into sub-partitions until the application
dataflow graph is fully scheduled onto the set of available target
processors.

Figure 3 gives a more detailed outline of the CPAP algo-
rithm., and Figure 4 illustrates how CPAP processes local critical
path to divide parent partitions into sub-partitions.

5. INCORPORATING DATA PARALLEL-
ISM
In this section, we develop a technique called heterogeneous data
parallelism with earliest start times (HDEST), to comprehensively
take data parallelism considerations into account during the process
of pipeline configuration. The HDEST algorithm is an extension of
the widely-used EST (earliest start time) technique, which uses the

minimum starting time among available tasks as the main priority
metric during scheduling [13].

HDEST applies a priority to a task in its scheduling ready list
() based on the depths of the critical paths associated with suc-
ceeding tasks. Thus, a task with the longest critical path of succeed-
ing tasks has the highest priority in the .

HDEST also looks up all tasks in the and classifies them
into two groups based on the existence or absence of heterogeneous
data parallelism. In this classification, a task with heterogeneous
data parallelism is called a task, and a task without heteroge-
neous data parallelism is called a task. In HDEST, idle pro-
cessors are utilized by task duplication in conjunction with .
Specifically, HDEST applies heterogeneous data parallelism for
increasing the processor utilization (). The represents the
fraction of time that a processor is active relative to the latency of a
pipeline stage. In case every task in a stage is a task, all pro-
cessors in the associated pipeline stage can be fully utilized.

In general, task dependencies and s prevent us from
achieving an ideal . After HDEST, stages with poor are
repartitioned by a refinement process that redistributes the work-
loads of different stages.

Figure 5 illustrates the HDEST process by showing how a
pipeline configuration derived by EST is improved to a new

π Dep π()
Dep π()

Dep π()

executeTime π()

Figure 2. An example of pipelines generated by the PDT.

P D T (P ip e lin e D e c o m p o s it io n T re e)

P L 1 (L 1 , T h 1) : s ta g e s = 2

P L 2 (L 2 , T h 2) : s ta g e s = 5

P L 3 (L 3 , T h 3) : s ta g e s = 9
L 1 < L 2 < L 3
T h 1 < T h 2 < T h 3

(,) {
;

 = ;
 = ; = ; = ; = ;

() {
Step 1 => Find a critical path in the given graph.
for(= ;i< . ; ++) {

 = ();
(. < .)

 = ;
}
Step 2 => Add the left half of clusters of current longest
path () to the left partition only if each node in

 satisfies Equations 4 and 5.
for((= ;i< . ; ++) {

[]= (.);
(||) {

 += . ;
. (.);

}

;
}

 = - ;
Step 3 => continue until <= .

(or =)
;

}
 = . ();
. (. ());

;
 ;

}

CPAP G CutTh
CPAPDB ⊥=
LongestPath ⊥
πleft ⊥ πright ⊥ Gleft ⊥ Gright ⊥
while TRUE

i 0 G length i
CP i[] FindCP G
if LongestPath length CP i[] length

LongestPath CP i[]

LongestPath
LongestPath

i 0 LongestPath length i
predeNodes predecessor LongestPath node i[]
i f predeNodes∀ ⊥= predeNodes∀ πleft⊂

πleft LongestPath node i[]
Gleft add LongestPath node i[]

else
break

G G LongestPath
executeTime πleft() CutTh

if executeTime πleft() CutTh≥ G ⊥
break

πright G nodes
Gright add G nodes
CPAPDB πleft πright Gleft Gright, ,{ , }=
return CPAPDB

Figure 3. CPAP algorithm.

: return the critical path, from graph, .
[]: predecessors of a given node. ();

return predecessors of node, . : a data base of partitions
and graphs (, and) grouped by .

FindCP LongestPath G
predeNodes predecessor n

n CPAPDB
πleft πright Gleft Gright CPAP

RL

RL

RL

THD

TNHD

THD

PU PU

THD

TNHD

PU PU

C1

55

configuration by HDEST. This improvement arises from utiliz-
ing an idle interval of configuration through application of het-
erogeneous data parallelism.

Because of the data parallelism available in tasks, such
tasks can utilize, through task duplication, idle times of processors
allocated to . If all tasks in a given stage are tasks,
then all processors can be fully utilized by task duplication. On the
other hand, if both and tasks coexist in a given stage,
idle times of processors caused by task dependency can be filled
with tasks.

HDEST exploits heterogeneous data parallelism by using the
earliest start time metric for candidate tasks. First, HDEST classi-
fies all tasks in the scheduling ready list as and
tasks. Next, HDEST schedules the tasks by considering
their priorities and their communication costs, based on the targeted
memory architecture. tasks are scheduled before
tasks because tasks, due to their lower flexibility, are more
critical in terms of data dependency. The overall execution times of

 tasks can be reduced further by exploiting heterogeneous data
parallelism. When no tasks are available according to the ready list,
task duplication is considered for tasks that have already been
scheduled, and that overlap idle intervals. To idle processors that
correspond to such idle intervals, HDEST applies task duplication
to allocate copies of the associated tasks to the idle proces-
sors. Figure 6 outlines the HDEST algorithm in more detail.

6. EXPERIMENTAL RESULTS
This paper uses the Texas Instruments (TI c64x) Code Composer
Studio to measure the estimated execution time of each task within
the application dataflow graph as it runs on a single processor.

To evaluate our proposed pipeline configuration techniques,
we applied the techniques to a suite of complex morphological
applications, and to Laplacian pyramid, multi-resolution spline and
MPEG2 encoder computation. Each application was scheduled
under different constraints and architectures. For concreteness, we
assumed that each DSP chip in the simulated target platform can
integrate up to four processor cores, and that each DSP chip has on-
chip memory and external memory. Each stage of a pipeline in the
class of target architectures consists of one or more DSP chips with
different numbers of processors cores. We assumed that external

memory for each processor core within a DSP chip can be config-
ured either as a separate-memory architecture (SP) or a shared-
memory architecture (SH), whereas only a shared memory was
allowed for on-chip memory due to chip-level size considerations.

To explore the interaction of our proposed techniques with
memory constraints, we applied 10% reduction for on-chip memory
and 50% reduction for external memory compared to peak memory
usage of each processor core, and we observed the effects of these
memory constraints on performance in each architecture configura-
tion. The resulting solutions are referred to as “constrained memory
(C)” solutions, whereas the solutions that result when these mem-
ory constraints are not imposed are referred to as “unconstrained
memory (NC)” solutions.

We compared the proposed techniques with the earliest start
time (EST) algorithm, and we performed the experimentation with
2-, 4-, 8- and 16-processor systems.

Figure 7 shows, for example, that scheduling results under
memory constraints lead to 80% and 51% throughput degradation
under a shared memory architecture with 16 processors, with and

Figure 4. An example of the CPAP method.

1 s t c r i t ic a l p a th

2 n d c p

3 r d c p

1 s t c p 1 s t c p

2 n d c p

1 s t c r i t ic a l p a th

2 n d c p

3 r d c p

1 s t c p 1 s t c p

2 n d c p

C2

C1

THD

TNHD THD

THD THND

THD

RL THD TNHD

TNHD

TNHD THD

TNHD

THD

THD

THD

Figure 5. An example of a schedule derived by HDEST

P 1
P 2 C

B A

P 3 D

E

i d l e i n t e r v a l

C
B I 1 (A)

D

EI 2 (A)
I 3 (A)

H D E S T

C 1C 1

C 2C 2

T H D
T H N D

P 1
P 2
P 3

P 1
P 2 C

B A

P 3 D

E

i d l e i n t e r v a l

C
B I 1 (A)

D

EI 2 (A)
I 3 (A)

H D E S T

C 1C 1

C 2C 2

T H D
T H N D

P 1
P 2
P 3

HDEST() {
Update the ready list RL;
While (tasks for scheduling != empty) {

if (RL != empty) {
- Select the task of highest priority;

→ TNHD tasks have higher priority than THD tasks
→ Tasks with more critical successors have higher priority

- Choose the processor with the lowest communication cost;
- Update RL;
}
else {

< Exploit Heterogeneous Data Parallelism >
- Check task duplication availability
- Duplicate selected task based on available idle processors
- Update RL

}
}

}

Figure 6. HDEST algorithm.

a) latency (constrained) b) latency (unconstrained)

c) throughput (constrained) d) throughput (unconstrained)

0

10

20

30

40

50

60

70

SP SP S H SH

W TD W OTD WTD W OTD

T
h
r
o
u
g

h
p

u
t
(
1
/
s
e
c
)

P= 2

P= 4

P= 8

P= 1 6

0

10

20

30

40

50

60

70

S P SP SH S H

WTD WO TD WTD W OTD

T
h
r
o
u
g
h
p
u
t
(
1
/
s
e
c
)

P= 2

P= 4

P= 8

P= 16

Figure 7. Latency and throughput comparison (multi-spline).

SP: separate memory. SH: shared memory. WTD: With Heterogeneous
data parallelism. WOTD: Without Heterogeneous data parallelism. Con-
strained [SH: On-Chip 3.6KB, EX-MEM: the number of stages*64KB].
[SP: On-Chip 3.6KB, EX-MEM: the number of processors*64KB].
Unconstrained [SH: On-Chip 4KB, EX-MEM: the number of
stages*2*64KB]. [SP: On-Chip 4KB, EX-MEM: the number of proces-
sors*2*64KB]

0

20

40

60

80

100

120

140

160

180

200

SP SP S H SH

W TD W O TD W TD W O TD

L
a
te
n
c
y
(m
 s
e
c

P = 2

P = 4

P = 8

P = 1 6

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

S P S P S H S H

W TD W O TD W TD W O TD

L
a
te
n
c
y
(
m
 s
e
c
)

P = 2

P = 4

P = 8

P = 1 6

56

without heterogeneous data parallelism exploitation, respectively.
A 16 processor, shared memory architecture can save up to 37.5%
memory usage under unconstrained memory operation, while pro-
viding 25% better latency compared to a separate memory architec-
ture. Applying heterogeneous data parallelism with our proposed
scheduling techniques provides 2.46 times better throughput and
62.5% reduced latency compared to scheduling without heteroge-
neous data parallelism (WOTD), again for a 16 processor configu-
ration.

Figure 8 shows a comparison between the EST and PDT
technique for experiments with the multi-spline, Laplacian, image
complex and MPEG2 applications. For example, the PDT tech-
nique provides 63.8% reduced latency and 4.94 times better
throughput compared to the EST approach under an unconstrained
memory configuration for the multi-spline application.

7. CONCLUSIONS
Effective, coarse-grained (“task-level” or “macro-”) pipelined

scheduling of an application over multiple processors generally
provides increased throughput. However, pipelined scheduling can
significantly increase latency. Furthermore, efficient pipelined
scheduling of image processing applications requires careful and
flexible integration of data- and task-level parallelism. This paper
provides a new approach to generating coarse-grained pipelines for
image processing applications in a manner that simultaneously con-
siders latency/throughput trade-offs; memory and performance con-
straints; task-level parallelism; and homogeneous and
heterogeneous modes of data parallelism. The approach is based on
a novel data structure called the pipeline decomposition tree (PDT).

The PDT is useful for efficiently representing and exploring
various sets of pipelining configurations that provide different
trade-offs between latency and throughput. After pipelined sched-
ules are generated through the PDT analysis process, a new tech-
nique called heterogeneous data parallelism, with earliest start
times (HDEST) maps application tasks onto pipeline stages while
considering memory and performance constraints. In the HDEST
mapping process, heterogeneous data parallelism is carefully
applied to improve both throughput and latency.

Our experimental results on various applications demonstrate
the utility of the PDT data structure and HDEST mapping technique
for embedded multiprocessor implementation of image processing
applications. The applications in our experiments involved image
processing because the emphasis in PDT on data parallelism con-
siderations makes the technique especially well-suited for image
processing.

The utility of PDT scheduling comes from the integrated
exploitation of parallelism, along with its use of compile-time
scheduling for predictable and low-overhead operation. The analy-
sis process is performed at compile time while applying communi-

cation cost models depending on the underlying bus architecture
and memory characteristics. Pipeline schedules derived by PDT
scheduling can be mapped by hand into corresponding implementa-
tions in a straightforward manner. This mapping process can be
automated through suitable code generation techniques, and devel-
opment of such automaton is another useful direction for further
work.

8. REFERENCES
[1] S. Bakshi, D. Gajski, Partitioning and pipelining for perfor-
mance-constrained hardware/software systems, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 4,
p.419-432, Dec. 1999.
[2] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler.
Systematic integration of parameterized local search in evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation,
8(2):137-155, April 2004.
[3] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, Mac-
ropipelining based scheduling on high performance heterogeneous
multiprocessor systems. IEEE Trans. Signal Processing, vol. 43,
pp.1468-1484, June 1995.
[4] M. K. Dhodhi, I. Ahmad, and I. Ahmad. “A multiprocessor
scheduling scheme using problem-space genetic algorithms”. In
IEEE Conf. on Evolutionary Computation, pages 214-219, 1994.
[5] D. E. Goldberg. “Genetic Algorithms in Search, Optimization
and Machine Learning”. Addison-Wesley, 1989.
[6] P. Hoang and J. Rabaey, Scheduling of DSP Programs onto
Multiprocessors for Maximum Throughput. In IEEE Transactions
on Signal Processing, vol. 41, no.6, June 1993.
[7] J. Jonsson, J. Vasell, "Real-Time Scheduling for Pipelined Exe-
cution of Data Flow Graphs on a Realistic Multiprocessor Architec-
ture", In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, May 7-10, 1996, Atlanta,
Georgia, USA, pp. 3314-3317.
[8] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. The Bell System Technical Journal, pages 291-
-307, February 1970.
[9] K. Konstantinides, R. T. Kaneshiro, and J. R. Tani, “Task Allo-
cation and Scheduling Models for Multiprocessor Digital Signal
Processing," IEEE Trans. on Acoustics, Speech, and Signal Pro-
cessing, vol. 38, no. 12, pp. 2151{2161, Dec. 1990.
[10] Y. K. Kwok, I. Ahmad, Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors, ACM Computing
Surveys, vol. 31, no.4, p.406-471, Dec. 1999.
[11] S. Ranaweera, D. P. Agrawal, " A Task Duplication Based
Scheduling Algorithm for Heterogeneous Systems", International
Parallel and Distributed Processing Symposium, p 445-450, May
01 - 05, 2000, Cancun, Mexico.
[12] J. Rehg, K. Knobe, U. Ramachandran, R. S. Nikhil, Arun
Chauhan, Integrated Task and Data Parallel Support for Dynamic
Applications, International Workshop on Languages, Compilers,
and Run-Time Systems for Scalable Computers, p.167-180, May
28-30, 1998.
[13] V. Sarkar. Partitioning and Scheduling Parallel Programs for
Multiprocessor. The MIT Press, Cambridge, Massachusetts, 1989
[14] J. Subhlok, G. Vondran. Optimal Latency-Throughput
Tradeoffs for Data Parallel Pipeline. SPAA, 1996, Padua, Italy.

Figure 8. EST vs. PDT comparison,

A1:Multi-Spline, A2:Laplacian, A3:ImageComplex, A4:MPEG2
C: Constrained memory. NC: Unconstrained memory

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

L L L L L L L L

A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 4

C UC

L
a

te
n

c
y

(m
-s

e
c

ES T

PD T

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Th Th T h T h T h Th Th Th

A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 4

C UC

T
h

ro
u

g
h

p
u

t
(1

/s
e

ES T

PD T

a) latency b) throughput

57

