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ABSTRACT
Reliability in embedded processors can be improved by control
flow checking and such checking can be conducted using software
or hardware. Proposed software-only approaches suffer from sig-
nificant code size penalties, resulting in poor performance. Pro-
posed hardware-assisted approaches are not scalable and therefore
cannot be i m pl ement ed i n r eal embedded s yst ems. T hi s paper pr esent s
a scalable, cost effective and novel fault detection technique, to en-
sure proper control flow of a program. This technique includes
architectural changes to the processor and software modifications.
W hi l e ar chi t ect ur al r e fi nement i ncor por at es addi t i onal i nst r uct i ons,
the software transformation utilizes these instructions into the pro-
gram flow. Applications from an embedded systems benchmark
suite are used for testing and evaluation. The overheads are com-
pared with the state of the art approach that performs t he same
error coverage using software-only techniques. Our method has
greatly reduced overheads compared to the state of the art. Our
approach increased code size by between 3.85-11.2% and reduced
performance by just 0.24-1.47% for eight different industry stan-
dard applications. The additional hardware (gates) overhead in this
approach was just 3.59%. In contrast, the state of the art software-
only approach required 50-150% additional code, and reduced per-
formance by 53.5-99.5% when error detection was inserted.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance

General Terms
Design, Performance, Reliability

Keywords
Control Flow Checking, Embedded Processor Reliability, Hard-
ware/Software Technique, Micro-instruction Routines, Preemptive
Fault Detection, Reliable Processors

1. INTRODUCTION
Current processor based systems are often required to deal with

critical applications, making reliability an important concern in the
design of such systems. In this paper, we focus upon control flow
errors (CFE), errors that cause divergence from the proper control
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flow of an application program. Techniques for control flow check-
ing (CFC) are widely used to enhance the reliability of computer
systems. The basic concept of CFC is to verify that the runtime
flow of a system corresponds to the expected or the specified be-
havior of the same system.

CFEs, if not detected in time could lead to data corruption, pro-
cess crashes, error propagation or fail-silence violations. An appli-
cation or a process is said to be fail-silent if it either works correctly
or becomes silent (stops functioning). A violation to fail-silent be-
havior is called fail-silence violation. Fault injection studies con-
ducted by Ohlsson et al. [26] and Schutte et al. [31] show that
the CFEs comprise between 33% and 77% of all transient errors
that occur in a computer system. Given that the majority of the
system errors are transient and are not reproducible [15], a runtime
error detection mechanism is the only feasible mechanism to detect
CFEs. It is essential to take the following parameters into consid-
eration while crafting CFC mechanisms: error detection coverage;
error detection latency; processor performance; memory overhead;
and monitor complexity.

CFEs occur due to various low-level errors or failures. The three
error models used in this paper are bit flips in instruction mem-
ory, transmission errors during communication, and errors in reg-
isters. Bit flips in instruction memory will be caused due to burst
errors and will corrupt instructions. They will occur in on-chip or
off-chip memory. Transmission errors may occur when bit vectors
are transferred between any two levels of memory hierarchy or be-
tween different functional units. Corruption of register values, in
particular those which determine the destination address or the con-
dition of a branch instruction could cause an illegal branch in the
control flow of an application.

The technique propsoed in this paper detects bit flips in instruc-
tion memory by duplicating the control flow instruction (CFI) and
performing a hardware checking. The duplicate copy is inserted
just before the original CFI. At runtime, the duplicate copy of the
CFI will perform a comparison against the original fetched instruc-
tion and will send an error if there is a mismatch. The error signal
is sent before the original CFI is executed, thus making the error
detection preemptive. Preemptive CFE detection prevents process
crashes (a crash of the entire process incurs a higher recovery over-
head due to the overhead of process creation) and error propagation
(latency of propagated errors is at least several hundreds of instruc-
tion cycles [12] and errors which are not detected early may cause
severe problems like check point corruption which complicates er-
ror recovery).

CFEs are usually detected by dynamic software monitoring where:
additional software code is inserted into application programs; or,
hardware-assisted runtime monitoring is enabled, where a hard-
ware block is dedicated to performing security and reliability checks
(for example a watchdog processor for CFC in [17]). Software
only approaches increase code size enormously by adding many
additional instructions to perform monitoring and therefore signif-
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icantly reduce performance. Hardware assisted approaches use ad-
ditional hardware blocks to perform monitoring and therefore incur
considerably high hardware cost and needs self checking mecha-
nisms within the monitors to ensure that the monitoring hardware
themselves are reliable. Furthermore, techniques those use addi-
tional hardware monitors are not scalable.

This paper presents a hardware software technique to detect CFEs
at the granularity of micro-instructions (MI). For the first time, such
a technique is being used to deal with this problem and we are
able to reduce the overheads to a considerable minimum. MIs are
instructions which control data flow, and instruction-execution se-
quencing, in a processor at a more fundamental level than the level
of machine instructions. The SI performed in our scheme is mini-
mal compared to software only approaches, because it is used only
as an interface between check points and MI routines. Our check-
ing architecture could be deployed in any embedded processor on
which we have the design control to observe its control flow at run-
time and trigger a flag when any unexpected control flow pattern is
detected.

Parity checking as implemented in many other well known so-
lutions [8], provides good protection against single bit errors when
the probability of errors are independent. However, in many cir-
cumstances, errors come in groups, which we call bit bursts. Parity
checking provides very limited protection against bit bursts. The
technique proposed in this paper detects CFE caused by not only
independent bit flips, but also bit bursts.

1.1 Motivation
At a given time, a processor executes only a few instructions

and large part of the processor is idle. Utilizing these idling hard-
ware components by sharing them with the monitoring hardware,
to perform CFE detection reduces the impact of the monitors on
hardware cost. Using MI routines within the machine instructions,
allows us to share most of the monitoring hardware. Therefore, our
technique requires little hardware overhead in comparison to hav-
ing additional hardware blocks outside the processor. This reduc-
tion in overhead is due to maximal sharing of hardware resources
of the processor.

1.2 Paper Overview and Organisation
In this paper, we address fault tolerance by focusing on the spe-

cific problem of ensuring correct execution of expected control flow
of a program. We have evaluated memory, area and clock period
overheads associated with the proposed architecture using applica-
tions from an embedded systems benchmark suite called MiBench
[11]. Hardware synthesis and simulations are performed by com-
mercial design tools. Results demonstrate that our proposed solu-
tion has considerable reduction in the overheads compared to solu-
tions proposed by other techniques in the literature.

The remainder of this paper is organized as follows. A survey on
related work is presented in Section 2. Section 3 presents the pro-
posed error checking architecture. Section 4 describes a systematic
methodology to design the proposed solution for a given architec-
ture. Implementation and evaluation are presented in Section 5.
Results are presented in Section 6 and conclusions in Section 7.

2. RELATED WORK
For the last three decades, many different CFC mechanisms have

been proposed to verify proper flow of application programs. Some
of the first known publications on CFE detection include [29, 37],
where the authors outline a general software assisted scheme for
CFE detection. CFE detection techniques can be divided into two
major categories based on where the error detection scheme is im-
plemented: one, hardware- or architecture-based CFE detection
schemes; and two, software-based CFE detection schemes. In hard-
ware assisted CFE detection, the application is divided into blocks,

and signatures are associated with those blocks statically. Then at
runtime, a similar signature is calculated by a hardware monitor
and compared against the one calculated statically. Software CFE
detection is performed by having appropriate signatures for simi-
lar blocks as per hardware techniques, but the checking is done by
software code inserted into the instruction vector at compile-time.
Since software code performs the necessary checking, there is no
need for a separate hardware monitor.

Hardware assisted error detection schemes [5, 22, 24, 28, 30,
33] use watchdog processors to compute runtime signatures from
the instruction control flow, compare them against pre-computed
signatures, and thus validate the application behavior. In [17], the
authors compare and discuss system level CFE detection using dif-
ferent techniques. In [16] the CFE detection scheme is tested with
very simple applications and a non-complex hardware architecture.
In [24] the control flow graph is divided into a sequence of branch
free nodes, called path sets which will be assigned with a unique
signature and compared against the runtime signature. This ap-
proach needs a complicated parser to generate the path set and then
the signature.

Hardware assisted CFE detection schemes could be classified
further into two categories depending upon how the static signa-
tures are stored and accessed. The first embeds signatures into the
application binary itself [3, 4, 14, 31, 32, 36] and the second uses
a separate memory (dedicated memory of the watchdog processor)
to store and access the signatures [19, 20]. In [32] the signature is
embedded into the application’s instruction stream at the assembly
level, and branch address hashing is used to reduce memory over-
head. In [19], the signature calculated at compile time is stored in
a separate memory belonging to a watchdog processor and there-
fore the original application/program does not have to be modified.
There exists a theoretical exploration [35] of a possible hardware
assisted CFC without storing a compile time signature. As far as
we are aware, no implementation exists for the approach shown in
[35].

A concurrent, on-chip hardware assisted CFC technique is pro-
posed in [13]. The technique uses control signatures to enable CFC.
However, the designers of [13] prohibit indirect register branches as
they are unpredictable at compile time. As most of the CFIs are in-
direct register branches, this technique is not general enough so that
it could be applied to most of the embedded processors. Another
hardware assisted concurrent error-detection method is proposed in
[8] for embedded space flight applications. [8] uses parity checks
in registers and signatures for CFC (XORing instructions until a
check-point where they are verified). Multiple bit errors (or bursts)
are not captured by this technique and signatures will not reveal the
exact point of the error in the flow of an application.

Software error detection scheme uses software routines to check
proper control flow at runtime. The routines are inserted into the
application at assembly level or at a higher level. Some of the
techniques are described in [1, 9, 10, 12, 21, 25]. Based on how
the checking routines are used, we have different classifications
for software based control flow checking. Control Checking with
Assertions (CCA) inserts assertions at the entry and exit points of
identified branch-free intervals [12, 18, 23]. CCA is implemented
as a pre-processor to a compiler, based on the syntactic structure
of the language and does not require any CF graph generation and
analysis. An enhanced version of CCA, Enhanced Control Check-
ing with Assertions (ECCA) is proposed in [1] which targets real-
time distributed systems for the detection of CFEs. ECCA ad-
dresses the limitations of CCA, and is implemented at both high
and intermediate levels (register transfer language) of a language.
Another type of software based CFC is called Block Signature Self
Checking (BSSC) [21]. An application program is divided into ba-
sic blocks and each of these are assigned with a signature. A set
of instructions (assertions) at the end of a basic block reads the
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signature from a runtime variable and compares it to an embedded
signature following the instructions. A mismatch in the comparison
indicates a CFE.

The PreEmptive COntrol Signature (PECOS) checking [2] is the
only preemptive software based technique available to date for con-
trol flow error detection. Even though we use a hardware software
approach, our approach is inspired by PECOS. Preemptive detec-
tion means that the error is detected before the erroneous CFI is
executed. PECOS uses assertions formed with assembly instruc-
tions that can be embedded in the assembly language code of an
application. PECOS detects CFEs caused by a direct or an indirect
fault in the control flow instruction. Due to the extensive use of as-
sembly instructions as assertions, PECOS has very high overheads
in memory and performance. Our hardware software approach dis-
cussed in this paper reduces the overhead by trading a few more
transistors for performance gain. Furthermore, we propose tech-
niques to capture CFEs caused by program counter corruptions.

Generally, hardware assisted schemes are not scalable as they
perform monitoring by observing the memory access patterns us-
ing watchdog processors. These schemes will only work for a pro-
cessor that runs a single application. Our scheme is scalable like
a software-only approach due to the software instrumentation we
perform, however unlike software-only approaches our method in-
curs very little code size and performance overheads.

2.1 Contributions
Our contributions in this work are:
1. detection and correction of bit bursts that causes CFE unlike

parity based hardware assisted techniques;
2. preemptive and correctable CFE detection as opposed to sig-

nature based hardware assisted mechanisms;
3. a scalable mechanism as we use SI as the interface for CFC;
4. a methodology for embedding CFE monitoring at the granu-

larity of MIs;
5. a technique that requires very little code size overhead and

performance overheads compared to the software-only ap-
proaches; and

6. a method to share most of the monitoring hardware and there-
fore requires very little additional hardware.

2.2 Limitations
Our scheme will not capture CFEs caused by a corrupted non

CFI turning into a CFI. However, the hamming distances between
the opcodes of non CFIs and CFIs are usually high in typical In-
struction Set Architectures (ISA) [2] and therefore we can safely
assume that a non CFI turning into CFI is unlikely. We also assume
full control over the whole hardware design process.

3. ERROR CHECKING ARCHITECTURE
In this section, we provide an overview of our hardware archi-

tecture for CFC. The hardware modifications that are performed to
enable CFC on a pipelined RISC architecture are:

1. enhancements to the controller to treat CFIs to handle in-
struction memory bit flips;

2. an addition of a shadow register file and the related logic to
handle CFEs caused by indirect CFIs; and

3. an inclusion of a shadow PC and the accompanying logic to
handle program counter corruption that causes CFEs.

In this section, we also describe how the architecture works at run-
time to detect CFEs.

3.1 Instruction Memory Bit Flips Detection
Figure 1 depicts the conceptual flow diagram of the proposed in-

struction memory bit flips detection and correction mechanism. For
ease of illustration, we only depict the hardware units related to the

checking architecture with respect to the whole architecture of an
embedded processor. IMem in Figure 1 represents the instruction
memory segment of the processor. Each CFI of a given applica-
tion (CFIo) is preceded by a duplicate copy of the same instruction
(CFId). This instrumentation is performed by a software compo-
nent at compile time. The pipelines stages shown in the upper part
of Figure 1 belongs to CFId and the lower part belongs to CFIo.
Each fetch writes the binary of the instruction fetched into the in-
struction register (IR) of the processor. Whether a fetched CFI is
either original or duplicate is decided by the processor by checking
a special single bit flag that flips back and forth for each CFI. A du-
plicate CFI, CFId in its execution stage (EXE), compares its own
binary against the one fetched next to it and signals an error when
there is a mismatch.

IF ID

IF ID EXE

.
CFId
CFIo

.

.

CFId

CFIo

CFId==CFIo

cmpIR

IR
N

IMem

Fetch

Fetch
Error

Figure 1: Control Flow Checking Architecture

MIs of the CFI are formed such that the CFI will perform the
tasks as described above in the same order. The outcome from the
comparison between CFIo and CFId could be used to either detect
the error and stop the application or correct the CFI by assuming an
error free duplicate CFI. Our method’s preemptive error detection
property is demonstrated in this approach, since a fault in a CFI is
detected before the erroneous instruction itself is executed.

CFI CFIdF.set? N

F

Y

CFIo

isCFI Flip

Fetch

Figure 2: Separating Original and Duplicate CFIs

Figure 2 depicts how duplicate and original CFIs are distinguished
by our processor when an instrumented application is executed. A
single bit flag register (F) is added (or the current flag register could
be extended) to the architecture of the processor which will be reset
at the beginning. When CFIs including duplicates are encountered
the flag will be flipped between zero and one. If the flag is set to
one when a CFI is fetched, then the fetched CFI is deemed to be an
original (CFIo) and otherwise it is deemed as a duplicate (CFId).

The same technique described in this section will also detect
CFEs caused by errornous transmissions between different mem-
ory hierarchies and the transient CFEs in the instruction memory
data bus.

3.2 Shadow Register File
For CFIs with register indirect addressing, it is essential to ver-

ify the contents of the registers apart from the binaries of the CFIs
themselves. The rudimentary solution is to have a shadow regis-
ter file and make each register writeback to write to both the real
and the shadow register files. When a register is used in a CFI,
the duplicate CFI will not only perform a comparison between the
binaries of the instructions, but also perform comparisons between
the real and shadow registers used by the CFIs. Performing write-
backs to shadow registers for each instruction will involve huge
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amount of unwanted switching activity. This could be reduced by
performing shadow register writebacks at only necessary points in
an application program. This could be achieved by using the use-
def chains 1 (register definitions) of a particular application, which
is already present at compile time in all the optimizing compilers.

3.3 Shadow Program Counter
CFEs may also occur due to bit flips or a burst in the program

counter (PC). We propose a shadow PC to overcome this. A shadow
PC is included in the hardware and will be loaded and incremented
synchronously with the real PC. When a PC read operation is per-
formed a copy of the PC value will also be read from the shadow
PC and a comparison is performed between them. A mismatch will
result in program abortion, or continuation with the assumption that
the shadow PC is not corrupted. This scheme will give a better error
coverage than a processor without a shadow PC.

PC Shadow 
PC

CLK

hold
load

reset

INC INC

==

data_in

data_out

Figure 3: Shadow Program Counter

Figure 3 depicts the proposed architecture for a shadow PC. The
input signals to the real PC are extended to the shadow PC and
output from the real PC is compared against the output from the
shadow PC to detect bit flips or a burst in the real PC.

4. DESIGN FLOW
In this section, an overview of the proposed design flow for the

checking architecture is provided. First, the design of a software in-
terface that allows the applications to interact with the architectural
enhancement is described, and then the design of the architectural
enhancement itself is discussed.

4.1 Software Design
Figure 4(a) describes the implementation details of the interface

between an application program and the fault checking hardware.
It is worth noting that the duplicate CFIs inserted at the right places
in an application serves as the interface between software and fault
checking hardware. In the software instrumentation process, the
source code of an application is compiled by the front end of a
compiler and the assembly code for the target ISA is produced.
Then a software parser is used to instrument the assembly code.
CFIs are located and duplicate copies of the CFIs are inserted into
the application.

The SI described above is in the instrumentation process for CFIs
with constant offsets. For CFIs with register indirect addressing,
the register source will be duplicated by means of shadow registers
at the time of register definition and used by the duplicate CFIs for
comparison. As described in Section 3.2 this could be achieved by
two different means and they are: [i] by enabling shadow register
writeback whenever a register writeback is performed; or [ii] by
generating and using special instructions to perform register write-
back only in places of the application where a register writeback
related to CFI is performed. The former will incur additional un-
wanted switching activity and the later will require building special

1Data structures which model the relationship between the defini-
tions of variables, and their uses in a sequence of assignments
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Automatic 
Processor 
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Figure 4: Design flow for the control flow checking architecture

instructions and instrumenting them into the application with the
help of use-def chains.

Finally, an instrumented version of the assembly program is as-
sembled and linked using the back-end of the same compiler, to
generate the binary for the target architecture.

4.2 Architectural Design
Without losing the generality of our technique, we use an au-

tomatic processor design tool to implement the reliable processor
model in hardware. This automatic design tool is used to design
Application Specific Instruction-set Processors (ASIPs) [6, 7], cus-
tom designed for applications or application domains. Automatic
processor design tools serves as a perfect starting place to build
processor models.

Figure 4(b) describes the hardware design process of the model
for the reliable processor. In the tool the functional units required
to implement the processor will be chosen from a resource pool.
Using the information of the ISAs, MI routines are formed, and are
included into the processor model design. These MI routines will
form the logic of the processor that will do the CFC along with reg-
ular operations at runtime. The final task in the architectural design
process is to generate the hardware model in a hardware descrip-
tion language for simulation [behavioral] and synthesis [gate level]
(indicated by Reliable Processor in Figure 4).

5. IMPLEMENTATION AND EVALUATION
Even though the techniques described in this paper for CFC can

be deployed in any type of embedded processor architecture, we
have taken the PISA (portable instruction set architecture) instruc-
tion set as implemented in SimpleScalarTM tool set for our experi-
mental implementation. The PISA instruction set is a simple MIPS
like instruction set. CFC in the processor is enabled by altering
the rapid processor design process described in [27] for hardware
synthesis (allowing a processor described in VHDL which is syn-
thesizable).

To evaluate our approach, applications from MiBench bench-
mark suite were taken and compiled with the GNU/GCC R© cross-
compiler for the PISA instruction set. As mentioned previously,
an automatic processor design tool, called ASIP Meister [34] is
used to generate the VHDL description of the target processor as
described in section 4.2. The output of the ASIP Meister are the
VHDL models of the processor for simulation and synthesis.
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Figure 5: Testing and Evaluation

As shown in Figure 5, the instrumented binary produced from the
software design process and the processor simulation model gener-
ated by the hardware design tool are used in ModelSim R© hardware
simulator to verify the correctness of our design. Applications with
different CFIs are simulated in Modelsim R© and their behaviors are
observed and verified by looking at the waveforms of related sig-
nals.

The gate level VHDL model from ASIP Meister is used with
Synopsys Design Compiler R© to obtain the clock period, area and
leakage power overheads.

We evaluated the clock cycle overhead of the proposed architec-
ture using a cycle accurate instruction set simulator, SimpleScalarTM

3.0/PISA tool set. The simulator is modified to include CFC as pro-
posed in Section 3. The simulator is built around the existing cycle
accurate simulator sim-outorder in the tool set and used to calcu-
late the clock cycle overheads. As depicted in Figure 5, the same
simulator is modified to perform fault injection analysis and the
results are tabulated in the next Section. The micro-architectural
parameters of SimpleScalarTM were configured to model a typical
embedded processor as designed by ASIP meister. The parameters
used for the simulated processor are shown in Table 1.

Parameter Value Parameter Value

Issue in-order Issue width 1
Fetch queue size 4 Commit width 1
L1 I-cache 16kB L1 D-cache 16kB
L1 I-cache latency 1 cycle L1 D-cache latency 1 cycle
Initial memory latency 18 cycles Memory latency 2 cycles

Table 1: Architectural Parameters for Simulation

The clock cycle counts from the modified SimpleScalarTM sim-
ulator and the clock period from Synopsys Design Compiler R© are
used to calculate the total execution times of all the applications.

6. EXPERIMENTAL RESULTS
In this section, we present memory, area and power overheads

incurred by the proposed CFC solution, as well as the impact of
the technique on performance (total execution time). Later we give
results from the fault injection analysis performed on our model
processor when our solution is implemented. For the purpose of
experiments we have used the PISA instruction set as described
in Section 5 and applications from the MiBench benchmark suite
which represents typical workload for embedded processors.

6.1 Hardware Overhead
Table 2 tabulates the area, clock period and leakage power over-

heads due to the changes in the hardware. The overheads here rep-
resent the extra logic in our design. Taiwan Semiconductor Manu-
facturing Company’s (TSMC) 90nm core library with typical con-
ditions enabled is used for the hardware synthesis. The second col-
umn in Table 2 represents the parameters for the processor model
without the CFC enabled (the base processor) and the third column

represents the parameters of the processor model when the hard-
ware for CFC is enabled. The percentage of overheads in area is
3.59%, clock period is 0.24% and leakage power is 3.71%.

Parameters Without CFC With CFC % overhead

Area (cells) 228489 236700 3.59
Clock Period (ns) 16.85 16.89 0.24
Leakage Power (µW) 485 503 3.71

Table 2: Hardware Overhead

6.2 Performance Overhead
Table 3 reports the performance overhead incurred by our scheme

for different applications (first column) from MiBench benchmark
suite. In Table 3 columns 2-4 tabulate the clock cycle compar-
isons (in millions) and percentage of overheads and columns 5-7
tabulate execution time comparison (in seconds) and percentage of
overheads. The columns that are sub-titled NoCFC represent sim-
ulations of the processor model without the CFC enabled and CFC
represents simulations of the processor model with the CFC en-
abled.

Benchmarks Clock Cycle/106 Execution Time/s
NoCFC CFC % NoCFC CFC %

adpcm.decode 121.6 122.8 0.99 2.05 2.07 1.23
adpcm.encode 89.96 90.12 0.18 1.52 1.52 0.42
blowf.encrypt 79.21 79.49 0.35 1.34 1.34 0.59
blowf.decrypt 80.44 81.05 0.76 1.37 1.37 1.00
crc32.checksum 57.62 57.62 0.00 0.97 0.97 0.24
jpeg.compress 16.41 16.56 0.91 0.28 0.28 1.15
jpeg.decompress 10.79 10.89 0.93 0.18 0.18 1.17
jpeg.transcoding 8.96 9.07 1.23 0.15 0.15 1.47

Table 3: Performance Comparison

From Table 3, the clock cycle overheads range from 0.00% to
1.23% with an average of 0.67% and the execution time overheads
range from 0.24% to 1.47% with an average of 0.91%. In con-
trast, the performance (execution time) overhead in software only
PECOS technique reported was in the range of 53.5-99.5%.

6.3 Codesize Overhead
Table 4 reports the code size overhead and the overhead in the

number of instructions executed resulting from our SI for eight dif-
ferent applications (first column). In Table 4 columns 2-4 tabu-
late the comparison between the number of executed instructions
(in millions) and percentage of overheads and columns 5-7 tabu-
late code size (the number of lines) comparisons and percentage of
overheads. The columns with title NoCFC represents simulations
of the processor model without the CFC enabled and CFC repre-
sents simulations of the processor model with the CFC enabled.

Benchmarks Executed Inst./106 Code Size
NoCFC CFC % NoCFC CFC %

adpcm.decode 76.55 92.98 13.88 623 676 8.50
adpcm.encode 58.91 72.60 15.37 618 670 8.40
blowf.encrypt 58.43 64.44 4.26 6463 6712 3.85
blowf.decrypt 59.04 65.05 5.97 6463 6712 3.85
crc32.checksum 42.51 50.72 12.82 527 549 4.23
jpeg.compress 11.62 12.88 7.41 58650 65160 11.1
jpeg.decompress 7.45 7.96 3.99 56577 62914 11.2
jpeg.transcoding 5.91 7.41 16.88 52605 58444 11.1

Table 4: Codesize Comparison

From Table 4, overheads in the number of instructions executed
ranges from 3.99% to 16.9% with an average of 10.7% and code
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size overhead ranges from 3.85% to 11.2% with an average of
7.78%. The code size overhead of software only PECOS technique
was in the range of 50-150%.

6.4 Fault Injection Analysis
Table 5 tabulates the results of the fault injection analysis per-

formed on our control flow detection architecture. Random mem-
ory errors are generated by performing bit bursts in the instruction
memory. Random memory errors represent a wide range of tran-
sient errors in hardware and some errors in software. For each ap-
plication, 10,000 faults are inserted one at a time and the runtime
program behavior is observed to identify whether it is captured by
our technique. With the current design, an average of 85.3% of the
injected CFEs are detected by our system. The rest of the erro-
neous CFIs fall into the library functions of the application which
are presently not instrumented. We will be able to achieve 100%
CFE coverage, if we are able to instrument the library functions
those are used in the applications.

Benchmarks No. of Faults CFEs Captured by
Total Activated our scheme

adpcm.decode 10000 5723 769 653
adpcm.encode 10000 4635 607 526
blowf.encrypt 10000 6242 911 824
blowf.decrypt 10000 6283 949 819
crc32.checksum 10000 6264 969 923
jpeg.compress 10000 2947 417 334
jpeg.decompress 10000 2901 428 342
jpeg.transcoding 10000 4176 710 558

Table 5: Fault Injection Analysis

This fault injection analysis is only capable of testing our de-
sign for instruction memory bit flips and bursts detection. Further
analysis could be performed to test the capability of the shadow
register file and the shadow PC by injecting faults into the register
file and the PC. However, all the injected errors in the register file
will be captured by our scheme given that the CFIs which use the
errornous registers are checked for errors. Therefore, the error cov-
erage of the shadow register file is equal to the error coverage of the
CFIs. Furthermore, all the injected errors in a PC will be captured
by our scheme with 100% error coverage.

7. CONCLUSIONS
In this paper, we have presented a hardware software technique

to detect CFEs caused by bit flips and bursts at runtime before an
erroneous CFI is executed. We have formulated a formal methodol-
ogy to accommodate this technique within an automatic embedded
processor design flow. Our evaluation studies reveal that the solu-
tion we have proposed is capable of handling CFEs with as little as
3.59% of area and 0.91% of performance overheads. These over-
heads are minimal compared to the software solution that deals with
the same problem. We conclude that by asserting CFC as a design
requirement of an embedded processor, it is practicable to reduce
the overhead of CFC as minimal as possible.

Fault injection analysis demonstrates that our solution is capable
of capturing 85.3% of the injected CFEs in the instruction mem-
ory. The limitation of the error coverage is due to the non instru-
mented code coming from the runtime libraries. Furthermore, our
scheme will also detect CFEs caused by bit flips and bursts in reg-
ister file and PC with 100% coverage as long as the erroneous CFI
is instrumented. Our error detection scheme is preemptive and is
capable of correcting CFEs (assuming the error is in the original
CFI/register-file/PC) without any additional overheads. We believe
that the technique described in this paper could be used with any
embedded processors for detecting CFEs efficiently.
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