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ABSTRACT
Embedded processors have been increasingly exploiting hard-
ware parallelism. Vector units, multiple processors or cores,
hyper-threading, special-purpose accelerators such as DSPs
or cryptographic engines, or a combination of the above have
appeared in a number of processors. They serve to address
the increasing performance requirements of modern embed-
ded applications. How this hardware parallelism can be ex-
ploited by applications is directly related to the amount of
parallelism inherent in a target application. In this paper we
evaluate the performance potential of different types of paral-
lelism, viz., true thread-level parallelism, speculative thread-
level parallelism and vector parallelism, when executing loops.
Applications from the industry-standard EEMBC 1.1, EEMBC
2.0 and the MiBench embedded benchmark suites are ana-
lyzed using the Intel C compiler. The results show what can
be achieved today, provide upper bounds on the performance
potential of different types of thread parallelism, and point
out a number of issues that need to be addressed to improve
performance. The latter include parallelization of libraries
such as libc and design of parallel algorithms to allow maxi-
mal exploitation of parallelism. The results also point to the
need for developing new benchmark suites more suitable to
parallel compilation and execution.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.1 [Software Engineering]: Programming Tech-
niques—languages; methodolgies; D.2.8 [Software Engi-
neering]: Metrics—performance measures

General Terms
Performance, Measurement

Keywords
Multi-cores, Programming models, Libraries, Multithread-
ing, Vectorization, Thread-level speculation, Parallel loops
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1. INTRODUCTION
In recent years many hardware techniques have been incor-
porated into embedded processors for exploiting parallelism.
These include vector units, multiple processors or cores,
hyper-threading, special-purpose accelerators et cetera. The-
re are several reasons for this trend. One such reason is the
increasing transistor budgets which has enabled the realiza-
tion of multi-core processors; another reason is the increas-
ing emphasis on low power design. The trend is further stim-
ulated by the increased performance requirements in many
application areas, e.g., networking, xDSL, security, wireless
and game applications et cetera.

This has led to the development of heterogeneous and
application-specific MpSoCs [1, 2, 3, 4, 5] and embedded
processors with vector capabilities [6, 7] or multithreading
capabilities [8]. Such systems may also be augmented with
co-processors which serve as accelerators for application-
specific functions. For example, Intel’s IXP2850 network
processor [8] has integrated with cryptography engines to
facilitate fast encryption/decryption; TI OMAP chips have
an integrated DSP co-processor [9].

These trends are in fact similar to those in the high-
performance processor design, e.g., Intel’s dual-core Yonah
processor [10] or the Intel’s dual-core and hyper-threaded
XeonR©processor [11] and the IBM/Sony/Toshiba Cell pro-
cessor [12] with its eight specialized SIMD units for data-
intensive processing. The trend towards integrating more
and more cores on an MpSoC is ramping up [13]. Some
trends in this domain have not yet migrated to the embed-
ded processor domain, e.g., speculative multithreading [14],
but it may be only a matter of time.

The use of aforementioned hardware techniques helps to
achieve better performance than a standard uniprocessor
by exploiting hardware parallelism. However the above is
valid only for applications that are written or compiled for
exploiting the available hardware parallelism. The actual
improvement is limited by a “mismatch” between the type
of parallelism — Instruction-level parallelism (ILP), SIMD
(single instruction multiple data) parallelism, MIMD (mul-
tiple instruction multiple data) [15] or true thread-level par-
allelism (TLP), speculative thread-level parallelism (sTLP)
— inherent in a given application and the type of parallelism
supported by the underlying hardware. Thus the improve-
ment is limited by how well the compiler can generate code
for “matching” the hardware parallelism and the application
parallelism. In case of applications which contain multiple
types of parallelism, it is even more challenging for the com-
piler to efficiently exploit the available parallelism.
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Loop-level parallelization has been one of the most widely
used techniques for program parallelization. This can be at-
tributed to the fact that in most applications loops account
for a large percentage of the total execution time. Given
a multi-core, the iterations of a DOALL loop1 are executed
in parallel by mapping them onto different threads. This
corresponds to an instance of exploitation of TLP. On the
other hand, loops with dependences between its iterations
(referred to as Non-DOALL loops in the rest of the paper) can
be parallelized either speculatively or with explicit synchro-
nization. The former corresponds to an instance of exploita-
tion of sTLP.

In this paper we evaluate the performance potential of
different types of parallelism in embedded applications. For
this, we perform the performance evaluation at the loop
level. Due to space limitations, we only present analysis
for the innermost loops. The loop coverage, defined as the
percentage of the total execution time spent in the loops,
is obtained by first instrumenting the code of each applica-
tion during compilation with hardware performance coun-
ters and then executing it on an 3.6 GHz IntelR© XeonR©

Processor. The reason for using the Pentium processor in-
stead of an embedded processor is that it integrates vector
and multithreading support and the availability of an auto-
parallelizing compiler.

The main contributions of the paper are as follows:

❐ First, a loop-level characterization of the industry-stan-
dard EEMBC 1.1, EEMBC 2.0 and the MiBench em-
bedded benchmark suites is presented.

❐ Second, the performance potential of true TLP is es-
timated. In other words, an optimistic upper bound
on the speedup achievable (at the loop-level) via auto-
parallelization [17] is determined. Given an applica-
tion, this provides an estimate of the number of cores
required for maximal exploitation of TLP.

❐ Third, the performance potential of sTLP is estimated.
In other words, an optimistic upper bound on the
speedup achievable via thread-level speculation (TLS)
is determined.

❐ Fourth, the impact of vectorization on performance is
evaluated. To our surprise, we find that the amount
of SIMD parallelism in different classes of application
space, except multimedia applications, is rather lim-
ited. This is explained, in part, by the compiler’s
choice of exploiting TLP or MIMD parallelism.

❐ Fifth, we identify limitations of parallelization of the
innermost loops and suggest ways to alleviate them
with user and compiler assistance.

This type of analysis exposes the parallelism inherent in
a given application. The analysis can be used in a variety
of ways. A hardware designer can use it to (a) make design
decisions such as deciding between multiple cores, multi-
threading support, or having vector units, based on the per-
formance, power and cost trade-offs; (b) design application-
specific processors. Application developers can use it to
modify programs to better exploit a given type or types
of hardware parallelism or to assist the compiler by giving
“hints” to the compiler in the form of directives/pragmas

1A DOALL loop is a loop in which there does not exist a
control or data dependence between any two iterations of
the loop [16].

which guide the compiler to generate better parallel code.
The compiler writers can use it (i) to develop better code
generation strategies; (ii) for profitability analysis, and (iii)
to develop ways to exploit multiple types of hardware paral-
lelism. For example, in susan (an application in MiBench),
one observes that parallel (non-vector) loops account for
68.4% of the total execution time. In contrast, vector loops
account account for less than 1% of execution time. This
is in part due to the code generation strategy that puts a
premium on MIMD parallelism and did not have any vector
parallelism “left over”. Given efficient support for MIMD
parallelism (or TLP) in loops it may not be useful to pro-
vide additional hardware support for vector execution in this
case. Instead, it is better to increase the number of cores or
provide multithreading support for exploiting TLP.

The rest of the paper is organized as follows: Loop-level
evaluation of the performance potential of the different types
of parallelism is presented in Section 2. Specifically, loop-
level characterization of EEMBC 1.1, 2.0 and MiBench suites
is presented in subsection 2.1, the evaluation of the perfor-
mance potential of TLP and sTLP is presented in subsec-
tion 2.2 and the evaluation of the impact of vectorization
on performance is presented in subsection 2.3. Finally, we
conclude in Section 3.

2. LOOP-LEVEL PARALLELISM
ANALYSIS

In this section, we first present a loop-level characterization
(as loop parallelization has been one of the most widely used
techniques for program parallelization) of the EEMBC 1.1,
EEMBC 2.0 (Networking) and Mibench (described below).
To our knowledge, this is the first characterization of this
kind for these suites. Note that no source code changes
were made in either of the two benchmark suites during
the performance evaluation. Next, we discuss the loop-level
speedup achievable by exploiting loop-level TLP and sTLP.
Finally, we estimate the performance potential of vectoriza-
tion for embedded applications.

Let us start with a brief overview of the applications
in the industry-standard embedded benchmark suites —
EEMBC 1.1 and EEMBC 2.0 [18] and the academic embed-
ded benchmark suite MiBench 1.0 [19]. Both EEMBC 1.1
and MiBench are divided into multiple classes which are rep-
resentative of different embedded application domains such
as automotive, consumer, networking, office (see Tables 1
and 3). The EEMBC 2.0 benchmark suite is currently un-
der development; as of now, it has applications from the
networking domain only (see Table 2). All benchmarks are
written in the C language. Interestingly, benchmarks range
from a modest 100 lines of code to ≈ 208K lines of code. As
will be shown in the next section, memory and I/O opera-
tions account for a large percentage of the total execution
time in many benchmarks. From Tables 1, 2 and 3 we note
that the suites differ in the selection of the benchmarks. In
view of the above, we carried performance analysis of all the
three suites so as to cover a wider spectrum of applications.

The results presented in the rest of this section were ob-
tained by running the benchmarks with the reference data
sets (large data sets in case of MiBench) on the IntelR©XeonR©

Processor. The configuration details of the system are given
in Table 4. The benchmarks were compiled using the IntelR©

C++/Fortran optimizing compiler. The compiler performs
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Class Benchmark Lines of
Code

Language Description

8 16-bit

bitmnp816 2272 C Bit Manipulation

canrdr816 3811 C Response to Remote Request (CAN)

memacc816 1715 C Memory Access

pntrch816 1574 C Pointer Chasing

puwmod816 3967 C Pulse Width Modulation Initialization

rspeed816 2326 C Road Speed Calculation

ttsprk816 25310 C Tooth-to-Spark

automotive

a2time01 3455 C Angle-to-Time Conversion

aifftr01 10371 C Fast Fourier Transform

aifirf01 4385 C Finite Impulse Response

aiifft01 10198 C Inverse Fast Fourier Transform

basefp01 5907 C Basic Integer and Floating-Point

bitmnp01 3928 C Bit manipulation

cacheb01 2333 C Cache Buster

canrdr01 5782 C CAN Reader algorithm

idctrn01 18637 C Inverse Discrete Cosine Transform

iirflt01 4988 C Low-Pass Filter (IIR ) and DSP functions

matrix01 3029 C Matrix Math

pntrch01 1928 C Pointer Chasing

puwmod01 7323 C Pulse-Width Modulation

rspeed01 2713 C Road Speed Calculation

tblook01 1792 C Table lookup and interpolation

ttsprk01 28348 C Tooth to Spark

consumer

cjpeg 50292 C Jpeg Compression

djpeg 17766 C Jpeg Decompression

rgbhpg01 26191 C Image filter

networking

ospf 2015 C A benchmark based on Dijkstra’s shortest-path algorithm

pktflow 2264 C
Packet Flow: Receives and processes incoming IP packets according to a subset of
RFC1812, “Requirements for Routers”

routelookup 1523 C RouteLookup Benchmark

office
bezier01 3304 C Bezier Interpolation

dither01 27863 C Floy-Steinberg Error Diffusion Dithering Algorithm

telecom

autocor00 997 C Fixed Point AutoCorrelation

conven00 1018 C Convolutional Encoder

diffmeasure 650 C Measurement of Signal to Noise Difference in DB

fbital00 1155 C Fixed Point Bit Allocation

fft00 1626 C Fixed Point Complex FFT/IFFT

viterb00 1286 C Viterbi Decoder

Table 1: Description of benchmarks in EEMBC1.1

Class Benchmark Lines of
Code

Language Description

networking

ip pktcheck 2264 C
Packet Flow: Receives and processes incoming IP packets according to a subset of
RFC1812, “Requirements for Routers”

ip reassembly 2593 C Packet reassembly

nat 6955 C Network Address Translation

ospf 2049 C A benchmark based on Dijkstra’s shortest-path algorithm

qos 6643 C Quality of Service

routelookup 1571 C RoutLookup Benchmark

tcp 3875 C Transmission Control Protocol

Table 2: Description of benchmarks in EEMBC2.0

a large set of optimizations via procedural inlining, advanced
inter-procedural analysis for maximal parallelization. Fur-
ther, in order to alleviate the limitations of the compiler,
we carried manual analysis (at the source level) of some of
the loops which the compiler could not parallelize. Only
(about) 10% of the total number of loops were parallelized

manually. Such loops can be easily parallelized via, for ex-
ample, OpenMP [20] pragmas.

2.1 Loop-level Characterization
In this subsection, we present the innermost loop coverage,
defined as the percentage of the total execution time spent
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Class Benchmark Lines of
Code

Language Description

automotive

basicmath 579 C Basic math routines such as cube, sqrt

bitcount 917 C Bit counting functions

qsort 100 C Qsort Algorithm

susan 2122 C Smallest Univalue Segment Assimilating Nucleus (Image processing)

consumer

jpeg 33717 C Jpeg Compression

lame 18612 C LAME Ain’t an MP3 Encoder

typeset 47185 C Document Formatting System

networking
dijkstra 351 C Dijkstra’s algorithm

patricia 599 C Trie implementation

office

ghostscript 197528 C Ghostscript 5.0

ispell 12527 C Spell Check

rsynth 7055 C Speech system

sphinx 208810 C Large vocabulary, speaker-independent continuous speech recognition engine

stringsearch 3216 C String search

security

blowfish 2302 C A keyed, symmetric block cipher

pgp 34858 C Pretty Good Privacy version 2.6.3i

rijndael 1788 C Advanced Encryption Standard

sha 269 C Secure Hash Algorithm

telecom

adpcm 741 C Adaptive Differential Pulse Code Modulation

CRC32 281 C Cyclic Redundancy Check

FFT 469 C Fast Fourier Transform

Table 3: Description of benchmarks in MiBench

Processor IntelR©XeonTMProcessor 3.6 GHz

Memory 2 GB (PC2700 a.k.a. DDR333 DIMMs)

L2 Cache 1 MB

Compiler Flags -O3 -ansi alias -xN parallel

OS Linux 2.4.21-12.EL #1 SMP

Table 4: Experimental Setup

in such loops, for applications in EEMBC 1.1, EEMBC 2.0
and MiBench. Note that the coverage numbers presented
in this subsection correspond to only those loops that are
present in the (optimized) application code; loops in the
library functions are excluded. Also, the coverages corre-
spond to single thread execution of the parallelized code.
Of course, the coverages shown later in this subsection are
subject to the particular algorithm selected and its imple-
mentation and the compiler used.

To obtain this, the code generator of the IntelR©compiler
was modified for automatic insertion of hardware perfor-
mance counters. The point of insertion of these counters
(amongst the different phases of the compilation process)
has a direct effect on the coverage analysis. This is due to the
fact that insertion of these counters early in the compilation

Benchmark ip pktcheck qos tcp

# of loops 17 27 42

% Execution
Time

43.9 54.1 23.4

Table 5: Total number of innermost loops executed
(after optimization) and their coverage, for EEMBC
2.0

process can potentially disable some of the optimizations.
Therefore, it is critical to make sure that these counters
are inserted only during the code generation phase. In our
experiments, we account for the overhead incurred due to
the insertion of these counters. A detailed discussion of our
instrumentation support is beyond the scope of the paper.

The total loop coverage is computed as follows: first,
tick%, defined as the total time spent in a given loop, is
determined for each loop. Next, the self%, defined as the
execution time spent in a loop excluding the time spent in
any function or any other loop that may be embedded in
it, is determined for each loop. Finally, the self% of all the
loops is summed to obtain the total loop coverage for a given
application.

The number of innermost loops executed and their cover-
age for select applications in EEMBC 1.1, 2.0 and MiBench
are given in Tables 6, 5 and 7 respectively. In case of
EEMBC 1.1 and EEMBC 2.0, results are shown only for
those applications which were executed using the testing
framework that comes with the corresponding suite.

From the table we observe that in some benchmarks the
innermost loops have a low coverage. The reasons for this
are discussed below.

❚ In many benchmarks the low loop coverage can be at-
tributed to the large amount of time spent in library
calls. For example, the I/O function al write con in
the ttsprk816 benchmark has a coverage of 17.25%
(the benchmark ttsprk816 has very low (< 1%) in-
nermost loop coverage; due to this we do not list it
in Table 6). However, there do not exist any loops in
the function (see below). Most of the coverage of the
function is due to the fwrite library call.

Similarly, the library calls vsprintf and strlen ac-
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Benchmark a2time01 canrdr01 cjpeg djpeg rgbhpg01 pktflow bezier01 rotate01 autocor00 conven00 fbital00 fft00 viterb00

# of loops 10 13 107 110 30 19 12 11 17 15 6 22 16

% Execution
Time

66.2 1.4 57.3 52.1 87 43.8 64.2 93.1 82 44.9 64.3 59 66.1

Table 6: Total number of innermost loops executed (after optimization) and their coverage, for EEMBC 1.1

Benchmark basicmath bitcount qsort susan jpeg lame typeset dijkstra particia ghostscript

# of loops 14 3 2 10 85 252 821 6 6 356

% Execution
Time

95.5 38.7 52.8 80.6 25.4 49.1 15 70.1 95.1 75.1

Benchmark ispell rsynth stringsearch blowfish pgp rijandel sha adpcm CRC32 FFT

# of loops 78 46 5 13 10 6 11 2 1 13

% Execution
Time

16.7 60.4 81.1 38.1 92 7.8 66.9 76.3 99.5 94.1

Table 7: Total number of innermost loops executed (after optimization) and their coverage, for MiBench

int al_write_con (const char* tx_buf, size_t byte_count) {
/* This logic must be preserved */
if (byte_count == 0)

return Success;
fwrite( tx_buf, sizeof(char), byte_count, stdout );
return Success;

}

count for the entire coverage (= 35.65%) of the func-
tion i printf of the ttsprk816 benchmark. Further,
the library calls printf, strcmp and strcat account
for almost the entire coverage of the function th main.
In a similar vein, in many benchmarks, I/O accounts
for a large part of the total execution time.

The above observation provides valuable guidance for
design of high performance embedded systems and op-
timization of embedded applications: for applications
such as ttsprk816, it is critical to design better I/O
mechanisms and address optimization of library rou-
tines rather than optimizing the application itself, in
order to achieve high performance.

❚ In benchmarks such as canrdr01 the low coverage of
innermost loops can be in part attributed to their
very small (in the number of instructions) loop bod-
ies. Also, there exist quite a few functions with large
coverage but with no loops. For instance, the function
WriteOut (shown below, taken from bmark.c:1182) ac-
counts for 15.79% of the total execution time but has
no loops.

n_void WriteOut( varsize value ) {
if (( RAMfilePtr+RAMfile_increment) > RAMfileEOF )

RAMfilePtr = RAMfile;
*(varsize *)RAMfilePtr = value;
RAMfilePtr += RAMfile_increment;

} /* End of function ’WriteOut’ */

Likewise, the function GetInputValues (algotst.c:3222)
has a coverage of 19.22% and does not contain any
loops.

❚ In benchmarks such as canrdr01 the outermost loops

have a large coverage (self%). For instance, the func-
tion t run test (bmark.c:186) has a large coverage of
62.95%. The outermost loop at line 342 in this func-
tion accounts for most of the function’s coverage. The
aforementioned functions are called in this loop. This
illustrates the need for exploitation of parallelism at
higher levels such as at the outermost loop level, at
function level. However, this may be difficult to ex-
ploit due to the I/O involved. Likewise, exploitation of
hierarchical parallelism as in parallel multi-way loops
[21] can potentially yield better performance. A dis-
cussion of techniques exploiting the above is beyond
the scope of the paper.

❚ In applications such as bitcount, the low loop cover-
age is due to the fact that a large amount of time is
spent in recursive execution. For instance, the function
ntbl bitcnt (bitcount/bitcnt 4.c:38) is implemented
in a recursive fashion and has a large coverage. In
such cases, conversion of recursion to loops may help
program parallelization [22, 23]. Alternatively, parallel
recursive algorithms must be used in such cases.

❚ Another reason for low loop coverage is that in many
applications a large amount of time is spent in mem-
ory allocation. For instance, the function nbuf alloc

in the tcp benchmark accounts for 14.48% of the to-
tal execution time. nbuf alloc allocates memory us-
ing the memset library call. Similarly, the function
tcp memcpy (which internally calls the memcpy func-
tion) has a coverage of 6.02%. To better understand
this, let us analyze the code of the memset library code
(taken from the GNU C library, version 2.4 [24], see
below) for example.

In the code snippet, the while loop at line 23 accounts
for most of the time of the entire function. Paralleliza-
tion or SIMDization of this while loop can potentially
lead to better performance.2 On analysis, we see that

2The profitability of parallelization/SIMDization de-
pends on various factors such as the number of iterations
of the loop, SIMD support in the processor. This gives rise
to a need for multi-versioning [25] of the while loop.
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(a) (b)

Figure 1: DOALL, Non-DOALL breakdown of the coverage of the innermost loops in EEMBC and MiBench

the while loop can be converted into a for loop and
can then be parallelized using OpenMP pragmas in
conjunction with IVE (applied on dstp).

void * memset (dstpp, c, len)

void *dstpp; int c; size_t len;

{

long int dstp = (long int) dstpp;

if (len >= 8) {

size_t xlen;

op_t cccc;

cccc = (unsigned char) c;

cccc |= cccc << 8;

cccc |= cccc << 16;

if (OPSIZ > 4)

/* Do the shift in two steps to avoid warning if long has 32 bits. */

cccc |= (cccc << 16) << 16;

/* There are at least some bytes to set. No need to test for

LEN == 0 in this alignment loop. */

while (dstp % OPSIZ != 0) {

((byte *) dstp)[0] = c;

dstp += 1;

len -= 1;

}

/* Write 8 ‘op_t’ per iteration until less than 8 ‘op_t’ remain. */

xlen = len / (OPSIZ * 8);

23: while (xlen > 0) {

((op_t *) dstp)[0] = cccc;

((op_t *) dstp)[1] = cccc;

((op_t *) dstp)[2] = cccc;

((op_t *) dstp)[3] = cccc;

((op_t *) dstp)[4] = cccc;

((op_t *) dstp)[5] = cccc;

((op_t *) dstp)[6] = cccc;

((op_t *) dstp)[7] = cccc;

dstp += 8 * OPSIZ;

xlen -= 1;

}

len %= OPSIZ * 8;

/* Write 1 ‘op_t’ per iteration until less than OPSIZ bytes remain. */

xlen = len / OPSIZ;

while (xlen > 0) {

((op_t *) dstp)[0] = cccc;

dstp += OPSIZ;

xlen -= 1;

}

len %= OPSIZ;

}

/* Write the last few bytes. */

while (len > 0) {

((byte *) dstp)[0] = c;

dstp += 1;

len -= 1;

}

return dstpp;

}

The above exemplifies the importance of parallelization of
libraries and is part of our current research.

2.2 TLP vs. sTLP
Recall that parallel execution of DOALL loops corresponds
to exploitation of TLP, whereas speculative parallel execu-
tion of Non-DOALL loops corresponds to an instance of sTLP.

Figure 1 shows the DOALL/Non-DOALL breakdown of the cov-
erage of innermost loops for EEMBC 1.1, EEMBC 2.0 and
MiBench respectively. The coverage of all DOALL loops cor-
responds to an upper bound on the speedup achievable via
TLP. In other words, assuming an oracle TLP mechanism
whereby the execution time of a candidate loop can be re-
duced to zero, the speedup achievable via TLP is equal to
the total coverage of the DOALL loops. However, in practice
the speedup achievable via TLP is limited by many factors
such as the threading overhead. Thus, the coverages shown
in Figure 1 are very optimistic upper bounds.

From Figure 1(a) we see that in 6 out of 16 applications
DOALL loops account for most of the total loop coverage. On
an average, TLP has a performance potential of 24%, which
is rather small. On the other hand, from Figure 1(b) we note
that in only 5 out of 20 applications DOALL loops account for
most of the total loop coverage. On an average, TLP has
a performance potential of 22%. In view of the increasing
emphasis on putting more cores on a chip, the above gives
rise to a need to revisit design of parallel algorithms and
parallel programming models.

From Figure 1 we see that Non-DOALL innermost loops
have a large coverage — 31% in EEMBC 1.1, 2.0 and 39%
in MiBench, on an average. This corresponds to an upper
bound on the speedup achievable via sTLP. However, this
is a loose upper bound as threaded execution of some loops
can potentially result in performance degradation because of
the threading and misspeculation overhead. Most of these
Non-DOALL loops are DO loops with inter-iteration depen-
dences or are true WHILE loops. Various schemes, viz., data
dependence speculation (DDS), control speculation (CS) and
data value speculation (DVS) have been proposed for ex-
tracting parallelism from such loops.3 For example, the loop
at line bmark.c:286 in rgbhpg01 (with a coverage of 75.7%)
can be parallelized using DVS.

On the other hand, our analysis shows that in most cases
either of the three aforementioned sTLP techniques stan-
dalone have very low performance potential. For instance,
the loop at bmark.c:320 in a2time01 (with a coverage of
66.2% can be parallelized iff all the three types of sTLP

3The reader is referred to [26] for an extensive listing of
previous work in speculative execution.
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# of Loops

Total
(w/ vectorization)

# vectorized
Total

(w/o vectorization)

a2time01 10 0 10

cjpeg 107 18 98

djpeg 110 16 90

filters 30 0 13

pktflow 19 0 19

bezier01 12 0 12

rotate01 11 0 11

autocor00 17 3 15

conven00 15 0 15

fbital00 6 5 14

fft00 22 0 22

viterb00 16 0 16

qos 27 0 27

tcp 42 3 40

Table 8: Total number of loops before and after vec-
torization and the number of vectorized loops for
applications in EEMBC 1.1 and EEMBC 2.0

techniques are applied. Similarly, parallelization of the loop
at rot.c:264 in rotate01 (with a coverage of 92.8%) would
require the application of all the three techniques.

Providing hardware and/or software support for specu-
lative execution can potentially yield better performance.
However, this may not be applicable in low-cost embedded
systems where the cost and complexity outweigh the perfor-
mance benefits.

2.3 Impact of Vectorization
Previous studies have shown that vector execution yields
high speedups in video and other multimedia applications
[27, 28]. In this subsection, we evaluate the impact of SSE-
like vectorization on the performance of several applications
taken from EEMBC 1.1, 2.0. For this, we determine the
difference in loop coverage with and without vectorization.
In case of the latter, certain transformations such as loop
distribution may not kick in during the optimization phase.
Such optimizations are applied (in some cases) to enable
vectorization. Consequently, the dynamic loop count of a
run with and without vectorization are different (refer to
Table 8).

Interestingly, from the table we see that very few loops
are actually vectorized by the IntelR©compiler.4 It is impor-
tant to note that the number of loops vectorized is different
from the number of vectorizable loops. To our surprise, we
observe that in applications such as FFT, no loops are vec-
torized. This is contrary to the previous studies such as
[29], where Franchetti and Püschel showed that FFT is vec-
torizable. This “anomaly” can be attributed to the specific
implementation style of FFT in EEMBC 1.1. For example,
let us consider the innermost loop of the FFT computation
(taken from fft00:fft00.c:171).

Clearly, the above loop cannot be vectorized at compile-
time due to the unknown value of the variables n1, n2 and
DataSize which can potentially lead to a flow dependence
[30] between the successive iterations of the loop. The above
loop (and such loops in general) can be vectorized at run-
time (/dynamically [31]), subject to the values of n1, n2

4The vector instructions are executed on the MMX units.

/* Process butterflies with the same twiddle factors */

for (i = j; i < DataSize; i += n1) {

l = i + n2;

tRealData = ( WReal * RealBitRevData[l] ) + ( WImag * ImagBitRevData[l] );

tImagData = ( WReal * ImagBitRevData[l] ) - ( WImag * RealBitRevData[l] );

/* Scale twiddle products to accomodate 16 bit storage */

tRealData = tRealData >> BUTTERFLY_SCALE_FACTOR;

tImagData = tImagData >> BUTTERFLY_SCALE_FACTOR;

RealBitRevData[l] = RealBitRevData[i] - tRealData;

ImagBitRevData[l] = ImagBitRevData[i] - tImagData;

RealBitRevData[i] += tRealData;

ImagBitRevData[i] += tImagData;

}

and DataSize, after applying other transformations such as
scalar expansion. However, we find that it is seldom use-
ful to do so due to the high run-time vectorization over-
head. This explains why the IntelR©compiler did not vec-
torize the loop. The above limitation can be alleviated by
adding pragmas/directives for vectorization, subject to the
legality (or correctness) of vectorization of the loop. On the
other hand, it can be parallelized with OpenMP-type re-
duction of the variables l, tRealData and tImagData and
with explicit synchronization. Arguably, one can potentially
rewrite the code better or use a different algorithm to enable
vectorization, but this is beyond the scope of this paper.

# of Loops

Coverage
(w/ vectorization)

Coverage
(w/o vectorization)

cjpeg 57.3 57.8

djpeg 52.1 53.3

autocor00 82 95.7

fbital00 64.3 65.5

tcp 23.4 24.1

Table 9: Impact of vectorization on loop coverage

In a similar vein, the set of optimizations, their parameters
such as the loop unrolling and the unroll factor, and the
order in which they are applied is different with vectorization
enabled/disabled. This has a direct influence on the loop
coverage — it increases in most cases and in some cases it
decreases. The decrease can be in part attributed to the
limitation of the heuristic which determines the benefit of
vectorizing a loop.

The impact of vectorization on the loop coverage of ap-
plications with vector loops is shown in Table 9. From the
table we see that for each application, except autocor00,
the reduction in loop coverage (which relates to achievable
speedup) due to vectorization is rather small.

This calls for the development of new algorithms, data
structures and coding guidelines which are amenable for ex-
ploitation SIMD parallelism inherent in embedded applica-
tions. Further, profitability analysis techniques need to be
developed to balance the trade-off between TLP and SIMD
parallelism.

3. CONCLUSIONS
We presented innermost loop-level characterization of ind-
ustry-standard EEMBC 1.1, 2.0 and the MiBench embedded
benchmark suites. It showed that in many programs inner-
most loops, while perhaps easiest to parallelize, may have
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low coverage. This is in part due to frequent library func-
tion calls which cannot be analyzed by the compiler and to
the code in outer loops.

We also evaluated the loop-level speedup achievable via
auto-parallelization and simdization. It showed that the
speedup achievable via the latter is rather low (as compared
to CPU applications [32]). The number of loops parallelized
is also be quite low in many applications. This is in part due
to the compiler profitability analysis for the target architec-
ture. Small parallel loops cannot be efficiently parallelized
even though the task startup overhead is quite modest and
are marked serial.

The results indicate that while loop auto-parallelization
is a good starting point, it needs a number of additional
“improvements”. First, parallelism also needs to sought at
higher levels such as outer loops with high coverages. How-
ever, at such levels auto-parallelization is hard and user as-
sistance, for instance via OpenMP pragmas, is needed. Sec-
ond, our analysis indicates that libraries have to be further
analyzed and optimized to expose parallelism, e.g sequential
FFT code in EEMBC is unsuitable for parallel systems. All
of these improvements will help in efficient exploitation of
the performance potential of the emerging multi-core sys-
tems and in meeting the performance requirements of em-
bedded applications.
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