
Resource Virtualization in Real-Time CORBA Middleware ∗

Christopher D. Gill
Department of Computer Science and Engineering

Washington University, St. Louis, MO, USA

cdgill@cse.wustl.edu

ABSTRACT
Middleware for parallel and distributed systems is designed to vir-
tualize computation and communication resources so that a more
abstract and consistent view of those resources is presented to the
applications that use them. Providing such a consistent virtualiza-
tion in distributed real-time and embedded systems becomes in-
creasingly challenging due to application constraints such as time-
liness and resource constraints such as CPU speed, power, memory,
and bandwidth limitations, which also must be considered.

This paper describes several examples of real-time CORBA mid-
dleware and examines how different constraints impact the way in
which resources are virtualized in each case. Particular attention
is paid to which details are hidden from users of the middleware,
which details are exposed in the middleware’s programming model,
and how the hidden and exposed details interact to shape middle-
ware design and implementation choices.

Categories and Subject Descriptors: D.2.11 [Software Architec-
tures]: Domain-specific architectures.

General Terms: Design, Standardization.

Keywords: Real-time Middleware, CORBA.

1. INTRODUCTION
Middleware for parallel and distributed systems is designed to

shield application developers from many details of the underlying
computing environment, and to expose only the particular details
that are relevant to a particular programming model. For exam-
ple, the Object Management Group (OMG)’s Common Object Re-
quest Broker Architecture (CORBA) [41] provides object reference
and interface semantics so that method invocations between objects
written in different programming languages or executing on differ-
ent endsystems are performed transparently through a set of object
request brokers (ORBs).

Such language and location transparency greatly eases the task
of developing distributed applications, since the mechanisms for
managing the complexities of concurrent computation and asyn-
chronous communication are relegated to the ORBs, and sets of

∗Supported in part by NSF CAREER award CCF-0448562.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06 October 22–25, 2006, Seoul, Korea
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

objects can be programmed independently using the languages that
are most suited to the application and/or developers’ preferences.
However, the virtualization of the underlying computing environ-
ment is not absolute, so that (even for functional properties such
as the correct invocation of remote methods) some details unavoid-
ably must be considered by application developers. For example, in
CORBA the NO MEMORY and COMM FAILURE exceptions
indicate failure of a method invocation due to memory exhaustion
or communication failure, respectively, which may have occurred
on a remote endsystem over which the calling program has no con-
trol.

Application developers may also choose which features of the
middleware’s programming model they use, to trade transparency
for performance or other benefits. For example, CORBA offers
two-way method invocation semantics which mimics a local method
invocation in which the caller blocks until the called method re-
turns. To improve performance of distributed applications, CORBA
also offers asynchronous method invocation (AMI) [37] in which
the calling method can continue to execute concurrently with the
called method’s execution. The two-way method invocation inter-
face is more transparent as it only requires the caller to obtain a ref-
erence to the object and invoke the method, whereas with AMI the
caller may also need to poll for the result from the called method,
or register an asynchronous callback handler with the ORB.

Providing a consistent virtualization of the underlying comput-
ing environment becomes increasingly challenging for distributed
real-time and embedded systems, in which application constraints
on properties such as timing, or explicit limitations on system re-
sources such as memory, are as important to the correct operation
of an application as its functional properties. This has resulted in
further expansion of the set of programming model abstractions
exposed by the middleware. For example, the OMG’s Real-time
CORBA Specification [40] extends the CORBA programming model
to include prioritization of method invocations and configuration of
processing and communication control features, which are crucial
to supporting statically scheduled priority based real-time systems.

Although the evolution of standards has helped to address the
tension between hiding details application developers do not need
to address, while exposing those they do, the number and variety
of different design dimensions faced by developers of complex dis-
tributed real-time and embedded systems makes it difficult for any
one specification to strike a suitable balance for all applications.
This has led in turn to new system development approaches in
which middleware programming models and the underlying poli-
cies and mechanisms they represent are configured using abstract
(and often formal) models.

This paper examines the problem of striking a balance between
hiding and exposing crucial details in middleware programming

181

models, from the perspective of several previous real-time middle-
ware projects. Section 2 describes the challenges that distributed
real-time and embedded systems pose for the design and imple-
mentation of real-time CORBA middleware. Section 3 describes
solution approaches that have been used to address the challenges
presented in Section 2. Section 4 examines the relationships be-
tween hidden and exposed abstractions in each of the solution ap-
proaches described in Section 3. Section 5 surveys related work,
and Section 6 offers concluding remarks.

2. CHALLENGES
This section describes several important challenges that must be

addressed when developing middleware for distributed real-time
and embedded systems. These challenges are listed from the most
general to the most specific, with each subsequent challenge as-
suming and augmenting those listed previously.
Covering the common requirements: CORBA, like any standard,
derives much of its benefit by codifying a set of required features,
interfaces, and other details that cover the common requirements of
a significant majority of the use cases in the application domain to
which the standard is targeted. This coverage is essential to ensur-
ing interoperability, reusability, portability, and other capabilities
of software frameworks written in compliance with the standard,
which in turn impact how productively those frameworks can be
used by system developers in practice.
Supporting configurability: Even when a standard covers as large
a set of common requirements as possible, there will necessarily be
other requirements that are specific only to a small fraction of the
use cases in the application domain. Adding those requirements to
the standard may either (1) offer only a limited return on the non-
trivial investment of effort required to define a detailed and consis-
tent specification of those requirements (due to the small number of
use cases impacted); or (2) even prove counter-productive overall
(due to the potential of those requirements to preclude otherwise
desirable solutions for the majority of use cases that do not have
those requirements).

Therefore, approaches are needed that can cover those require-
ments without entangling them directly with the core of the stan-
dard itself. One such approach is to identify sub-domains (for ex-
ample real-time, fault-tolerance, etc.) of the application domain to
which a suitably related set of use cases belongs, and to provide ex-
tensions to the standard that pertain only to use cases within those
sub-domains, but that may be ignored by other use cases. A second
such approach is to standardize configuration capabilities through
which new requirements can be covered, but which do not mandate
any particular requirement. Finally, the benefits of both of these ap-
proaches can be realized by leveraging standardized configuration
capabilities to offer common configuration specification templates
for each sub-domain, which can be re-used across use-cases within
the sub-domain, and then specialized and instantiated according to
each use case’s particular requirements.
Providing fine-grain customization: The ability to customize dif-
ferent configurations for different sub-domains is a necessary step
towards covering the requirements of all use cases within the stan-
dard’s targeted application domain. However, this alone is not suf-
ficient because different applications may belong to different com-
binations of sub-domains. For example, one use case may require
only fault-tolerance but not real-time behavior, while another use
case may require both fault-tolerant and real-time behavior. It is
therefore necessary to support customization at an even finer gran-
ularity than sub-domain-specific configurations. Ultimately it must
be possible to define and customize different combinations of re-
quirements flexibly to meet the needs of each use case.

Identifying and avoiding interference: The final challenge, which
stems from the need to support different combinations of require-
ments from multiple sub-domains, is that while the requirements
within each sub-domain are likely to be mutually compatible, com-
patibility among requirements drawn from multiple sub-domains
is less certain. It is therefore necessary to identify the particular
ways in which different combinations of requirements may inter-
fere with each other (for example, real-time requirements empha-
size predictability of worst-case latency — often at a cost of some
increase in best case and/or average case latency), and to be able
to remove or at least mitigate the consequences of that interference
within the context of each particular use case.

3. SOLUTION APPROACHES
This section examines how the challenges presented in Section 2

have been addressed by several real-time CORBA middleware frame-
works. The variety of these different middleware solutions, and the
different ways in which each addresses the challenges presented in
Section 2, sets the stage for the discussion in Section 4 of how stan-
dardization, middleware design and implementation, and modeling
and analysis can be combined to make real-time CORBA middle-
ware a highly effective infrastructure with which to develop de-
manding distributed real-time and embedded systems.
Covering the common cases: The ACE ORB (TAO) [24] supports
common features of the distributed object computing domain, as
specified by the CORBA [41] standard, including interoperable ob-
ject references (IORs), client stub and server skeleton generation
from interface definition language (IDL) files, and an object re-
quest brokers (ORBs) that implement method invocation semantics
across endsystem and language boundaries. In addition to ORB
features, TAO also implements common services specified by the
CORBA standard, such as the Naming and Event services.

TAO also supports common features for the real-time sub-domain
of the distributed object computing domain, according to the Real-
time CORBA 1.0 specification [40], including configurable prior-
ity lanes and thread pools, and a real-time portable object adapter
(POA) [42]; as well as modifications to the ORB itself to remove
priority inversions and sources of timing variability [46], and sup-
port real-time I/O [31]. TAO also provides services that are ei-
ther specializations for the real-time sub-domain of common ser-
vices (such as TAO’s Real-time Event Service [19]), or are added
to address features particular to the real-time sub-domain (such as
TAO’s Real-time Scheduling Service [14]).

Even within a sub-domain further specialization may be appro-
priate, as exemplified by the distinction within the real-time sub-
domain between statically scheduled (priority based) systems sup-
ported by the Real-time CORBA 1.0 specification [40] vs. dynam-
ically scheduled (deadline, laxity, utility, etc. based) systems sup-
ported by the Real-time CORBA 1.2 (briefly called 2.0) specifica-
tion [38]. TAO provides additional support for dynamically sched-
uled real-time systems, including dynamic and hybrid static/dynamic
scheduling [11], distributable threads [12], and release guards [54].
Supporting configurability: The CORBA standard allows devel-
opers of distributed object computing systems to program at a higher
level of abstraction (i.e., working with objects, references, and method
invocations, rather than threads, sockets, and message formats),
but with earlier versions of CORBA most of the benefit accrued to
client-side programming (i.e., obtaining object references and call-
ing methods on objects) rather than server-side programming (i.e.,
implementing objects and their supporting server environments).
Version 3.0 of the CORBA standard [41] provided the CORBA
Component Model (CCM) specification, which addresses server-
side programming in distributed object computing systems.

182

The CCM specification decouples objects from the services that
support them, groups related objects into components, and decou-
ples components from other components through an interface ab-
straction called ports through which components communicate. Com-
ponents can be assembled automatically and flexibly into applica-
tions in CCM, through XML descriptors that declare how compo-
nents’ ports should connected and how components should be de-
ployed automatically onto particular hosts.

Although the CCM specification addresses many common server-
side concerns for the distributed object computing domain, it also
specifies features that are irrelevant to sub-domains such as real-
time. The Lightweight CCM [39] specification narrows the set of
features to a common set that is suitable for distributed real-time
and embedded systems.

The Component Oriented ACE ORB (CIAO) [53] is an imple-
mentation of the Lightweight CCM specification, which is built
atop TAO and extends the lightweight CCM specification to allow
XML-based configuration of Real-Time CORBA features in TAO,
such as priorities. CIAO has been specialized further for the real-
time systems sub-domain by allowing application characteristics
(i.e., execution times), requirements (i.e., rate constraints), and de-
ployment information (i.e., CPU speeds) to be provided and used in
assembly and deployment [52], which allows distributed real-time
applications to be assembled and deployed more effectively.

Some real-time applications (e.g., avionics mission computing
systems [11, 13]), have stringent constraints not only on the timing
behavior of the system at run-time, but also on system initialization
and reboot times. For these applications, not only must middleware
be able to configure real-time properties in the supporting ORBs,
component containers, and other infrastructure, but the configura-
tion actions themselves must be performed within bounded time
frames. We have refined the temporal predictability of CIAO con-
figuration, using efficient static assembly and deployment mecha-
nisms that are suitable for real-time platforms on which many such
applications are hosted [49].
Providing fine-grain customization: In addition to the ability to
configure application-level component configurations, TAO offers
a variety of strategies to provide fine-grain customization of ORB
mechanisms including pluggable network protocols [30]; event de-
multiplexing [17]; and concurrency and message dispatching [22].
These strategies allow fine-grain tuning of TAO’s performance to
the particular needs of each application.

However, an important tension arises when real-time performance
is required in embedded systems that also have significant con-
straints on memory and other system resources. A shared library
footprint reduction tool [36], messaging protocol optimizations [18],
and other techniques are part of an ongoing effort to allow system
developers to choose which features of TAO to include in shared li-
braries and static memory images, thus reducing footprint and fea-
ture density appropriately.

Unfortunately the ability to decouple features at a very fine level
of granularity is limited by dependencies between features that were
introduced either accidentally during development of the middle-
ware framework, or that were added intentionally but support only
a limited set of use-cases within a particular domain or sub-domain.
While it is possible to reduce coupling in the former case through
careful analysis and refactoring of implementations, removing in-
tentional dependencies (but only for use cases where they are not
appropriate) is more problematic.

An alternative to decomposing a larger-scale framework such
as TAO for each sub-domain (and perhaps for each use-case so
that inappropriate intentional dependencies can be removed) is to
compose an appropriate middleware configuration through combi-

nations of the foundational software mechanisms from which the
larger-scale middleware framework is built. For example, TAO is
built atop a rich set of portable system software mechanisms pro-
vided by the ACE [45] C++ framework. We used ACE classes
to develop the nORB real-time small footprint ORB [50], whose
features are selected for a networked embedded real-time systems
sub-domain. In supporting this sub-domain, nORB omitted many
features of the CORBA standard (i.e., anys and other data types
that were superfluous), and modified the semantics of other fea-
tures (i.e., simplifying the object adapter and supporting a restricted
set of message types in the ORB core) to reduce footprint signifi-
cantly while keeping its real-time performance comparable to (and
for some key metrics like worst case response time, even improving
on) TAO’s real-time performance.
Identifying and avoiding interference: Model driven middleware
approaches [15] are useful for selecting features for a particular do-
main (or even application), and configuring those features appropri-
ately. However, supporting appropriate fine-grain customization in-
volves not only which features are configured into the middleware,
but also how they are used by the application, and the semantics
of how features interact within relevant use cases. The problem of
features interacting in ways that interfere with timing, footprint, or
other constraints is of particular concern in real-time and embedded
systems [48].

A multi-tiered approach to customization is helpful, as such in-
teractions may cross-cut different levels of architectural abstraction
in the application and its supporting middleware. First, domain-
specific modeling languages (such as component modeling lan-
guages [2]) can be helpful for selecting suitable combinations of
configuration options and avoiding unsuitable ones [29]. Then,
model checking tools [43] can be applied to verify suitability of
those configurations [20]. Executable timed models [5, 3] can be
used to capture timing as well as concurrency semantics of founda-
tional middleware building blocks [47], and to verify timing prop-
erties of real-time systems [34].

4. DISCUSSION
As Section 3 illustrates, a variety of solution approaches are

needed to address all of the challenges given in Section 2. Fur-
thermore, in addition to the particular set of interfaces and config-
uration options that it exposes, each middleware solution approach
has its own internal semantic structure that must be taken into ac-
count. Design, verification, implementation, and validation of mid-
dleware based systems must represent and leverage this structure
for successful re-use of designs, models, implementations, and ver-
ification and validation evidence. In this section we first discuss
how each of the solution approaches presented in Section 3 virtual-
izes resources using the abstractions provided to it by lower layers
of the system architecture. We then examine open problems that
must be addressed to allow different virtualization techniques to
be combined effectively and correctly, to increase the fidelity with
which the programming model presented to system developers can
express and control the issues specific to any particular application.

Resource virtualization: For the distributed object computing do-
main, TAO hides many low-level system software concerns such
as connection establishment, concurrency, and message demulti-
plexing and dispatching, and exposes higher level abstractions such
as location and language transparent object references and method
interfaces. For the real-time sub-domain, TAO exposes more of
its low-level internal semantics, such as the ability to configure
thread pool sizes and priority lanes [42], according to the Real-
Time CORBA specifications [40].

183

For the distributed object computing domain, CIAO further vir-
tualizes system resources by hiding details of the services provided
by TAO. For example, CIAO provides different kinds of ports, (i.e.,
facets, receptacles, event sources, and event sinks), which encap-
sulate the client-side and server-side roles of both method invoca-
tion and event passing styles of communication between objects.
For the real-time sub-domain, CIAO also opens up internal de-
tails to reveal not only the Real-Time CORBA features exposed
by TAO [53], but also details of the particular application’s con-
straints and characteristics and of the hardware resources on which
the application is deployed [52].

Because nORB [50] supports multiple sub-domains (i.e., real-
time and small footprint), its approach to resource virtualization
necessarily includes restricting the set of interfaces and support-
ing features that it exposes to include only those that are explicitly
required and excluding other features whose inclusion would in-
terfere with constraints on properties from any of the sub-domains
involved. However, because different combinations of sub-domains
may produce different patterns of feature interference, supporting
such fine-grain specialization through selecting specific sets of fea-
tures and interfaces a priori is naturally problematic.

Model-based approaches allow selective configuration of fea-
tures and interfaces so that such interference can be avoided, while
still presenting system developers with common and reasonably
simple interfaces and configuration mechanisms. Techniques at
several architectural levels, such as domain-specific modeling lan-
guages [2]) at the level of the TAO ORB, and timed models at the
level of the ACE building blocks upon which TAO depends [50] al-
lows concerns to be separated appropriately, but then analyzed and
enforced across architectural layers.

Open problems: Although nORB cannot claim to be a fully com-
pliant CORBA ORB, it supports the most essential features, and
more importantly supports the features required by the sub-domain
it targets. However, this raises an important question - how to sup-
port a related sub-domain with similar constraints to the one sup-
ported by nORB, but which requires one or more additional data or
message types? How those types could be added to nORB for use
cases that need it, but then eliminated for use cases that cannot tol-
erate it (or simply do not need it) is an important problem. Aspect-
oriented middleware configuration techniques have been shown to
be helpful [23], but further experience applying these and other
generative programming techniques is needed.

In addition to the need for new tools and techniques for gener-
ative transformation (and/or synthesis) of customized middleware
implementations and interfaces, additional research is needed both
into how different combinations of properties (particularly from
different sub-domains) can be combined correctly, in ways that can
be enforced. Further work is also needed into techniques by which
the correctness of different combinations can be proven or other-
wise checked, automatically. Important open problems appear at
the level of the properties themselves (for example, how domain-
specific information can be exploited to support efficient and prov-
able deadlock avoidance [44]), and at the level of tools such as
model checkers (for example, how domain-specific state-space op-
timizations [47] can be re-used across use-cases in the domain).

5. RELATED WORK
Customizable Middleware: MicroQoSCORBA [1] reduces mid-
dleware footprint by generating customized instantiations of mid-
dleware for embedded systems. Zen [28] is a highly customiz-
able real-time Java [4] CORBA object request broker. Ubiquitous
CORBA projects such as the CORBA specialization of the minimal

Universally Interoperable Core (UIC) [35] use meta-programming
to support a significant degree of middleware customization.

Real-Time Virtual Machines: The Real-Time Specification for
Java (RTSJ) [4] defines scheduling and memory management fea-
tures to allow real-time software to be written in Java. The jRate [7]
implementation of the RTSJ provides additional extensions for mem-
ory management. Giotto and the E-Machine [21] provide an ab-
stract infrastructure model and virtual machine for embedded con-
trol systems with hard real-time constraints.

Model Integrated Computing (MIC) [51]: MIC tools such as the
Generic Modeling Environment (GME) [26] support development
of domain-specific modeling and software synthesis environments.
Ptolemy II [32] is a related tool set for embedded systems that pro-
vides a rich set of computation models including the Giotto model.

Model-Driven Middleware: Model-based middleware configura-
tion environments, such as the CoSMIC [16] tool set, support in-
tegrated model-driven assembly, deployment and configuration of
components atop real-time middleware. CADENA [20] is another
integrated environment for building and modeling CORBA Com-
ponent Model (CCM) [53] systems. The extensible Bogor [43]
model checker has been applied to verification of event-channel
based systems[8]. DREAM [34, 33, 10] allows DRE system de-
signers to do model-based schedulability analysis of distributed
real-time and embedded (DRE) systems. DREAM offers a com-
putational model called the DRE semantic domain [33], which in-
cludes tasks, timers, event channels and schedulers, and is used to
determine the schedulability of a given set of tasks with specified
time and event based interactions.

Other Formal Techniques Applied to CORBA Middleware: [27]
introduces new stereotypes in UML and describes ways to map
these stereotypes to a process algebra (FSP) and then use model
checking to detect deadlocks. Model checking has also been used
to verify the CORBA GIOP protocol [25], and to verify CORBA
based systems [9]. TRIO [6] is a formal language used to spec-
ify properties of CORBA-based distributed applications and uses a
proof-based approach to verify their correctness.

6. CONCLUDING REMARKS
This paper has examined how different middleware frameworks

have been designed to support particular sub-domains of the dis-
tributed object computing application domain to which the CORBA
standard pertains. Common middleware abstractions such as refer-
ences, objects, components, method invocations, ports, and assem-
bly and deployment descriptors are used to virtualize lower level
services provided by the operating system, such as threads, sock-
ets, and event demultiplexors – the operating system services in
turn virtualize hardware resources such as network devices, disks,
memory, and CPUs. The benefits of this virtualization include in-
creased portability across different operating system interfaces and
mechanisms, reduced programming complexity as lower-level de-
tails are abstracted away, and removal of inappropriate dependen-
cies among application components and between application com-
ponents and underlying operating system services.

Adapting middleware solutions to particular sub-domains, and
particularly to the intersections among sub-domains (e.g., real-time
and small footprint), requires careful specialization that in some
cases must sacrifice compliance with standards that govern broader
domains, in order to achieve compliance with particular require-
ments of the relevant sub-domain(s). In such cases, construction of
middleware solutions from foundational building blocks offers an
important (and often complementary) alternative to decomposing

184

larger-scale frameworks that were designed for the more general
domain within which the sub-domain is nested.

Multi-level modeling approaches appear promising to allow anal-
ysis and verification of customized systems involving both coarser-
grain configuration choices and finer-grain specializations, partic-
ularly when applied to middleware frameworks that support sig-
nificant configurability of all relevant system properties, at both
coarse and fine granularity. However, applying multi-level model-
ing approaches effectively to a broad range of distributed real-time
and embedded systems will require significant further research on
composition of system properties (particularly across sub-domains
and/or architectural layers), and on efficient and flexible mecha-
nisms for run-time enforcement of the composed properties.

7. REFERENCES
[1] A. D. McKinnon and D. Bakken and J. Shovic.

MicroQoSCORBA: A Reflective, QoS-Enabled,
Configurable MicroCORBA With CASE Support. In
Proceedings of the Second Workshop on Real-time and
Embedded Distributed Object Computing. OMG, June 2001.

[2] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A Platform-Independent
Component Modeling Language for Distributed Real-time
and Embedded Systems. In Proceedings of the 11th
Real-time Technology and Application Symposium (RTAS
’05), pages 190–199, San Francisco, CA, Mar. 2005. IEEE.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
uppaal. In SFM, pages 200–236, 2004.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull. The Real-time Specification for
Java. Addison-Wesley, 2000.

[5] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF
Toolset. In Formal Methods for the Design of Real-time
Systems. Springer-Verlag LNCS 3185, 2004.

[6] A. Coen-Porisini, M. Pradella, M. Rossi, and D. Mandrioli.
A formal approach for designing corba-based applications.
ACM Trans. Softw. Eng. Methodol., 12(2):107–151, 2003.

[7] A. Corsaro. Techniques and Patterns for Safe and Efficient
Real-Time Middleware. PhD thesis, Department of Computer
Science and Engineering, Washington University in St.
Louis, Dec. 2004.

[8] W. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, Robby, and
G. Singh. Model-checking Middleware-based Event-driven
Real-time Embedded Software. Department of Computer
Science, Technical Report SAnToS-TR2003-2, Department
of Computing and Information Sciences, Kansas State
University, 2003.

[9] G. Duval. Specification and verification of an object request
broker. In ICSE ’98: Proceedings of the 20th international
conference on Software engineering, pages 43–52,
Washington, DC, USA, 1998. IEEE Computer Society.

[10] Gabor Madl and Sherif Abdelwahed and Gabor Karsai.
Automatic Verification of Component-Based Real-time
CORBA Applications. In The 25th IEEE Real-time Systems
Symposium (RTSS’04), Lisbon, Portugal, Dec. 2004.

[11] C. Gill, D. C. Schmidt, and R. Cytron. Multi-Paradigm
Scheduling for Distributed Real-time Embedded Computing.
IEEE Proceedings, Special Issue on Modeling and Design of
Embedded Software, 91(1), Jan. 2003.

[12] C. Gill, D. C. Schmidt, L. Mgeta, Y. Zhang, S. Torri,
Y. Krishnamurthy, and I. Pyarali. Enhancing the Adaptivity
of Distributed Real-time and Embedded Systems via

QoS-enabled Dynamic Scheduling Middleware. The Journal
of the Brazilian Computer Society special issue on Adaptive
Software Systems, 2004.

[13] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E.
Schantz, M. Atighetchi, and D. C. Schmidt. Integrated
Adaptive QoS Management in Middleware: An Empirical
Case Study. Journal of Real-time Systems, 29(2–3):101–130,
2005.

[14] C. D. Gill, D. L. Levine, and D. C. Schmidt. The Design and
Performance of a Real-time CORBA Scheduling Service.
Real-time Systems, The International Journal of
Time-Critical Computing Systems, special issue on Real-time
Middleware, 20(2), Mar. 2001.

[15] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. S.
Krishna, G. T. Edwards, G. Deng, E. Turkay, J. Parsons, and
D. C. Schmidt. Model Driven Middleware: A New Paradigm
for Deploying and Provisioning Distributed Real-time and
Embedded Applications. The Journal of Science of
Computer Programming: Special Issue on Model Driven
Architecture, 2005 (to appear).

[16] A. Gokhale, B. Natarajan, D. C. Schmidt, A. Nechypurenko,
J. Gray, N. Wang, S. Neema, T. Bapty, and J. Parsons.
CoSMIC: An MDA Generative Tool for Distributed
Real-time and Embdedded Component Middleware and
Applications. In Proceedings of the OOPSLA 2002
Workshop on Generative Techniques in the Context of Model
Driven Architecture, Seattle, WA, Nov. 2002. ACM.

[17] A. Gokhale and D. C. Schmidt. Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA. In
Proceedings of GLOBECOM ’97, Phoenix, AZ, Nov. 1997.
IEEE.

[18] A. Gokhale and D. C. Schmidt. Optimizing a CORBA IIOP
Protocol Engine for Minimal Footprint Multimedia Systems.
Journal on Selected Areas in Communications special issue
on Service Enabling Platforms for Networked Multimedia
Systems, 17(9), Sept. 1999.

[19] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The Design
and Performance of a Real-time CORBA Event Service. In
Proceedings of OOPSLA ’97, pages 184–199, Atlanta, GA,
Oct. 1997. ACM.

[20] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad.
Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Systems. In
Proceedings of the 25th International Conference on
Software Engineering, Portland, OR, May 2003.

[21] T. A. Henzinger and C. M. Kirsch. The embedded machine:
predictable, portable real-time code. SIGPLAN Not.,
37(5):315–326, 2002.

[22] J. Hu, I. Pyarali, and D. C. Schmidt. Measuring the Impact of
Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks. In Proceedings of
the 2nd Global Internet Conference. IEEE, Nov. 1997.

[23] F. Hunleth, R. Cytron, and C. Gill. Building Customizable
Middleware using Aspect Oriented Programming. In The
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, Tampa Bay, FL, Oct.
2001. ACM. www.cs.ubc.ca/˜kdvolder/
Workshops/OOPSLA2001/ASoC.html.

[24] Institute for Software Integrated Systems. The ACE ORB
(TAO). www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[25] M. Kamel and S. Leue. Formalization and validation of the
General Inter-ORB Protocol (GIOP) using PROMELA and

185

SPIN. In Int. Journal on Software Tools for Technology
Transfer. Springer–Verlag, 2000.

[26] G. Karsai, S. Neema, A. Bakay, A. Ledeczi, F. Shi, and
A. Gokhale. A Model-based Front-end to ACE/TAO: The
Embedded System Modeling Language. In Proceedings of
the Second Annual TAO Workshop, Arlington, VA, July 2002.

[27] N. Kaveh and W. Emmerich. Validating distributed object
and component designs. In SFM, pages 63–91, 2003.

[28] R. Klefstad, D. C. Schmidt, and C. O’Ryan. Towards Highly
Configurable Real-time Object Request Brokers. In
Proceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing (ISORC),
Newport Beach, CA, Mar. 2002. IEEE/IFIP.

[29] A. S. Krishna, E. Turkay, A. Gokhale, and D. C. Schmidt.
Model-Driven Techniques for Evaluating the QoS of
Middleware Configurations for DRE Systems. In
Proceedings of the 11th Real-time Technology and
Application Symposium (RTAS ’05), pages 180–189, San
Francisco, CA, Mar. 2005. IEEE.

[30] F. Kuhns, C. O’Ryan, D. C. Schmidt, and J. Parsons. The
Performance of TAO’s Pluggable Protocols Framework on
High-speed Embedded Interconnects. Department of
Computer Science, Technical Report WUCS-99-12,
Washington University, St. Louis, 1999.

[31] F. Kuhns, D. C. Schmidt, and D. L. Levine. The Design and
Performance of a Real-time I/O Subsystem. In Proceedings
of the 5th IEEE Real-time Technology and Applications
Symposium, pages 154–163, Vancouver, British Columbia,
Canada, June 1999. IEEE.

[32] J. Liu, X. Liu, and E. A. Lee. Modeling Distributed Hybrid
Systems in Ptolemy II. In Proceedings of the American
Control Conference, June 2001.

[33] G. Madl and S. Abdelwahed. Model-based analysis of
distributed real-time embedded system composition. In
EMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software, pages 371–374, New
York, NY, USA, 2005. ACM Press.

[34] G. Madl, S. Abdelwahed, and D. C. Schmidt. Verifying
distributed real-time properties of embedded systems via
graph transformations and model checking. International
Journal of Time-Critical Computing Systems, 2005.

[35] Manuel Roman. Ubicore: Universally Interoperable Core.
www.ubi-core.com.

[36] P. Mesnier. A Shared Library Footprint Reduction Tool. In
Proceedings of the Second Annual TAO Workshop,
Arlington, VA, July 2002.

[37] Object Management Group. CORBA Messaging
Specification. Object Management Group, OMG Document
orbos/98-05-05 edition, May 1998.

[38] Object Management Group. Dynamic Scheduling Real-time
CORBA 2.0 Joint Final Submission, OMG Document
orbos/2001-06-09 edition, June 2001.

[39] Object Management Group. Lightweight CCM RFP,
realtime/02-11-27 edition, Nov. 2002.

[40] Object Management Group. Real-time CORBA Specification,
OMG Document formal/02-08-02 edition, Aug. 2002.

[41] Object Management Group. The Common Object Request
Broker: Architecture and Specification, 3.0.2 edition, Dec.
2002.

[42] I. Pyarali, D. C. Schmidt, and R. Cytron. Achieving
End-to-End Predictability of the TAO Real-time CORBA

ORB. In 8th IEEE Real-time Technology and Applications
Symposium, San Jose, Sept. 2002. IEEE.

[43] Robby and Matthew Dwyer and John Hatcliff. Bogor: An
Extensible and Highly-Modular Model Checking
Framework. In In the Proceedings of the Fourth Joint
Meeting of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), Helsinki, Finland,
Sept. 2003. ACM.

[44] C. Sanchez, H. B. Sipma, Z. Manna, V. Subramonian, and
C. Gill. On Efficient Distributed Deadlock Avoidance for
Real-time and Embedded Systems. In 20th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS ’06), Apr. 2006.

[45] D. C. Schmidt. The ADAPTIVE Communication
Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html, 1997.

[46] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and
A. Gokhale. Software Architectures for Reducing Priority
Inversion and Non-determinism in Real-time Object Request
Brokers. Journal of Real-time Systems, special issue on
Real-time Computing in the Age of the Web and the Internet,
21(2), 2001.

[47] V. Subramonian. Timed Automata Models for Principled
Composition of Middleware. PhD thesis, Washington
University in St. Louis, Computer Science and Engineering
Department Technical Report WUCSE-2006-23, May 2006.

[48] V. Subramonian and C. Gill. A Generative Programming
Framework for Adaptive Middleware. In Hawaii
International Conference on System Sciences, Software
Technology Track, Adaptive and Evolvable Software Systems
Minitrack, HICSS 2004, Kona, HW, Jan. 2004. HICSS.

[49] V. Subramonian, L.-J. Shen, C. Gill, and N. Wang. The
Design and Performance of Dynamic and Static
Configuration Mechanisms in Component Middleware for
Distributed Real-time and Embedded Systems. In The 25th
IEEE Real-time Systems Symposium (RTSS), Lisbon,
Portugal, Dec. 2004.

[50] V. Subramonian, G. Xing, C. Gill, C. Lu, and R. Cytron.
Middleware Specialization for Memory-Constrained
Networked Embedded Systems. In Proceedings of the 10th
IEEE Real-time and Embedded Technology and Applications
Symposium (RTAS), Toronto, Canada, May 2004. IEEE.

[51] J. Sztipanovits and G. Karsai. Model-Integrated Computing.
IEEE Computer, 30(4):110–112, Apr. 1997.

[52] N. Wang and C. Gill. Improving Real-time System
Configuration via a QoS-aware CORBA Component Model.
In Hawaii International Conference on System Sciences,
Software Technology Track, Distributed Object and
Component-based Software Systems Minitrack, HICSS 2004,
Kona, HW, Jan. 2004. HICSS.

[53] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian.
Configuring Real-time Aspects in Component Middleware.
In Lecture Notes in Computer Science: Proc. of the
International Symposium on Distributed Objects and
Applications (DOA’04), volume 3291, pages 1520–1537,
Agia Napa, Cyprus, Oct. 2004. Springer-Verlag.

[54] Y. Zhang, B. Thrall, S. Torri, C. Gill, and C. Lu. A
Real-Time Performance Comparison of Distributable
Threads and Event Channels. In Proceedings of the 11th
Real-time Technology and Application Symposium (RTAS
’05), San Francisco, CA, Mar. 2005. IEEE.

186

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

