A Network Agent for Diagnosis and Analysis of Real-time
Ethernet Networks

Hans-Peter Léb
Infineon Technologies AG
Communications, Access System Engineering
81726 Munich, Germany

hanspeter.loeb@infineon.com

ABSTRACT

Within the field of automation technology the use of Industrial Eth-
ernet is rising. This in turn demands devices capable of precisely
recording, analyzing, and manipulating communication data for di-
agnostic purposes. Existing solutions so far lack required flexi-
bility or are unable to cope with sustained Gigabit-per-second data
streams. This is especially true for general-purpose approaches em-
ploying ordinary network adapters and plain software-based analy-
sis.

In this paper we describe a flexible and lightweight network
agent for real-time, high-performance networks. This agent is ca-
pable of handling sustained data rates up to 2x 1GBit/s while offer-
ing real-time event-triggers, 10ns-resolution timestamps, real-time
filtering, and statistics functions. An auxiliary processing unit as
well as a modular software environment allow customization for
a variety of tasks. The agent is realized as a dual processor SoC
design on a Xilinx Virtex-1I Pro FPGA.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Diagnosis, Analysis

General Terms

Design, Measurement

Keywords
System-on-Chip, Real-time, Industrial Ethernet, Monitoring

1. INTRODUCTION AND MOTIVATION

With the rising use of Industrial Ethernet within the field of au-
tomation technology, increased demand exists for capable monitor-
ing and analysis devices. Such systems must be able to precisely
record, analyze, and manipulate communication data for diagnos-
tic purposes. This, in turn, requires a high amount of flexibility,
and — in particular — the ability to cope with sustained Gigabit data
streams.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASES’06, October 23-25, 2006, Seoul, Korea.

Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

65

Rainer Buchty, Wolfgang Karl
Universitat Karlsruhe (TH)
Institut fir Technische Informatik
76128 Karlsruhe, Germany

[buchty|karl|@ira.uka.de

Application scenarios range from simple general purpose net-
work analysis to highly protocol-specific tasks within the real-time-
capable Industrial Ethernet protocol PROFInet [21] as it is de-
ployed in industrial automation contexts. This includes the con-
trol and verification of correct system-wide behavior within tight
timing constraints according to protocol specifications. In addition
to passive monitoring the device also has to actively interact with
its environment: in case of a detected malfunction appropriate re-
porting e.g. via e-mail is necessary in addition to a precisely-timed
recording of network traffic for later proof and analysis. Further,
active test modes for device-under-test latency and throughput tests
are needed.

To give a more detailed application, a large system such as e.g. a
manufacturing site can be considered: during development or in a
debug setting the network agent is attached to the system and starts
to analyze connected subsystems and identify their addresses and
functions on-the-fly. If cyclic communication occurs — as it is the
case in a real-time setting — the reliability of single subscribers is
monitored with respect to jitter or complete absence of messages.
As the agent is rather small in size and portable, several devices can
be placed at central or de-central places within the system to gain
an exhaustive overview of the overall online status from a central
workstation.

To meet all of the above demands, the device must satisfy a num-
ber of properties which are central to embedded networking analy-
sis systems specialized on Industrial Ethernet:

e The device must be able to cope with two individual 1 GBit/s
data streams and also support 100 MBit/s mode. Overall sys-
tem memory is very limited compared to incoming traffic and
needs to be considered in every aspect of system design.

e Because it is used in automation control and therefore sensi-
tive environments, it furthermore must be very reliable.

e Reception functionality must support two synchronized
channels with a timestamp resolution of 10ns, and pro-
vide exhaustive filtering and online data aggregation func-
tions. Channel merging allows passive monitoring of two-
way communication using a network tap.

e Transmission functionality must include precise scheduling
and ways to embed additional fields like counters or times-
tamps into packets to be sent.

e Adaptive capabilities are needed; the device must especially
be able to automatically detect network addresses, the under-
lying network standard and infrastructure, and used proto-
cols.

e Flexibility is crucial in the context of the intended commer-
cial use. The device must support an easy-to-use update
functionality and be adaptable to customers’ specialized de-
mands.

e To allow for a broad scope of application scenarios versatile
user interfaces are mandatory. These must range from local
or physical access to remote availability of both device con-
trol and current status in a distributed environment.

General purpose approaches are not able to fulfill these require-
ments, but also commercially available products and existing aca-
demic solutions fall short when it comes to the desired flexibility
and specialized functionality in combination with sustained data
rate. The intended use of the network agent will be within a pro-
fessional environment and in small to medium number of pieces.
Providing complete, specialized functionality and tailor-made so-
lutions to end-users for an out-of-the-box use of the equipment en-
sures commercial success.

Having all that in mind, an FPGA-based System-on-Chip design
is an appropriate and tractable solution. Allowing a small team of
developers to create powerful and highly specialized designs, this
approach and todays available advanced FPGAs negate the need for
cost-intensive ASIC development in application scenarios like the
one presented here.

The work described herein has been developed in cooperation
with Siemens AG, Department 1&S. Siemens provided the appli-
cation scenario and an already developed hardware platform. The
network agent presented within this paper was specifically devel-
oped with the given application scenario in mind and was tailored
to the provided hardware platform.

This paper will focus on fundamental aspects of the overall de-
sign and is organized as follows: Sections 2 and 3 provide an
overview on PROFInet and related work from the field of net-
work and packet analysis. In Section 4 we will introduce the hard-
ware platform followed by an extensive presentation of our network
agent architecture. Results are presented in Section 6 whereas Sec-
tion 7 will conclude this paper and also give an outlook on currently
ongoing extensions to the presented network agent.

2. PROFINET PROTOCOL

PROFInet is an open and real-time-capable extension to the Eth-
ernet protocol to implement Industrial Ethernet in automation sce-
narios [21]. A more comprehensive view on Industrial Ethernet and
related protocols is given in [9].

While standard networking technology becomes more wide-
spread and easily available, in automation technology there is
a trend towards more complex and unified networks. Thus the
PROFInet protocol as developed by Siemens to succeed the well-
known PROFIBUS protocol [20] seeks to combine the advantages
of Ethernet with the demands in industrial automation control and
field-bus applications.

Although TCP/IP protocol functions are well suited for unified
management and configuration tasks, the responsiveness of stan-
dard Ethernet is insufficient to support even soft real-time require-
ments [15]. So there are two distinct restriction imposed by the
protocol to overcome these limitations:

e To achieve latencies of 10 ms and below, a switched network
topology with high-performance network hardware and a pri-
ority system must be deployed.

e To achieve latencies of 1 ms, an additional temporal decou-
pling of the medium called time slicing is needed.

66

The first point is rather straightforward and will not be explained
here. As far as the time slicing approach is concerned, this means
that network traffic is divided into deterministic and open commu-
nication. Figure 1 shows this deterministic part with devices A
through E performing time-critical communication. These devices
get exclusively assigned a distinct offset for cyclic sending relative
to a recurring basic timing signal or multiples of it. Thus colli-
sions are impossible to occur, and immediate access to the medium
is possible, enabling so-called isochronous real-time applications
in the sense that a timing signal is common to all devices. Open
communication can take place in a designated period after cyclic
sending has finished (not shown in the figure).

The downside of this approach is the high amount of recurring
traffic, as every device must respond within the assigned period
of time even if no new data is available. This lends itself to spe-
cialized hardware support to offload the overall system and will be
discussed in Section 5.4.

In addition to the above but out of the focus of this paper,
PROFlInet provides rich protocol functionality to enable company-
wide automation and integrated communication.

basic time unit

-

p[e| |a[c[p] o] ABIp[E

basic timing signal

Figure 1: Time-slicing as used within the PROFInet protocol

3. RELATED WORK

Several software-packages exist for network and packet analy-
sis. These range from ordinary protocol analyzers like Ethereal [8]
to complex solutions like the BSD Packet Filter (BPF) [19], which
includes a packet capture architecture for UNIX-like operating sys-
tems in addition to introducing an influential register-based filtering
language. The WinPcap project [7] has ported these ideas to the
Windows OS whereas the Fairly Fast Packet Filter [4] combines
several filtering languages and can be used on multiple platforms.

Numerous commercial network analysis devices exist such as
Spirent’s SmartBit, WildPackets’ Gigabit Analyzer Cards, or the
Shomiti line of products. These solutions, however are rather
costly, and do not provide the functionality and flexibility desired
for the designated field of use. An overview (from a commercial
point of view) over such architectures is presented in [24]. Only
very recently commercial FPGA-based analyzer cards have been
developed such as the products of Napatech [12] which address
many of the issues presented in this paper.

In the scope of this work are FPGA-based System-on-Chip em-
bedded networking solutions. Although FPGAs are being deployed
in many application areas most related projects have a different fo-
cus, such as the programmable network interface card (NIC) devel-
oped by Jeff Shafer [22] or the Field Programmable Port Extender
(FPX) project [16]. Techniques for hardware acceleration in real-
time Systems-on-Chip can be found in [3], and in [5] a paradigm
shift from processor-centered to logic-centered architectures is pro-
posed.

Several techniques exist for implementing filtering algorithms in
hardware. These are often employed in high-performance servers
and network routers, such as algorithms for IP-table lookups [1],
and fully-associative memories such as Content Addressable Mem-
ories [2]. An Ethernet Statistics IP Core is provided by Xilinx [25].
Also methods exist for classification of several chunks within a
packet [11]. A comprehensive overview on packet classification
can be found in [23].

Most existing solutions have in common that these are either
mainly designed for processing a huge amount of filtering rules
(>100,000) or too heavyweight (such as e.g. the well-known
SCAMPI [6]), whereas the target scenario of our approach is more
in the range of up to several hundred filtering rules.

The technique used within our architecture is basically compara-
ble to the Parallel Bit-Vector Method [13], although developed in-
dependently and specifically tailored towards the present hardware
resources. These resources were defined by our industry partner for
which a dedicated architecture framework was developed [10].

The resulting filter engine is despite its small footprint well in
the range of current commercial products like [12] as far as filtering
functionality and performance is concerned.

4. HARDWARE PLATFORM

The hardware platform was developed by Siemens and provided
for this work. Core of the platform is a Xilinx Virtex-II Pro FPGA
(XC2VP50). Among reconfigurable logic resources, this chip con-
tains two PPC405 cores, and advanced clock management facilities
such as 8 PLL-like digital clock managers (DCMs) and 16 global
clock distribution networks (BUFG), which are vital for this work.

The platform is designed for generic use in the fields of network
analysis and simulation. It provides up to 2GB SDRAM, standard
interfaces like USB and RS232, and offers 6 network ports, 4 of
which are low-level-accessible via Broadcom PHYs for analysis
purposes. It contains non-volatile memory for program and data
storage.

Required functionality needs to be integrated into the FPGA by
using IP blocks implementing a complex System-on-Chip. Al-
though an external power supply is needed, the overall device is
small, portable and does not need additional cooling.

S. ARCHITECTURE DETAILS

The network agent is realized as a System-on-Chip (SoC) and
therefore fully integrated into the FPGA. Within the FPGA, the sys-
tem divides into the reconfigurable part and the two PPC hard-cores
embedded into the FPGA fabric. In this section we will describe,
how these resources were used to implement the required function-
ality.

5.1 Architecture Overview

The traditional approach to building embedded network analyz-
ers is typically a single-processor design employing one or more
standard network interface cards (NIC). Incoming data needs to be
copied by the CPU on an interrupt-based communication scheme,
which is a major performance bottleneck. In addition to that, stan-
dard NICs lack flexibility and intelligence to alleviate the CPU and
system buses from irrelevant traffic, and to perform simple tasks
and computations on their own. Thus, even with DMA support,
executing all the specialized tasks required for the network agent
on a general purpose CPU is not feasible in a small and portable
device. Finally, the responsiveness to distinct events and the ex-
actness crucial for time-stamping in a real-time setting can not be
achieved with standard components.

67

The system partitioning chosen for our approach, in term, pro-
vides real-time support, frees the system from unnecessary load and
provides powerful computational resources divided on two CPUs.
To give an overview over the system’s architecture, the three major
functional parts of the network agent are introduced:

e Real-time subsystem enabling autonomous network opera-
tions

e Auxiliary CPU employment for flexible and complex opera-
tions

e Communication, control, and configuration infrastructure

Central to the first part are the two Real-time Media Access Con-
trollers (RTMACs), which autonomously transfer data from the
medium to main memory or vice versa, providing additional real-
time analysis and testing functionality. This will be subject of Sec-
tions 5.2 through 5.4.

To offload the overall system and to provide more flexible capa-
bilities to the platform, one of the CPUs is used as a lightweight
auxiliary functional unit. The scope of use is maximized by pro-
viding appropriate communication mechanisms and optimal sys-
tem integration, as described in Section 5.5.

The System Bus is the major communication means within the
system. The main CPU controls and configures all system aspects
and is responsible for user and other remote interaction. A brief
overview over the Software environment is given in Section 5.6.

This section concludes with a description of important imple-
mentational details in 5.7.

5.2 Real-time Media Access Controller
Module

Main part of the system are two Real-time Media Access Con-
trollers (RTMACSs) within the reconfigurable part which are respon-
sible for controlling network components. They interface with ex-
ternal network components and contain all necessary logic to re-
ceive and transmit network data. The concepts providing this basic
functionality were developed by Gorden Griem in a previous work
[10].

The RTMAC:s therefore divide into four main parts which are
bus interface, buffering, data receive and transmit modules. The
bus interface provides necessary interfacing to configure the RT-
MAC’s sub-units such as the filtering and triggering within the re-
ceive module, and also enables access to internal registers. Fur-
thermore, a DMA engine ensures independent access to external
memory to fetch or store data packets received or to be sent over
the network interface.

The RTMAC module further contains all necessary logic for
time-stamping, filtering, address detection, cycle control, packet
slicing, and statistics aggregation which will be described in the
following subsections. In order to achieve reliable processing of
all data at line rate, all these components are closely coupled with
the MAC layer within the reconfigurable part. Figure 2 gives an
overview over the RTMAC.

5.3 Data Transmission

Data transmission will take place according to an explicit tim-
ing schedule as described below. According to this schedule, the
DMA engine will fetch data packets from main memory and out-
put them using the designated physical interface. As an additional
decoupling, fetched data is first placed into local buffers prior to
transmission to account for delays on the system bus.

The scheduler shown in Figure 2 is responsible to initiate DMA
data transfer and therefore keeping the local TX buffers filled. It

Butte -
Buffer
RXD
" 10010011...

PHY

=
-
e

TXClk
125MHz

25MHz
internal
Interrupts

TXD

RXClk
25/125MHz

Figure 2: RTMAC Overview

Method of || cyclic transmission of | CPU-controlled queue

Operation || up to 256 virtual de- | w/ delay
vices

Pro autonomous, good for | flexible, exact timing,
device simulation low demand for logic

resources

Contra high use of logic | CPU usage, not appro-
resources, not timing- | priate for cyclic trans-
exact, not flexible mission

Table 1: Types of Transmission Scheduling

therefore must regard memory access latencies as well as the lo-
cal buffer fill ratio. When a data packet is ready to be sent, the
transmission logic is informed about the packet’s address within a
designated local buffer.

The transmission logic will then fetch the packet, apply the 8-
byte preamble required for the Ethernet frame format, and directs
the packet to the addressed physical interface. Depending on pro-
tocol and interface, data will be sent out in the desired format (e.g.
byte-wise) and using the appropriate clock rate. Finally, the CRC
checksum will be computed and transmitted as well.

Additional data can be dynamically applied such as an associated
MAC address for simulation or device based operation as well as
packet counters and a timestamp for pro-active testing applications.

Within our system, transmission scheduling can be done using
two different approaches as summarized in Table 1. The device-
based cyclic scheduling on a round-robin basis can take place au-
tonomously in hardware but has difficulties achieving very tight
timing requirements. On the other hand, the combined use of timed
transmission queues in both main memory and hardware allows for
exact timing while using only scarce logic resources.

In this latter scenario, the scheduler fetches a pointer to the next
packet together with a delay annotation from main memory when-
ever buffer space is available. It then transfers the referenced packet
to local buffer memory. The actual sending is scheduled in hard-
ware using a FIFO and according to the transferred per-packet de-
lay information which specifies the offset to the previous packet in

CPU/HW Control

68

cycles. This can be realized using a simple hardware counter. Af-
ter sending a packet, the sender signals the CPU to refill the main
memory queue using either interrupts or a hardware-based commu-
nication scheme like the one described in Section 5.5. A drawback
of this approach is that the queue in main memory has to be main-
tained and filled, thus relying on either the main CPU or providing
an application scenario for the auxiliary CPU (as also outlined in
Section 5.5).

5.4 Data Reception

Within the data reception process, incoming data is buffered and
post-processed, requiring real-time filtering and analysis capabili-
ties.

Depending on the used physical interface, the start of an incom-
ing data packet needs to be detected, to then byte-wise translate this
data into an internal representation as shown in Figure 3 which is
stored in local buffers. Upon detecting the packet’s end, the inter-
nal representation is finalized. In parallel to data reception, infor-
mation about the packet (type, length, protocol, etc.) are generated
and possible errors are detected, which are forwarded to additional

modules for post-processing.
F
Figure 3: Internal Packet Representation

64-2024

Payload
Bytes

Status Flags
Number

An exact timestamp is associated with each packet upon arrival
and stored within the internal representation, thus being available
for immediate and downstream analysis. Specifically, synchronized
time-stamping on both channels allows for merging data into one
virtual channel as it is needed when two-way network traffic is ag-
gregated using a passive network tap.

To enable fast data transfer, a DMA engine ensures independent
writing of buffers into the main memory. It is important to note,
however, that local buffering is only used to account for delays on
the system bus and to allow operating on complete packets: all parts
of the reception process must be capable of dealing with worst-case
incoming traffic without creating any backlog, thus further increas-
ing reliability.

Apart from the basic conversion, filter rules can be applied to the
incoming data implementing a packet filter, and also recording of a
consecutive data stream and statistical values can be triggered with
the same facility. By introducing intelligence at the lowest possible
level, total amount of data to be processed is reduced thus relieving
other system components such as system bus and CPUs. Precisely
triggered recordings and on-the-fly analysis are especially key to
efficiently using the scarce overall memory resources.

Applicable filter and trigger conditions are general logical for-
mulae derived from basic byte-wise conditions, packet meta data
such as length and error conditions, external signals, and also the
results of additional analysis modules, so called system filter con-
ditions. This integration of results is a powerful, modular and ex-
pandable way to include complex analysis into all reception related
decisions such as packet filtering.

These analysis modules are as simple as a CRC check but also
include more complex functionality such as address identification
of up to 256 devices using binary search, and the computation and
comparison of a hash-value of each incoming packet. By combin-
ing the latter two, a change-only processing of device-based cyclic

data is possible providing an important functionality within the pre-
viously described application scenario [10].

It is furthermore possible, to assign packets to a virtual device ID
which eases further analysis such as arrival or absence of expected
cyclic occurring packets. The virtual device ID provides in turn
also a robust interface to the filter module.

The output of the filter module is used for all reception related
decisions as stated above as well as for system synchronization.
Especially the statistical module benefits from this high flexibil-
ity: In addition to aggregating fixed values such as overall number
of packets or bytes received, it maintains 256 counters to capture
freely programmable events detected by the filtering process pro-
viding a powerful means for on-the-fly analysis.

As a summary, Table 2 lists all components which are part of the
receive process within the reconfigurable part.

Receive PHY communication, buffer access, sequence

Logic control, error handling, basic analysis

Basic Analy- || Address detection, Cycle control

sis

Filtering Central processing of all available information,
trigger control, packet filtering, statistics & ag-
gregation, CPU synchronization

Trigger Conditional start/stop of recording

Logic

DMA Transfer of linear and ring buffers into main
memory

Statistics Event counters, system statistics

Table 2: Receive Process Components

5.5 Multiprocessor Operation

The system contains two identical hard-core CPUs which are
used as follows: the main CPU runs an OS such as Linux and
is responsible for system configuration, user interaction and other
complex tasks like downstream analysis or exception handling. In-
teraction with the hardware takes place through system bus, shared
memory, and interrupts. The other CPU is used as an auxiliary
processing engine closely coupled to hardware operations and run-
ning simple standalone applications. Communication mechanisms
and application scenarios for this so-called dedicated CPU are pre-
sented here.

For control and synchronization tasks an additional hardware
module called CPU/HW-Control (CHC) exists. It starts & stops
the CPU, provides for configuration of local instruction and data
storage and mediates between hardware modules and CPU as de-
picted in Figure 4. Hardwired links provide tokens from e.g. the
RTMAC: after packet reception or transmission. These are arbited
by CHC, stored in a FIFO and can be fetched by the CPU when it is
idle. The tokens usually would contain at least a memory address
which can be accessed by the dedicated CPU via system bus and
thus providing the next chunk of data or packet to be processed.

CHC can further provide information e.g. on FIFO usage and
mode configuration to the CPU and also offload it by providing
DMA functionality. Integration of the auxiliary CPU into the
overall system is subject to Section 6.

A major application scenario is the additional use of software
filtering during the reception process. While not as powerful in
terms of throughput, software approaches can employ more com-
plex rules and are better programmable. After the data has been

69

Instructions /
Stand-alone SW

Figure 4: CPU/HW Control

pre-filtered in hardware, the remaining or disputable packets are
transferred to main memory and a token is forwarded to CHC. The
CPU runs a lightweight management software and e.g. the BPF
packet filter interpreter [19], fetching tokens from the CHC’s FIFO
and accessing packet data in main memory. Eventually, packets can
be kept or discarded using the DMA engine.

Another application is the timely-exact replay of formerly
recorded network traffic stored in a capture file. The dedicated
CPU is used to process the recording and timing information in
the file and fill the timed transmission queue (cf. Section 5.3) in
main memory with pointers to packets and exact timing informa-
tion for the hardware transmission unit. A token can be generated
by hardware whenever a packet has been sent, making the need for
polling obsolete and thus relieving the system bus.

In both cases however, the scheduling and processing decisions
when to access the FIFO are made by the CPU. In future scenarios,
several dedicated CPUs and several FIFOs allowing for priorization
of inputs are possible.

5.6 Modular Software Environment

Embedded software as described in [14] lacks abstraction while
being deployed in complex and often critical environments. There-
fore, the agent’s main system software tries to abstract from un-
derlying hardware by encapsulating functionality in the operating
system, kernel driver, robust access mechanisms such as APIs and
file systems, and client-server based modular applications.

These application modules work service based and use a uniform
protocol on a socket interface for communication. This common
mechanism is used for local clients (e.g. the web interface) as well
as for distributed applications over a management network link,
allowing a system-abstraction in a multi-agent environment.

A central controller manages the modules and provides dictio-
nary services on availability of modules and resources as well as
an update environment. Resource management is done within the
driver (as for memory buffers) and distributed within the modules
itself using a locking and information mechanism.

Security issues are so far not considered within the network
agent’s software architecture. This is due to the fact that it is de-
signed to operate in friendly environments which will most likely
not be aware of its presence. The strict distinction between anal-
ysis and management ports in the system’s architecture makes it
hard for recorded data to interfere with device operation. On the
management side, however, the broad range of security measure-
ments provided by the Linux operating system could be used for

user authentication and encrypted control communication to ensure
the integrity of the agent in any case.

5.7 Implementation

Following the architecture description, we will now highlight
two specific implementation details. First we will present the flexi-
ble filtering and monitoring infrastructure, followed by an overview
over the various clock domains used within the SoC, how they were
generated and distributed.

5.7.1 Filtering

The filter unit is part of the receive process and closely coupled
with the MAC layer within the reconfigurable part. It enables the
analysis and filtering of data on-the-fly directly while it is received.

Data is arriving byte-wise in a linear fashion and is typically
stored in a RAM-based buffer. For this reason, in a usual setup
only one distinct position within a data packet can be analyzed,
i.e. several consecutive load&compare cycles are required. This is
problematic in a setup with tight timing constraints. On the other
hand, a completely parallel register-based buffering of a complete
packet uses to many hardware resources for a small-footprint solu-
tion as the one described here.

Thus, our concept combines both approaches using single par-
allel filters which are controlled by a linear VLIW-style program.
These basic and customizable filters allow different byte-wise op-
erations and process incoming data on the fly and synchronous
with the receive data clock: instead of buffering the complete data
for later analysis, only the results of these basic filters are stored.
Thus, parallel analysis is achieved and the outcome is then post-
processed. This processing is controlled by the control words, the
so-called filter rules. Figure 5 represents the filtering process with
some example basic filters (marked as F) and n filter rules.

Filter Unit Filter Rule Programs

[+ Jconaion] o | o
= Jcoraton] o i

Filter Configuration
T T nmmmi

Data / \
OGN |
Status
@ System Status / Predefined Conditions T
f

Analysis

Packet
—

Packet Filter
B

Statistics
Rt

Synchronization
e

Program Control

Figure 5: Filter Unit Internals

System | Address i
User Filter U Trigger
Filter | Detection
0 64 86 104 108 112 120 127

Figure 6: Filter Rule

Those filters are configured to analyze exactly one position
within the byte stream and change their output once the prepro-
grammed conditions hold. This allows for both broad analysis of
many fields as well as for deep analysis by applying many con-
ditions to few fields at the same time. Filters have been imple-
mented to conduct byte-wise comparison, bit-masked comparison
and range checks, providing a wide range of protocol analysis ca-
pabilities.

70

| Name | Code | Description |
apply_filter | 1000 | Check filter conditions, apply trigger if
true
skip 0100 | Suspend execution for a given number
of steps
skip-all 0010 | Suspend execution until complete
packet arrived
jump 0001 | Resume execution at designated pro-
gram address
done 0000 | Quit execution

Table 3: Filter Program Opcodes

[Name | Code | Description |
packet_filter 00100000 | Forward to packet filter
start_trigger 00010000 | Start recording
stop-_trigger 00001000 | Stop recording
user_interrupt | 01000000 | Trigger User Interrupt
statistics 10000000 | Trigger Event Counter

Table 4: Filter Program Opcodes

In each step, the current control word then basically selects
which filter rules are checked, and which actions are triggered if
a filter rule fires. Such a filter rule is depicted in Figure 6. The
first 86 positions determine, which of the basic user-defined and
fixed system filters are selected for this rule, followed by flags to
select whether source or destination addresses (or both) have to be
tested, and their device IDs (8 Bits each) are given. The opcode
defines what will happen on a successful test, i.e. when all selected
filters and the device ID(s) match. Table 3 shows the currently im-
plemented opcodes, which can be further extended by the extended
opcode field allowing for more complex logic operations.

It must be noted, that the filter program allows rudimentary pro-
gram control, i.e. rules can be skipped for a certain amount of steps,
until the successful reception of a packet, or it can be jumped to an-
other position within the filter program. This is to exploit locality
of important data in the packet header and to provide a more diverse
set of execution possibilities.

As an example, consider the reception of a packet. The rule pro-
gram starts upon the reception of the first byte of the packet. All
basic filters are still empty (showing a ’0’ that is) and are waiting
for the pre-programmed position in the packet stream to execute
their pre-programmed comparison (showing a ’1° if successful).
Thus it makes sense to skip the execution until more information
is available, e.g. until the complete header or parts of it have been
received. Now execution can continue, evaluating the current status
of the basic filters and system information against the current filter
rule to be matched. When a preliminary result is achieved, exe-
cution can be conditionally continued using the branch instruction,
e.g. based on the recognized protocol. Finally, execution can be
skipped until the complete reception of the packet, resuming then
with post-processing which may now include per-packet informa-
tion such as length, CRC validity or the result of the device-based
cyclic real-time traffic test.

In addition, it can be specified how the output of the filter rule can
be used, i.e. to start and stop recording triggers, throw a user inter-
rupt or discard the packet. This allows a very effective integration
into the overall system. Especially, in combination with the general
purpose field, a distinct event with an 8-bit ID can be triggered to

address up to 256 statistical values, whereas the other outputs are
usually summed up to allow more complex logical conditions. All
outputs are listed in Table 4.

5.7.2 Clock Domains

The entire internal system timing is derived from 25MHz clock
source. From this clock source, the required clock signals as listed
in Table 5 are generated by using DCMs. With the RTMAC sup-
porting operation in both 100 MBit/s and 1 GBit/s mode however,
there is the need to multiplex the outgoing sending clock between
the external 25MHz signal (100MBit/s) and the internally created
125MHz signal (1GBit/s). Reception and related logic is clocked
mode-independent with the external signal coming from the PHY.
For optimal synchronization with the external PHY components,
double data rate output registers are used.

The PPC cores are clocked with 300MHz and 100MHz. The de-
cision was made to run the Main CPU with 300MHz, providing
enough computation power for OS functions, network- and user-
1/0. The stand-alone Auxiliary CPU is clocked by 100MHz to sim-
plify synchronization with connected interfaces but can as well be
sped up to 300MHz in future scenarios.

100MHz is also used as the clock frequency for the Processor
Local Bus, On-Chip Peripheral Bus and the memory controller. For
external interfacing, a 33MHz clock is provided according to PCI
specification with the need to drive the clock signal off-board be-
fore internal distribution to achieve better synchronization.

These clock domains are distributed within the FPGA using ded-
icated clock nets, ensuring minimal clock skew. Because of access
restrictions to the different quadrants of the FPGA for the global
clock nets, a carefully handcrafted partitioning of clock domains
has to be chosen. This is especially important for the RTMACs
where up to four clock domains converge as depicted in Figure 7.

Main System

BUFG | Clock Gen.

100MHz glb.

BUFG
Buro

DCM
300
MHz

TXClk out
125MHz

RXClk
25/125MHz

25 MHz Clock PHY i

Figure 7: Clock Generation and Domains

[Network [Clock Rate
Main CPU | 300MHz
Aux CPU 100MHz
PLB 100MHz
PCI 33MHz
RTMAC 12.5, 25, 100, and 125MHz
TX Clock 125MHz internal, 25MHz external
RX Clock | 125MHz and 25MHz external

Table 5: Clock Domains

71

6. IMPLEMENTATION RESULTS

Figure 8 gives an overview over the implemented SoC. Here you
can see how this system partites into the real-time system, which is
depicted in detail, and the high-level Linux system. To not overload
the picture and because the high-level system is not in the focus of
this work, the high-level system is only represented by the Main
CPU.

PowerPC
Proc. Block

ocm
Cirlr.

Data
Cache

ocm
Cirir.

Instr. BRAM

Cache

I~

IF

£ b1
= 8 = 8
< 2 < 2
o 3 o g
& o = o

- -
|

,,,,,,

=
= 2 [
< o
o =
& =

= : Processor Local Bus (PLB)
| —

Figure 8: Network Agent System View

The Auxiliary CPU runs in standalone mode. It fetches its in-
structions from a local instruction memory formed by BRAM cells.
This is done using the On-Chip Memory Bus (OCM) providing
cache hit performance while offloading the system bus. The cur-
rent program is easily accessible from within Linux via the Proces-
sor Local Bus (PLB) and therefore can be altered or exchanged as
required.

Likewise, local data memory is realized by using BRAM
cells. In addition, extended data memory is provided via attached
SDRAM accessible through the PLB. Although both CPUs share a
common address space, the local storages are overlayed within the
second CPU, simplifying for example the boot-up process.

Transmission and reception of data is handled by the RTMAC:s,
which contain required functionality as presented in Section 5. The
RTMACs’ DMA engines allow exchange of buffer contents with
main memory regions in SDRAM via the PLB. In addition, control
and necessary synchronization signals are created and forwarded to
the CPU/HW control (CHC) which also handles incoming signals
from the Main CPU.

The central time-stamping facility deployed throughout the sys-
tem is based on the 100MHz clock and allows thus for 10ns reso-
lution. Because a 32-Bit counter would overflow within less than
43 seconds, a 64-Bit timestamp has been implemented. For sta-
tistical values, 64-Bit counters are implemented as well to allow
e.g. byte-exact amount of traffic measurement in long-term tests.
Because BRAM cells are used to hold these counters, this has no
major impact on resource utilization.

Bus usage was examined using an on-chip logic analyzer. The
theoretical bandwidth of 6.4GBit/s resulting from the 64Bit Pro-
cessor Local Bus at 100MHz proved to be sufficient to store two
1Gbit/s data streams via DMA in the main memory.

Table 6 illustrates the resource consumption of the network agent
SoC: integrated into the XV2P50 FPGA, the entire system occupies
about 68% of logic resources. Biggest part of these resources are
the RTMACSs which account for about 20% each, i.e. 40% in total.
Other major parts are SDRAM and PCI controller as well as the
system’s Processor Local Bus logic.

The filter unit presented in this paper is part of each RTMAC.
It uses BRAM cells for the rules and registers to store the settings
of the basic filters. While the processing logic is rather small, the
overall resource utilization is dominated by the number of basic
filters, which can be customized via VHDL-generics to up to 64.
The basic filters implement byte-wise functionality for comparison,
range check, and bit-masked comparison’and can be reconfigured
at runtime over the system bus. The filtering unit is pre-buffered
and pipelined and can run at 125MHz on a speed-grade -5 FPGA.

To meet the tight timing constraints imposed on the system, the
overall resource consumption must be considered carefully in or-
der for the place-and-route process to achieve a valid result. By
using extensive optimization techniques, timing closure for all im-
plemented components could be achieved.

About 66% of the available BRAM cells are occupied, resulting
in an overall used memory area of 346.5kByte used for instruction
and data memory as well as buffers.

As previously noted, the Main CPU runs at full 300MHz speed
whereas the Auxiliary CPU is only clocked with 100MHz to sim-
plify system integration but can be sped up for future scenarios.
The entire system timing is derived from an external 25MHz clock
source. Because of the multiple clock domains, 50% of the avail-
able DCMs and 75% of the available Clock Nets are used.

Extensive two-channel testing has been conducted using
Spirent’s SmartBit professional networking equipment and by
cross-connecting two agents for self-testing. With numerous traffic
patterns and various filter and statistic settings as summarized in
Table 7 correct and reliable operation of the device could be veri-
fied.

| Resource | Total Used Amount |
Logic (total) 23,616 16,300 68%
Logic/RTMAC A. 4,700 20%
BlockRAM 232 154 66%
DCMs 8 4 50%
Clock Nets 16 12 75%
CPUs 2 2 100%

Table 6: FPGA Usage

| Parameter | Tested Items |
Packet Size 64 Bytes, 1514 Bytes , random
Mode 100 MBit/s, 1 GBit/s

Error Conditions | alignment, symbol, dribble, CRC, runt,
oversized
simple, combined, system conditions,

cyclic data change-only, address check

Filter Settings

Table 7: Successfully conducted testing patterns.

7. CONCLUSION

In this paper we presented an architecture for an FPGA-based
network agent suitable for Gigabit Ethernet and especially for In-
dustrial Ethernet. This agent consists of a dual-processor System-
on-Chip enhanced with dedicated IP blocks based on an externally
defined hardware platform described in Section 4.

It provides a flexible filtering and statistics infrastructure re-
quired for exhaustive network analysis. Filtering is based on paral-
lel, register-based HW-filters, and so-called filter programs which

72

are stored in the FPGA’s BlockRAM and distributed RAM and
can therefore be easily replaced. This combination enables pow-
erful at-line-rate filtering patterns while using only very few hard-
ware resources. Further flexibility is reached with the integrated
programmable auxiliary processing engine and the extensible and
modular software environment. A detailed introduction into the
agent’s architecture was provided in Section 5. Despite its capabil-
ities, the footprint of the entire architecture is rather lightweight as
shown in Section 6, resulting in a small, mobile, and robust device
well suited for the intended industrial context.

The architecture as described within this paper is actively used
within Siemens &S for testing and debugging network-based pro-
cess automation as commonly used within current factories.

8. ACKNOWLEDGMENTS

This work was conducted by Hans-Peter Lob as an industrial co-
operation at Siemens 1&S Karlsruhe under supervision by Christian
Bergmann, Siemens AG, and Dr. Rainer Buchty. This paper is a
summary of the work described in [17] and [18].

9.
(1]

REFERENCES

Florin Baboescu, Suresh Rajgopal, Lun-Bin Huang, and
Nick Richardson. Hardware implementation of a tree based
ip lookup algorithm for oc-768 and beyond. Design Con
2005, February 2005.

Florin Baboescu, Sumeet Singh, and George Varghese.
Packet classification for core routers: Is there an alternative
to cams. I[EEE INFOCOM 03, San Francisco, April 2003.
Neil W. Bergmann, Peter Waldeck, and John Williams. A
catalog of hardware acceleration techniques for real-time
reconfigurable system on chip. In IWSOC, pages 112-115.
IEEE Computer Society, 2003.

Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung
Nguyen, and Georgios Portokalidis. Ffpf: Fairly fast packet
filters. In Proceedings of OSDI’04, 2004.

Gordon J. Brebner. Eccentric soc architectures as the future
norm. In DSD, pages 2-9. IEEE Computer Society, 2003.
Jan Coppens, Evangelos Markatos, Jiri Novotny, Michalis
Polychronakis, Vladimir Smotlacha, and Sven Ubik. Scampi
- a scaleable monitoring platform for the internet. In
Proceedings of the 2nd International Workshop on
Inter-Domain Performance and Simulation (IPS 2004),
Budapest, Hungary, March 2004.

Loris Degioanni, Mario Baldi, Fulvio Risso, and Gianluca
Varenni. Profiling and optimization of software-based
network-analysis applications. In SBAC-PAD ’03:
Proceedings of the 15th Symposium on Computer
Architecture and High Performance Computing, page 226,
Washington, DC, USA, 2003. IEEE Computer Society.
Ethereal. Ethereal: The world’s most popular network
protocol analyzer, 20006. http://www.ethereal.com/.

Max Felser and Thilo Sauter. Standardization of industrial
ethernet — the next battlefield? In IEEE WFCS., pages
413-421, Vienna, Austria, September 2004.

Gorden Griem. Design and implementation of a realtime
media access controller for simulation and bus analysis on
profinet. Master’s thesis, Technische Universitéit
Hamburg-Harburg, September 2004.

Pankaj Gupta and Nick McKeown. Packet classification on
multiple fields. In ACM SIGCOMM, pages 147-160. ACM
Press, New York, NY, USA, 1999.

(2]

(3]

(4]

(5]
(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

Napatech Inc. The Napatech Protocol and Traffic Analysis
Network Adapter — White Paper, 2006.
http://www.napatech.com/media (35,1033) /-
White_paper.pdf.

T. V. Lakshman and Dimitrios Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In ACM SIGCOMM,
pages 203-214. ACM Press, New York, NY, USA, 1998.
Edward A. Lee. Embedded software from concurrent
component models. ACM SIGPLAN Notices, 36(8), 2001.
Kyung Chang Lee and Suk Lee. Performance evaluation of
switched ethernet for networked control systems. In
Processings of the 2002 28th Annual Conference of the IEEE
Industrial Electronics Society (IECON-2002), Sevilla, Spain,
2002.

John W. Lockwood, Naji Naufel, Jon S. Turner, and David E.
Taylor. Reprogrammable network packet processing on the
field programmable port extender (FPX). In FPGA, pages
87-93, 2001.

Hans-Peter Lob. Integration eines prototypischen
Realtime-Media-Access-Controllers in eine
PowerPC-basierte Hardware-Umgebung. Studienarbeit,
Universitit Karlsruhe (TH) - Forschungsuniversitit, Institut
fiir Technische Informatik, May 2005.
http://itec.uka.de/capp/diploma/index.php?lang=d&show=
/capp/diploma/sa/loeb-2005.pdf.

Hans-Peter Lob. Konzeption eines Netzwerkagenten auf
einer FPGA-basierten Hardware-Plattform fiir Diagnose und
Analyse von Realtime-Ethernet-Netzwerken. Diplomarbeit,
Universitit Karlsruhe (TH) - Forschungsuniversitit, Institut
fiir Technische Informatik, December 2005.
http://itec.uka.de/capp/diploma/index.php?lang=d&show=
/capp/diploma/da/loeb-2005.pdf.

73

[19]

(20]

(21]

(22]

(23]

[24]

[25]

Steven McCanne and Van Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In USENIX
Winter, pages 259-270, 1993.

ProfiBus. Technology and Application—System Description.
ProfiBus International Support Center, Haid-und-Neu-Straf3e
7,76131 Karlsruhe, Deutschland, 2002.

PROFIBUS Working Group ”‘PROFInet”’. PROFInet
Architecture Description and Specification. PROFIBUS
Nutzerorganisation e.V., Haid-und-Neu-Str. 7, 76131
Karlsruhe, 2003.

Jeff Shafer and Scott Rixner. A gigabit reconfigurable
programmable network interface card. Annual Affiliates
Meeting, Department of Electrical and Computer
Engineering, Rice University, September 2005.

David E. Taylor. Survey and taxonomy of packet
classification techniques. Tech. Rep. WUCSE-2004-24,
Department of Computer Science and Engineering,
Washington University in Saint Louis, May 2004.
WildPackets Inc. A WildPackets Technical Brief: On Gigabit
Analysis System Performance and System Requirements,
2003.
http://www.wildpackets.com/elements/technicalbriefs/
gigabit_performance.pdf, Dezember 2005.

Xilinx Inc. Xilinx LogiCORE Ethernet Statistics, 2005.

