
Application Specific Forwarding Network and Instruction
Encoding for Multi-pipe ASIPs

Swarnalatha Radhakrishnan, Hui Guo, Sri Parameswaran, Aleksandar Ignjatovic
School of Computer Science & Engineering

University of New South Wales
Sydney, Australia

{swarnar, huig, sridevan, ignjat}@cse.unsw.edu.au

ABSTRACT
Small area and code size are two critical design issues in most of em-
bedded system designs. In this paper, we tackle these issues by cus-
tomizing forwarding networks and instruction encoding schemes for
multi-pipe Application Specific Instruction-Set Processors (ASIPs).
Forwarding is a popular technique to reduce data hazards in the
pipeline to improve performance and is applied in almost all modern
processor designs; but it is very area expensive. Instruction encod-
ing schemes have a direct impact on code size; an efficient encod-
ing method can lead to a small instruction width, and hence reduc-
ing the code size. We propose application specific techniques to
reduce forwarding networks and instruction widths for ASIPs with
multiple pipelines. By these design techniques, it is possible to re-
duce area, code size, and even power consumption (due to reduced
area), without costing any performance. Our experiments, on a set
of benchmarks using the proposed customization approaches show
that, on average, there are 27% savings on area, 30% on leakage
power, 16.7% on code size, and at the same time, performance even
improves by 4% because of the reduced clock period.

Categories and Subject Descriptors: C.1.4 [Processor Architec-
ture]: Parallel Architectures
General Terms: Design
Keywords: Forwarding, Instruction Encoding, Multi-pipe ASIP, VLIW

1. INTRODUCTION
Embedded systems are becoming ubiquitous, cheaper, more pow-

erful, and increasingly ever present in people’s life. Since embedded
systems usually execute a single application or a class of applica-
tions, customization can be applied to optimize for performance,
area, power etc. One popular design platform for embedded sys-
tems is the Application Specific Instruction Set Processor (ASIP),
which allows such customizability without overly hindering design
flexibility. Numerous tools and design systems have been developed
for rapid ASIP generation [1][2]. Usually ASIPs contain a single
execution pipeline. Recently however, there has been trend towards
having multiple pipelines [2][16]. In [16], a design system was pro-
posed for ASIPs with varying number of pipelines. Given an appli-
cation specified in C, the design system generates a processor with
a number of pipelines specifically suitable to the application. Each
pipeline is customized, with a differing instruction set. The instruc-
tions execute in parallel in all pipelines. In the method described in
[16], the instruction width for each pipeline is identical; and to max-
imally reduce data hazards, there is a full forwarding network which
spans the entire processor, both within each pipeline and across all
pipelines.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006,Seoul,Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

This paper aims at reducing processor size and code size for such a
design by systematically reducing the forwarding network, and cus-
tomizing the instruction encoding with differing instruction width
for each pipe, without affecting the performance of the processor.

Motivation
Data hazards cause pipeline stall, degrading performance. To reduce
hazards, forwarding is used. Figure 1(a) shows a forwarding net-
work in a processor containing two pipelines. Each pipeline has four
stages: IF (instruction fetch), RR (register read), EX(execution), and
RW (register write). The eight forwarding paths (shown in dashed
lines) make the resultant data available for subsequent instructions,
thus eliminating data hazards and improving performance. As can
been seen, this performance improvement is at the cost of area. The
more forwarding paths, the larger the processor. If the processor
only executes a program for a given application, the instruction se-
quence for each pipeline is fixed, and some forwarding paths may
never be used by the program. They are redundant and can there-
fore be deleted without affecting performance, as illustrated by Fig-
ure 1(b), where the forwarding paths are reduced to five from eight.

IF

RR

EX

RW

IF

RR

EX

RW

IF

RR

EX

RW

IF

RR

EX

RW

(a) Full Forwarding (b) Customized Forwarding

Rs1 Rs2RdOp
03467912 10

RsRdOp
023456

Pipe 1 Pipe 2 Pipe 1 Pipe 2

Pipe 1 Pipe 2

(c) Customized Instruction Encoding

Figure 1: Forwarding and Instruction Encoding Customization
Similarly, customization can be applied to instruction encoding.

The customization is based on the fact that the instruction set for
each pipe is different. Instead of using an identical instruction width
for instruction encoding, each pipeline can have its own encoding
scheme with differing instruction width (as illustrated in Figure 1(c)),
thus, high density code can be achieved, saving instruction memory.

In this paper, we attempt to maximally reduce the forwarding net-
work and instruction code size at no performance cost.

1.1 Related Work
Research and development in the area of ASIPs has been flourish-

ing for a couple of decades. Large amount of work has been devoted
to special instruction generation to improve performance while re-
ducing cost [4] [8] [12] [14][17] [20].

Recently, study on parallel architectures for ASIP design has be-
gun to appear in the research literature. In [10], the authors pre-
sented a Very Large Instruction Word (VLIW) ASIP with distributed

241

register structure. Jacome et. al in [11] proposed a design space
exploration method for VLIW ASIP datapaths. In [13], Kathail et
al. proposed a design flow for a VLIW processor which allowed for
Non-Programmable hardware. Sun et al. in [19] presented a design
for customized multi-processors. In [16], authors proposed an ASIP
design with varying number of pipelines.

Issues involved in the forwarding design for a VLIW processor is
discussed in [3]. In [7], authors proposed a systematic forwarding
customization approach for design exploration. Instruction schedul-
ing for processors with a given incomplete forwarding network is
presented in [18]. All of the above approaches are based on a fixed
processor architecture, where the main focus is the scheduling of
instructions. In contrast, our approach simultaneously takes both in-
struction scheduling and pipeline customization into account; hence,
a better customization could be achieved yet with a simple design
method.

For instruction encoding, many approaches have been proposed.
In [6], authors presented a technique that encodes all instructions,
required by an ASIP, with a given instruction size. A hierarchi-
cal instruction encoding for VLIW-based architecture applications is
given in [5]. The encoding uses a sophisticated approach to achieve
good encoding for a given processor architecture. In [15], authors
presented an instruction encoding generation technique for fast and
automatic architectural space exploration. The approach focuses
on encoding instructions for opcode field, assuming operand field
length for each instruction is given. These approaches are not tai-
lored to our target processors proposed in [16]. The techniques pre-
sented in this paper exploits the unique architectural features of our
target ASIP, where each pipeline has different control unit for dif-
ferent set of instructions. The encoding is customized, with each
pipeline having its own fixed instruction width and the instruction
width varying from one pipe to another, and hence achieving a better
trade-off between the design simplicity of the fixed-width encoding
and code reduction efficiency of the varied-width encoding.

1.2 Contributions
The work presented in this paper, to our best knowledge, is the

first study on customizing forwarding and instruction encoding for
ASIPs with multiple number of pipelines. The customization takes
into account the unique features of such a processor and produces a
highly efficient design. In particular, we introduce

• A new forwarding customization approach to reduce area over-
head and leakage power;

• An efficient encoding technique to reduce code size, and ad-
ditionally, area;

Our extensive study has shown that the proposed customizations
increase the design area and power efficiency significantly without
degrading performance.

1.3 Paper Organization
The rest of the paper is organized as follows: section 2 presents

an overview of our target multiple pipeline ASIP design; section 3
describes the method taken to customize forwarding for such a pro-
cessor; in section 4, we explain how instruction encoding for each
pipeline is carried out; experimental results are given in section 5;
and the paper is concluded in section 6.

2. MULTI-PIPE ASIP DESIGN OVERVIEW
The design flow for our target multi-pipe ASIPs is given in Fig-

ure 2. The design flow starts with an application written in C, which
is compiled into a single-pipeline assembly code, as illustrated in
Figure 3(a). The single pipeline code is then scheduled into a num-
ber of parallel pipelines, as shown in Figure 3(b), which gives the in-
struction set for each individual pipeline (Figure 3(c)). Next, ASIP-
Meister [1], a single-pipe ASIP design software tool, is used to cre-
ate a design for each pipeline. All pipelines are then integrated into
a multi-pipeline processor containing a parallel structure as shown
in Figure 3(d), where the register file is shared by all pipelines. Each

C
proogram Compile

Processor & Code
Generation

Design improved?

Synthesis
Simulation

END

Parallel Scheduling

Save
design

Yes

No

Modify
pipelines

Forwarding and
Instruction Encoding

Customization

Figure 2: Multi-pipe ASIP Design Flow

1 .L68:
 2 push {lr}
 3 mov r2, sl
 4 ldr r9, [r2]
 5 mov r1, #15
 6 and r1, r1, r3
 7 bit_count:
 8 mov r2, #0
 9 str r2, [r5,r9]
10 cmp r0, #0
11 beq .L20
12 .L24:
13 sub r1, r0, #1
14 and r0, r0, r1
15 add r2, r2, #1
16 cmp r0, #0
17 bne .L24
18 .L20:
19 mov r2, sl
20 mov r5, r3
21 add r5, r5, #4
22 add r6, r6, #1
23 ldr r7, [r2, #96]
24 .l21:
25 sub r4, r4, #1
26 ldr r3, [r7, r2]
27 str r3, [r2]
28 sub r2, r2, #4
29 cmp r4, #0
30 bne .L21
31 .L54:
32 mov r0, r2
33 mov r1, r8
34 str r6, [sp, #12]
35 lsl r2, r0, #2
36 pop {pc}

RF

ALU
DMAU
Adder
Shifter

Adder
Shifter

CTRL1 CTRL2 CTRL3IMEM

DMEM

 Seq 1 Seq. 2 Seq. 3

.L68: .L68: .L68:
mov r2,sl push {lr} mov r1,#15
and r1,r1,r3 ldr r9,[r2] 0
bc: bc: bc:
mov r2,#0 nop 0
cmp r0,#0 str r2,[r5,r9] 0
beq .L20 nop 0
.L24: .L24: .L24:
sub r1,r0,#1 add r2,r2,#1 0
and r0,r0,r1 nop 0
cmp r0,#0 nop 0
bne .L24 nop 0
.L20: .L20: .L20:
mov r2,sl mov r5,r3 add r6,r6,#1
add r5,r5,#4 ldr r7,[r2,#96] 0
.L21: .L21: .L21:
sub r4,r4,#1 ldr r3,[r7,r2] 0
cmp r4,#0 str r3,[r2] sub r2,r2,#4
bne .L21 nop 0
.L54: .L54: .L54:
mov r0,r2 str r6, [sp, #12] mov r1,r8
lsl r2,r0,#2 pop {pc} 0

(b) Parallel Program Sequences

ISA 1

mov rn,rm
and rn,rn,rm
mov rn,immed
cmp rn,immed
beq label
sub rn,rm,immed
add rn,rn,immed
sub rn,rn,immed
lsl rn,rm,immed
bne

ISA 2

push {rn}
ldr rm,[rn,immed]
mov rn,rm
add rn,rn,immed
str rd,[rn,rm]
ldr rd,[rn,rm]
str rm,[sp,immed]
pop {rn}
str rd,[rn,immed]

ISA 3

mov rn,rm
mov rn,immed
add rn,rn,immed
sub rn,rn,immed

(c) Individual Pipeline Instruction Sets

(a) Single Pipe Program

(scheduler)

(d) n-pipe ASIP

(pipeline generator)

Figure 3: Design Overview

pipeline performs its own program sequence and has a separate con-
trol unit that controls the operation of the related functional units on
that pipe. This design process is repeated for different number of
pipelines (as shown in the design flow (Figure 2) until a design that
meets a given design criteria is created.

The forwarding and instruction encoding methods introduced in
this paper can be incorporated into the design systems, as indicated
by the dashed block in Figure 2.

3. FORWARDING DESIGN
Forwarding improves performance at the cost of area. The cost

grows as the complexity of the network becomes large. The com-
plexity of the forwarding network is determined by the processor
structure. The number of forwarding paths for a full forwarding net-
work is

Nf =
n

∑
i=1

(si

n

∑
j=1

d j), (1)

where n is the number of pipes in the processor, d j the number of
stages from execution stage to the register write back stage in pipe j,
and si the number of source operands taken by the execution stage in
pipe i. The formula indicates that the deeper the pipeline and greater

242

the number of execution operands, the higher the complexity of the
forwarding network. For a particular application (as in an embed-
ded system), not all forwarding paths may be used. Some paths are
redundant, and can be deleted without any effect on performance.

We determine the redundant forwarding paths based on the in-
struction data dependency. Assume a processor has n pipelines with
all of them having d stages from EX (execution) to RW (result write
back to register file). The stages are numbered, with EX as the first
and RW as the last. We check the data dependency of an instruction
in the parallel program sequence within a window of d parallel in-
structions. For an instruction i, if it has data on pipe a that depends
on instruction i-k on pipe b, then there needs to be a forwarding path
from the kth stage in pipe b to pipe a. We use an array, denoted by P

for such information. The element P(i, j,k, l) represents the number
of instructions that use the forwarding path from pipe i, stage j to
pipe k source l. For any forwarding path with corresponding 0 value
in P, this forwarding path will be deleted.

However, some forwarding paths may be under-utilized with low
values in P. We try to avoid usage of such under-utilized forwarding
paths, using local rescheduling of instructions. Once no instruction
uses such paths, they can be removed.

Local rescheduling of instructions consists of either shifting their
position within the same pipeline, or placing them on other avail-
able pipelines. For each new position the utilization of forwarding
paths is recalculated, and position that reduces the utilization of the
infrequently used forwarding paths is accepted. This procedure is
continued until as many zeros in P are generated as possible; finally,
all forwarding paths that are not used at all (i.e. with a zero entry in
P) are eliminated. At each step, we examine all possible placements
within a window of parallel instructions, exhaustively searching for
the best placement of that instruction. We start with a window con-
sisting of a single parallel instruction containing the instruction be-
ing rescheduled. After completing the optimization, the size of the
window is increased, and the optimization is rerun. If the number of
forwarding paths has dropped, the window is increased again, and
the optimization is repeated until no further reduction is achieved.

Algorithm 1 Forwarding Network Reduction:
reductionDone = FALSE;
while reductionDone = FALSE do

P = generateForwardingPathArray();
findInstructionCausingLowPathUtilization(P);
AttemptLocalScheduling();
if all such instructions have been attempted then

reductionDone = TRUE;
end if

end while

The forwarding customization approach is given in Algorithm 1.
An example is given in Figure 4. In this example, there are three
pipelines in the processor. All three pipelies have instructions. Fig-
ure 4(a) gives stage structure for a single pipeline, where IF is for
instruction fetch, RR for register read, EX for execution, MA for
memory access, and RW for register write. Data can be forwarded
from three stages: EX, MA and RW to any source inputs of EX
stages. Instruction sequences for each pipeline are shown in Fig-
ure 4(b), where instructions are denoted in a general format with
their operands listed in the brackets, where symbols s1, s2, s3 rep-
resent the first, second and third operands, respectively. The arrows
in Figure 4(b) indicate the data dependency; for clarity, the related
dependent operands are specifically identified with the same name.
For example, instruction instr8 in pipe 2 has three source operands,
with s1 (identified as b) dependent on the result of instr4 on pipe 1;
s2 (as c) dependent on instr2 on pipe 2 and s3 (as d) dependent on
instr6 on pipe 3. Note that some operands can be both sources and
destinations, such as b in instruction instr8; they can be dependent
on other operands or other operands can depend on them. Based on
the dependency, a forwarding path array can be generated as shown
in Figure 4(c), where a non-zero value indicates a required path.
Only eight forwarding paths are required for this (exemplified) pro-
gram, as compared to 72 forwarding paths in the full forwarding
network. Also, from the array in Figure 4(c), we can see that in-
struction instr18 is the one that incurs three extra forwarding paths.
We therefore first try to re-schedule it locally (the local area is shown

in the shaded region). It is found that switching instr18 with the nop
instruction on pipe 2 (both are underlined) reduces the forwarding
paths from 8 to 7, with the related forwarding path array shown in
Figure 4(d) (the changed elements are underlined). This process to
identify an instruction that could reduce forwarding paths and then
attempt local scheduling, is iteratively applied until no further im-
provement can be achieved. Details are omitted due to limited space.

instr1(a,s2)

instr4(b,a)
instr7(e,s2)

instr10(b,e)

instr13(s1)
instr16

instr2(c,s2)

instr5(s1,s2)
instr8(b,c,d)

nop

instr14(f,b,s3)
nop

instr3(s1,s2)

instr6(d,s2)
instr9(s1,s2)

instr12(s1,s2)

instr15(g,s2)
instr18(b,f,g)

Pipe 1 Pipe 2 Pipe 3

RR EX MA RWIF

(a) single pipeline structure

(b) 3-pipe instructions

Pipe 1 Pipe 2 Pipe 3

P
ip

e 1
P

ipe 2
P

ipe 3

(c) forwarding path array

F
R
O
M

TO

s1 s2 s1 s2 s3 s1 s2 s3
EX 0 2 1 0 0 0 0 0
MA 1 0 0 0 0 0 0 0
RW 0 0 0 0 0 0 0 0
EX 0 0 0 0 0 0 1 0
MA 0 0 0 2 0 0 0 0
RW 0 0 0 0 0 1 0 0
EX 0 0 0 0 1 0 0 1
MA 0 0 0 0 0 0 0 0
RW 0 0 0 0 0 0 0 0

Pipe 1 Pipe 2 Pipe 3

P
ip

e 1
P

ipe 2
P

ipe 3

(d) forwarding path array

F
R
O
M

TO

s1 s2 s1 s2 s3 s1 s2 s3
EX 0 2 1 0 0 0 0 0
MA 1 0 0 0 0 0 0 0
RW 0 0 0 0 0 0 0 0
EX 0 0 0 1 0 0 0 0
MA 0 0 0 2 0 0 0 0
RW 0 0 1 0 0 0 0 0
EX 0 0 0 0 2 0 0 0
MA 0 0 0 0 0 0 0 0
RW 0 0 0 0 0 0 0 0

Figure 4: Forwarding Design Example

4. INSTRUCTION ENCODING
Instruction encoding uses binary bits to represent instructions.

The format can be generally divided into two parts: one, operation
field, for encoding operation; and another, multiple operand fields
for encoding operands.

Our encoding approach uses a fixed instruction width for each in-
dividual pipeline, with the width varying from one pipe to another.
The encoding starts with the existing instruction sequences produced
by the scheduling algorithm. Encoding for each pipe is carried out
separately. The instructions in a sequence are grouped based on the
instruction type. An instruction type represents all instructions that
have the same operation with a fixed operand structure (i.e. same
number of operands and same addressing mode). Each operand can
have different values. The pattern of these values for each operand
is analyzed and operands are encoded with minimal number of bits.
Based on the operand encoding, the operations of the whole instruc-
tion set used by the application program is then encoded. Details for
both encoding tasks are given below.

Operand Encoding
In our ISA, operands can be generally classified into two types: reg-
isters and immediate values. We use same treatment for both types
of operands. The encoding strategy is demonstrated in the following
with register operands (or registers for simplicity).

Conventionally, the size of a register field (or operand field), is
determined by the size of the register file since any general purpose
register in the register file can be used in the instructions. However,
with a given program sequence, a certain type instructions may not
use all of those registers. Therefore, the field size can be reduced.

For example, assume in a program, among 16 general purpose
registers, only four registers, r2, r4, r11 and r13, are used in an
operand field. Instead of using four bits to encode the four regis-
ters (henceforth called full bit binary encoding, or FBE), we can use
two bit binary code. We refer this encoding as reduced-bit binary en-
coding, or RBE. The four registers are encoded as shown in column
3 in Table 1, with the full bit encoding in column 2.

Rather than arbitrarily assigning code-words to each of the regis-
ters, we introduce an encoding approach such that the decoding will
be simpler, thus reducing hardware complexity, and hence improv-

243

Table 1: Three Encoding Approaches
registers FBE RBE REE

(b3b2b1b0) (c1c0) (c1c0)
r2 0010 00 10
r4 0100 01 00

r13 1101 10 01
r11 1011 11 11

Table 2: Decoding Logic (a)RBE (b)REE
b3 = c1 b3 = c0
b2 = c1 ⊕ c0 b2 = c̄1
b1 = ¯c1 ⊕ c0 b1 = c1
b0 = c1 , b0 = c0

(a) (b)

ing performance, area and power. We call this technique reduced-bit
efficient encoding or REE. Column 4 in Table 1 gives an example of
such an encoding. The related decoding logic functions for RBE and
REE encodings are given in Figures 2(a) and 2(b), respectively. As
can be seen from the two sets of logic functions, the logic from REE
is much simpler than that from RBE.

The code assignment for REE is elaborated as follows.
We list the registers to be encoded in an array with full bit bi-

nary values. For example, the array in Figure 5(a) represents four
registers: r10, r12, r31 and r33 in a 64-register file. There are six
bit-columns.

b5 b4 b3 b2 b1 b0

0 0 1 0 1 0
0 0 1 1 0 0
0 1 1 1 1 1
0 1 0 0 0 1

register code

 r10 10
 r12 00
 r31 11
 r17 01

(a) (b)

Figure 5: Register Encoding Example

Given a register array for a register operand field, we determine
the encoding values by Algorithm2. Some terms used in the algo-
rithm are given below.

A redundant bit column in the register array satisfies one of the
following conditions: a) the column has a fixed constant value; b) the
column is a repetition of another column with exactly the same val-
ues; and c) the column values are complements of the corresponding
values of another column.

A one bit column is said to be highly redundant if there are many
columns with exactly the same (or complemented) values. Columns
with high redundancy allow simpler decoders.

A set of columns are fully representative if they form all possible
code values for a given number of bits.

Take Figure 5(a) as an example. Column b5 is a constant column
with fixed value 0; column b4 repeats column b0; thus, both columns
are redundant. Algorithm 2 first deletes the two redundant columns
and the register array is left with four columns, which is greater than
two (the number of bits required for encoding). Therefore, the al-
gorithm is then looking for two columns that are fully representative
and preferably of high redundancy. Three column pairs (b2, b1), (b2,
b0) and (b1, b0), are fully representative, because all of them have
four 2-bit distinct row values (00, 01, 10, 11). Since column b0 is re-
peated by column b4, it is of high redundancy as compared to other
columns, we therefore choose one of the column pairs that include
b0 as the encoding code values, as shown in Figure 5(b).

Applying the field encoding algorithm to each of the operand
fields, we can obtain encoding for all operand fields in an instruction
type with a minimal number of bits, as specified in Algorithm 2.

Instruction Encoding
The operation encoding is constructed progressively into multiple
levels. Instructions with largest operand fields have minimal levels;
while those with smallest operand fields have maximal levels.

The encoding starts from instructions with the smallest total num-
ber of bits for the operand fields. To explain, we refer to the example
in Figure 6. As presented in the (a) part of this figure, there are ten

Algorithm 2 Operand Field Encoding:
//determine the number o f bits required f or the f ield
field size = log2(no o f registers);
delete redundant columns();
if number of remaining columns = field size then

use the columns’ row values as the encoding code values;
else

//generate code values based on the remaining columns
find f ield size full representative and of high redun-
dancy columns;
if found then

use the columns’ row values as code values;
else

find f ield size high redundant columns;
if found then

use the columns’ distinct row values as code values;
end if
if encoding is not complete then

encode the rest of registers with the remaining bi-
nary code values;

end if
end if

end if
return field size;

different types of instructions. Each type of instruction may have
varied operand values that are enumerated in braces.

We group these instructions according to the number of bits needed
for the operand fields, as follows. Instructions 1-3 are in the first
group, and they have fixed operand values (e.g., asr1 is always ap-
plied to r2,r5,#3). Thus, no bits are required for the operand fields
of the first group. Instructions 4-6 are in the second group, and re-
quire one bit for each operand field; thus require three bits in total.
Instructions 7 and 8 in the third group and require for operand fields
five bits each (note: in different format), and finally the last two in-
structions are in the fourth group and require six bits for operand
fields. The number of bits for operand fields are indicated by the
number of ”*” in the related instruction formats shown on the right
in Figure 6(b). All instructions are sorted based on operand field size
(as already done in Figure 6(a)).

The first three instructions with zero operand size, grouped into
the first group, are encoded with two bits. These two bits can denote
four code values in total, and among them three code values 11,
01, 00 (arbitrarily) chosen to represent the three instructions of the
group. This is the lowest level encoding and is denoted by OP1 in
Figure 6(b). We refer this encoded bit size as the partial encoding
size (that will be used in Algorithm 3).

We now proceed to the second group of instructions consisting
of instructions 4-6. Since these instructions require three bits for
operand fields, we first pad the first two bits of the partial encoded
size of the first group PC1 with an extra bit of zero value (PC2). We
need two bits to enumerate four cases: three (10,01,00) instructions
of group two, plus one (11) for all three instructions of group one.
This completes partial encoding PC3. In the same manner, we see
that we need two more bits to enumerate instructions 7 and 8 of the
third group (using 01 and 00), and also all instructions of all previ-
ously encoded groups (using 11). This constitutes partial encoding
PC4. Since the number of bits needed for the operands and instruc-
tions of group two matches exactly the number of bits needed for
the operands of the third group, no padding of any kind is needed in
this case. Next, we need six bits for operands of the fourth group,
and one bit for the two instructions of group four. This instruction
bit forms partial encoding PC5. Finally, we need one extra bit to
distinguish between instructions of the first three groups from the
instructions of the fourth group. This completes the encoding of the
entire instruction set. This method is formulated as Algorithm 3.

The operation field encoding is summarized in Algorithm 3. For
each instruction type, the instruction operation encoding progresses
from inner most level to the outmost level; and the code size grows
accordingly.

244

1 1 1 1 1 0 1 1
1 1 1 1 1 0 0 1
1 1 1 1 1 0 0 0
1 1 1 1 0 * * *
1 1 1 0 1 * * *
1 1 1 0 0 * * *
1 0 1 * * * * *
1 0 0 * * * * *
0 0 * * * * * *
0 1 * * * * * *

PC1PC2PC3

PC5

PC6

(a) (b)

1. asr1 r2, r5, #3

2. mov2 r0, r6

3. mov1 r3, #2

4. lsr1 {r5,r7}, {r2,r1}, {#4,#1}

5. sub2 {r2,r3}, {r4,r5},{ #1,#2}

6. lsl1 { r2,r3}, {r2,r0}, {#28,#24}

7. add3 {r0,r1}, {r0,r1,r3}, {r2,r5,r6,r9}

8. sub3 {r2,r4,r7}, {r5,r8}, {r0,r1,r3}

9. ldr2 {r0,r2,r3}, [{r2,r1,r0}, {r3,r5,r7}]

10. str2 {r5,r3,r7}, [{r2,r1,r5}, {r1,r0,r2,r4}]

PC4

Figure 6: Instruction Encoding Example

Algorithm 3 Instruction Encoding
group instructions according to their total size of operand fields;
encodingDone = FALSE;
while encodingDone = FALSE do

current group = instructions with smallest partial encod-
ing size;
encode the current group with smallest number of bits;
bit difference = operand field size of next group - partial en-
coded size of current group
if bit difference �= 0 then

pad groups with bit difference zeros()as necessary to
match the partial code sizes;
encode current group with minimal number of bits;

end if
if all instruction types have been fully encoded then

encodingDone = TRUE;
end if

end while

5. SIMULATIONS AND RESULTS
By applying forwarding network reduction and instruction encod-

ing to the multi-pipe processor design system in [16], we designed
ASIPs for a set of applications from Mibench [9]. All results are
associated with a 3-pipe architecture.

As described in section2, we utilized ASIPmeister [1], an ASIP
design tool for single pipeline processor, in generating multi-pipeline
processor VHDL models for each of the applications. The designs
were synthesized using Synopsys Design Compiler based on the
TSMC 90nm core library, and simulated with the Modelsim sim-
ulator. The experimental setup is shown in Figure 7.

MergerIntegrator Integrator

Mult-pipe
Syn. Model

Mult-pipe
Sim. Model

Synopsys
Compiler

ModelSim

Clock Period, Area,
Leakage Power Clock Cycles

ISA

ASIPmeister GCC

Parallel
Code

Prog. Seq

VHDL
(Syn.)

VHDL
(Sim.)

Obj.
Code

Figure 7: Experimental Setup

Performance is evaluated in the processor clock speed, which is
given by Design Compiler, and the clock cycles given by Modelsim.
The leakage power is estimated by the Synopsys Design Compiler.

Forwarding Network Customization
The forwarding network reduction was tested and its effect on per-
formance, area and leakage power of entire processors is shown in
Figures 8, 9 and 10, respectively. Designs with full forwarding
were also conducted for comparison. As can be seen from these
three figures, on average, savings of 25% on area and 27% on leak-
age power consumption can be obtained with 3.9% improvement
on performance, as compared to the designs with the full forward-
ing network. This performance improvement is due to the reduced
complexity of the forwarding network, which reduces the size of the
processor, impacting upon the critical path, which in turn reduces
the clock width.

Comparison for Customized Forwarding

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Adp
.d

ec

b.
co

un
t

ba
s.m

at
h

cs
tri

ng
s

dij
ks

tra

en
dia

n
q.

so
rt

sh
a.

en
cr

str
.se

ar
ch

Benchmarks

T
im

e
(m

s)

F.Forw

Opt.Forw

Figure 8: Full Forward. vs. Custom Forward. (Exec. Time)

Comparison for Customized Forwarding

0

50000

100000

150000

200000

250000

Adp
.d

ec

b.
co

un
t

ba
s.m

at
h

cs
tri

ng
s

dij
ks

tra

en
dia

n
q.

so
rt

sh
a.

en
cr

str
.se

ar
ch

Benchmarks

A
re

a
(c

el
l)

F.Forw

Opt.Forw

Figure 9: Full Forward. vs. Custom Forward. (Area)

Comparison for Optimized Forwarding

0

50

100

150

200

250

300

350

400

Adp
.d

ec

b.
co

un
t

ba
s.m

at
h

cs
tri

ng
s

dij
ks

tra

en
dia

n
q.

so
rt

sh
a.

en
cr

str
.se

ar
ch

Benchmarks

L
ea

ka
g

e
P

o
w

er
 (

m
w

)

F.Forw

Opt.Forw

Figure 10: Full Forward. vs. Custom Forward. (Leakage Pow.)

Instruction Encoding
Figure 11 shows the instruction sizes for each of the benchmarks,
produced by the proposed encoding technique. For each benchmark,
the instruction widths for three individual pipes and the total paral-
lel instruction width for the whole processor that contains the three
pipes are displayed. Without code reduction, the instruction size
for all three pipelines are initially 16 bits (thus making it 48 bits
in total). As can be seen, by applying our encoding approach, the
instruction width for each pipeline becomes smaller, which is partic-
ularly evident for pipe 3, which has instruction width below 8 bits.
On average, there is about 69% saving on instruction memory size.

To show the improvement of the REE approach compared to the
RBE approach, we have encoded pipe 3 for the benchmarks using
RBE. The area cost for both is shown in Figure 12. As can be seen
REE is better than RBE, with less area cost, as expected.

245

Table 3: 3-pipe Designs with forwarding and instruction encoding customization
Clk Period (ns) Exec.Time (ms) Area (UnitCell) Leak.Pow (mw) C.Size (byte) Perf. Area Power C.Size

Benchmark no-cus. cus. no-cus. cus. no-cus. cus. no-cus. cus. no-cus. cus. % % % %
Adp.dec 3.23 3.07 66.1 62.8 198490 135751 345 228 1626 1355 5.0 31.6 33.9 16.7
b.count 3.18 3.07 137.5 132.7 183154 133129 316 224 1350 1125 3.5 27.3 29.0 16.7

bas.math 3.21 3.06 72.8 69.4 183787 128335 316 216 564 470 4.7 30.2 31.7 16.7
cstrings 3.63 3.42 38.9 36.6 199537 150923 347 259 690 575 5.8 24.4 25.3 16.7
dijkstra 3.17 3.03 48.4 46.3 180817 133654 320 220 1554 1295 4.4 26.1 31.3 16.7
endian 3.19 3.05 24.9 23.8 184566 125936 324 210 1002 835 4.4 31.8 35.0 16.7
q.sort 3.62 3.41 119.6 112.6 203324 154692 359 266 4452 3710 5.8 23.9 26.0 16.7

sha.encr 3.20 3.11 58.6 56.9 200599 138789 351 236 2622 2185 2.8 30.8 32.8 16.7
str.search 3.10 3.08 25.7 25.5 170020 136911 297 222 1374 1145 0.6 19.5 25.1 16.7

Instruction Size

0

5

10

15

20

25

30

35

40

adpcm bitc bm cstings dijkstra endian qsort sha ss

benchmarks

si
ze

 (
b

it
s)

Pipe1

Pipe2

Pipe3

Total

Figure 11: Code Widths with REE approach

Comparison of REE and RBE

27000

28000

29000

30000

31000

32000

33000

34000

35000

36000

37000

Adp
.d

ec

b.
co

un
t

ba
s.m

at
h

cs
tri

ng
s

dij
ks

tra

en
dia

n
q.

so
rt

sh
a.

en
cr

str
.se

ar
ch

Benchmarks

A
re

a
(c

el
ls

)

REE

RBE

Figure 12: Comparison of REE and RBE

Forwarding Network and Instruction Encoding
Table 3 gives the simulation results for designs with both forward-
ing and instruction encoding in place, where the first column lists the
name of benchmarks, the ten columns provides the related clock pe-
riod (columns 2&3), execution time (columns 4&5), area (columns
6&7), leakage power (columns 8&9) and code size (columns 10&11)
for each of the designs under two different design conditions of for-
warding design and instruction encoding: without customization;
and with customization. The last four columns give, in percent-
age, the performance improvement, area savings, power savings and
code size savings of the custom design compared to non-custom de-
signs. Note that due to encoding implementation limitation imposed
by ASIPmeister, instruction code sizes are limited to 16-bit widths
or 8-bit widths. As can be seen from Table 3, the average savings are
27% on area, 30% on leakage power, 16.7% on code size, and at the
same time performance is improved by 4.1% on average due to the
reduced clock period, which is in turn resulted from the reduction of
forwarding network.

6. CONCLUSIONS
We presented techniques to customize forwarding and instruction

encoding for a multiple pipe processor. The forwarding network in
an ASIP for a given application is customized such that the redun-
dant forwarding paths are deleted without affecting the performance.
We proposed an approach to remove under-utilized forwarding paths
so that a highly efficient application specific forwarding network can
be achieved. In order to reduce code size of the parallel program se-
quence, we introduced an encoding technique that best trades off the

simplicity of fixed size encoding approaches and high density of var-
ied size encoding techniques. The encoding result produced by our
proposed techniques has fixed instruction size for each individual
pipeline, but varied from pipeline to pipeline.

Our experiments, on a set of benchmarks using the proposed cus-
tomization approaches show that, on average, there are 27% savings
on area, 30% on leakage power, 16.7% on code size, and at the same
time, performance even improves by 4% due to the reduced clock
period. It is worth noting that unlike Application Specific Integrated
Circuits (ASICs), where one design is just for one application, the
customized multi-pipe ASIP can also be programmed to run other
applications (but may not perform optimally), which is just the very
feature of ASIPs.

7. REFERENCES
[1] Asip-meister. (http://www.eda-meister.org/asip-meister/).
[2] Xtensa processor. Tensilica Inc. (http://www.tensilica.com).
[3] A. Abnous and N. Bagherzadeh. Pipelining and bypassing in a vliw processor.

IEEE Trans. on Parallel and Distributed Systems, 5:658 – 664, 1994.
[4] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction generation and

regularity extraction for reconfigurable processors. In CASES, 2002.
[5] C.-H. L. et al. Hierarchical instruction encoding for vliw digital signal

processors. In Proceedings. ISCAS, pages 3503 – 3506, 2005.
[6] J. eun Lee, K. Choi, and N. Dutt. 7. efficient instruction encoding for automatic

instruction set design of configurable asips. In Proceedings. ICCAD, pages 649 –
654, 2002.

[7] K. Fan, N. Clark, M. Chu, K. Manjunath, R. Ravindran, M. Smelyanskiy, and
S. Mahlke. 2. systematic register bypass customization for application-specific
processors. In Proceedings of IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, pages 64–74. IEEE
Computer Society, 2003.

[8] D. Goodwin and D. Petkov. International conference on compilers, architecture
and synthesis for embedded systems. In Proceedings of the 2003 international
conference on Compilers, architecture and synthesis for embedded systems,
pages 137 – 147. ACM Press New York, NY, USA, 2003ISBN:1-58113-676-5.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In IEEE 4th Annual Workshop on Workload Characterization, Austin, TX,
pages 83–94, December 2001.

[10] M. Jacome, G. de Veciana, and C. Akturan. Resource constrained dataflow
retiming heuristics for vliw asips. In Proceedings of the seventh CODES, pages
12–16. ACM Press, 1999.

[11] M. F. Jacome, G. de Veciana, and V. Lapinskii. Exploring performance tradeoffs
for clustered vliw asips. In Proceedings of the 2000 ICCAD, pages 504–510.
IEEE Press, 2000.

[12] R. Kastner, S. Ogrenci-Memik, E. Bozorgzadeh, and M. Sar-rafzadeh. Instruction
generation for hybrid reconfigurable systems. In ICCAD, 2001.

[13] V. Kathail, shail Aditya, R. Schreiber, B. R. Rau, D. C. Cron-quist, and
M. Sivaraman. Pico: Automatically designing custom computers. In Computer,
2002.

[14] S. Kobayashi, K. Mita, Y. Kakeuchi, and M. Imai. Rapid prototyping of jpeg
encoder using the asip development system: Peas-iii. In Proc. of 2003 IEEE
International Conference on Acoustics, Speech, and Signal Processing, pages
485–488, 2003.

[15] A. Nohl, V. Greive, G. Braun, A. Hoffman, R. Leupers, O. Schliebusch, and
H. Meyr. Instruction encoding synthesis for architecture exploration using
hierarchical processor models. In Proceedings. DAC, pages 262 – 267, 2003.

[16] S. Radhakrishnan, H. Guo, and S. Parameswara. Customization of application
specific heterogeneous multipipeline processors. In Proceedings of DATE. IEEE
Computer Society, 2006.

[17] O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Architecture
implementation using the machine description language lisa. In Proceedings of
the 2002 conference on Asia South Pacific design automation/VLSI Design, page
239. IEEE Computer Society, 2002.

[18] A. Shrivastava, N. Dutt, A. Nicolau, and E. Earlie. Pbexplore: a framework for
compiler-in-the-loop exploration of partial bypassing in embedded processors. In
Proceedings of DATE. IEEE Computer Society, 2005.

[19] F. Sun, N. Jha, S. Ravi, and A. Raghunathan. Synthesis of application-specific
heterogeneous multiprocessor architectures using extensible processors. In
Proceedings of Real Time and Embedded Technology and Applications
Symposium, pages 551 – 556. IEEE Computer Society, 2005.

[20] F. Sun, S. Ravi, A. Raghunathan, and N. Jha. Synthesis of custom processors
based on extensible platforms. In ICCAD, 2002.

246

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

