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ABSTRACT
With advances in process technology, soft errors (SE) are
becoming an increasingly critical design concern. Due to
their large area and high density, caches are worst hit by
soft errors. Although Error Correction Code based mecha-
nisms protect the data in caches, they have high performance
and power overheads. Since multimedia applications are in-
creasingly being used in mission-critical embedded systems
where both reliability and energy are a major concern, there
is a definite need to improve reliability in embedded systems,
without too much energy overhead. We observe that while
a soft error in multimedia data may only result in a minor
loss in QoS, a soft error in a variable that controls the ex-
ecution flow of the program may be fatal. Consequently, we
propose to partition the data space into failure critical and
failure non-critical data, and provide a high-degree of soft
error protection only to the failure critical data in Horizon-
tally Partitioned Caches. Experimental results demonstrate
that our selective data protection can achieve the failure rate
close to that of a soft error protected cache system, while re-
taining the performance and energy consumption similar to
those of a traditional cache system, with some degradation
in QoS. For example, for conventional configuration as in
Intel XScale, our approach achieves the same failure rate,
while improving performance by 28% and reducing energy
consumption by 29% in comparison with a soft error pro-
tected cache.
Categories and Subject Descriptors: B.8.1 [Hardware]:
Performance and Reliability–Reliability, Testing, and Fault-
Tolerance; C.3 [Computer Systems Organization] Special-
Purpose and Application-Based Systems – Real-time and
embedded systems

GeneralTerms: Design, Experimentation, Performance,
Reliability

Keywords: Soft Errors, Horizontally Partitioned Caches,
Selective Data Protection, Multimedia Embedded Systems
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1. INTRODUCTION
Soft errors, or radiation-induced transient faults, are be-

coming an overarching challenge in computer system design.
A soft error is the phenomenon of temporary change of the
state of a logic gate in an integrated circuit under the influ-
ence of radiation coming from packaging material or cosmic
rays that strike on the silicon device. The occurrence of soft
errors may have catastrophic consequences for the system:
the application may generate incorrect results, try to access
protected memory regions, crash, or go into an infinite loop.

Although the phenomenon of soft errors has been known
for a long time, rapidly shrinking feature sizes and lower
supply voltages have only now resulted in a significant in-
crease in soft errors and make the presence of soft errors
a real design concern. Soft errors can be critical for mul-
timedia embedded systems, especially for mission critical
applications such as remote sensing in space, surveillance in
hostile territory, or monitoring in highly radioactive envi-
ronments. It should be noted that these embedded systems
may be difficult to reach if it is necessary to recover from
a crash. Thus, system failures due to soft errors in such
systems may be very difficult, if not impossible, to fix moti-
vating the need for strategies that enhance resilience to soft
errors at minimal cost and energy overheads.

The key attribute capturing soft errors is the Soft Error
Rate (SER), typically measured in Failures In Time (FIT),
which denotes the number of failures in one billion hours of
device operation. Another popular and more intuitive mea-
sure of SER is Mean Time To Failure (MTTF). A device
with 1,000 FIT will have MTTF equal to approximately 114
years. With technology scaling and the trend of increasing
capability and complexity of embedded systems, it is clear
that the SER in multimedia embedded systems constitute a
reliability issue. For example, with a SER of 1,000 FIT per
megabit of SRAM at 0.18um technology, the SER in a typ-
ical handheld device already has MTTF of approximately
30 years (considered acceptable), but is expected to be less
than 10 years (considered high) in the next generation de-
vices [1]. In fact the SER is expected to increase exponen-
tially in semiconductor devices beyond nanotechnology [1,
14, 25, 7].

The occurrence of soft errors is directly proportional to
the exposed area of the logic [4]. Since caches are among
the largest area contributors in processors, they are most
vulnerable to soft errors. Previous research has therefore
focused on protecting the caches against soft errors. The use
of Error Detection Codes (EDCs) such as a parity check, and
Error Correction Codes (ECCs) such as Hamming Codes has
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been suggested to protect the data in each line of the cache.
While a single bit EDC can be used to detect single-bit
errors, Single-Error Correction and Double-Error Detection
(SECDED) can correct single-bit errors and also can detect
double-bit errors transparently. Since most of the soft errors
are single-bit errors (the frequency of double-bit errors is
about 2-3 orders of magnitude less than that of single-bit
errors) SECDED are a very effective architectural technique
to protect caches from soft errors.

However, protecting the caches using SECDED has signif-
icant power, performance, and area overheads. Every time
data from a cache line is read, the ECC check needs to be
performed to see if an error occurred in this line. As a
result, the error correction logic becomes a part of the time-
critical path in cache lookup. Previous research indicates
that SECDED implementations can increase the cache ac-
cess time by up to 95% [15] and power consumption by up
to 22% [21]. Embedded systems, which have very stringent
power and performance requirements, may not be able to
afford such high overheads. Thus, there is a critical need for
effective, yet low-overhead architectural techniques to com-
bat soft errors.

Our approach to reducing such overheads is based on the
observation that in multimedia applications, not all data is
equally failure critical. The image data, or audio data, is
not as critical for failure as the loop variables or the stack
pointer. While the occurrence of a soft error in an image
pixel may only result in a slight degradation in the image
quality, a soft error in the loop variable may result in a
segmentation fault. In such a case, we say that the image
pixel is part of failure non-critical (FNC) data, while the
loop variable is part of failure critical (FC) data. While it is
important to keep all the failure critical data in a soft error
protected cache (that incurs energy and cost overheads for
error protection), the failure non-critical data can be kept
in a cheaper and simpler cache that is not protected from
soft errors.

In this paper, we exploit this property of multimedia ap-
plications by employing a modified architectural feature called
Horizontally Partitioned Caches (HPCs). HPC is a tech-
nique in which the processor has multiple (typically two)
caches at the same level of memory hierarchy. Each mem-
ory address is mapped exclusively to one of the caches at
the same level of hierarchy. HPCs are popular in embedded
systems, because judiciously partitioning of the application
data between the two caches can improve both the perfor-
mance and the energy consumption [5, 27] of the system.

We extend the concept of HPCs by protecting one of the
caches against soft errors by SECDED, while leaving the
other one unprotected against soft errors. We partition the
application data into failure critical data and failure non-
critical data. By mapping the failure critical data into the
soft error protected cache, and the failure non-critical data
into the unprotected cache, we can keep the failure rates of
multimedia applications the same as in an architecture with
a single SECDED protected cache while effectively mini-
mizing power and performance overheads at a price of some
degradation in QoS. What makes our technique practical
and useful is the fact that multimedia applications contain
a lot of failure non-critical data that can be easily identified
and mapped to a cheaper, unprotected cache. The main
contributions of our work are:

• We propose an approach for mitigating failures due
to soft errors using the notion of partially protected
Horizontally Partitioned Caches.

• We show that as compared to traditional caches, which
are not protected from soft errors, our technique can
reduce the failure rate of multimedia applications by
two orders of magnitude, at only 7% increase in run-
time and 10% increase in energy consumption.

• Our experiments show that as compared to the pre-
viously proposed cache architectures with SECDED
protection, our technique reduces the runtime and en-
ergy consumption by 30%, while maintaining approxi-
mately the same failure rate (due to double-bit errors)
with a slight reduction in QoS.

2. RELATED WORK

2.1 Soft Errors
Soft errors, i.e., transient faults, or single-event upsets

(SEU) 1, are caused primarily by external radiations in mi-
croelectronic circuits, and have been investigated extensively
since the late 1970’s.

Figure 1: External radiation may induce soft errors

Figure 1 [17] illustrates the mechanism of a soft error
event in a CMOS device. When energetic particles such
as alpha particles, neutrons and protons from packaging
material or cosmic rays strike on the silicon device, they
generate electron-hole pairs in the wake. The source and
diffusion nodes of a transistor can collect these charges,
Qcollected. When Qcollected becomes more than some critical
value, Qcritical, the state of the logic device, e.g., a Boolean
gate, may invert. Since this logic toggle is temporary, the
occurrence of such a defect is called a transient or soft error.
The SER (in FITs) in Figure 1 is related as

SER ∝ Nflux × CS × e
−(

Qcritical
Qs

)
(1)

where Nflux is the intensity of the neutron flux, CS is the
area of the cross section of the node and Qs is the charge
collection efficiency. Since Qcritical is proportional to the
node capacitance C and the supply voltage V , SER has an
exponential relationship with the supply voltage as well as
the capacitance from Equation (1). Thus, with decreasing
supply voltage and shrinking feature size, the rate of soft
errors will increase exponentially [7, 31]. In fact, Baumann
[1] predicts that the SER in next generation SRAMs will be

1These terms are used interchangeably in this paper
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up to two orders of magnitude higher. Multiplied by the
trend of increasing size of SRAMs in multimedia embedded
systems, the SER is becoming an important design concern.
As a result solutions to combat the challenge of soft errors
have been proposed at various levels of design abstraction:

2.1.1 Packaging and Process Technology Solutions
Radioactive substances present in the packaging material

are one of the major sources of radiations that cause soft
errors. Therefore techniques like purifying the packaging
material, and hardening the semiconductors against radi-
ations [2], have been proposed to reduce the occurrence of
soft errors. But interactions between high energy of external
radiations and materials cannot be avoided completely.

Process technology solutions, e.g., Silicon-On-Insulator (SOI)
[19, 24], to reduce soft errors by raising Qcritical by ex-
tending the depletion region or increasing the capacitance
while maintaining or reducing Qcollected have been proposed.
However, technology engineering may require the expense of
additional process complexity, yield loss, and substrate cost
[1].

2.1.2 Processor Architecture Solutions
At the processor architecture level, error detection and

correction codes have been widely investigated and imple-
mented as the most effective schemes in order to detect and
correct soft errors in memory systems like cache as well as
main memory. However, an ECC system implementation
consists of an encoding block as well as a decoding block re-
sponsible for detection and correction, and of extra bits stor-
ing parity values. Thus, ECC consumes extra energy and
incurs performance delay as well as additional area cost [22].
A cache scrubbing technique [18] has been proposed, that
reads cache blocks periodically and fixes all single-bit er-
rors, and which can avoid potential double-bit errors. How-
ever, this technique may have high performance, power, and
area overheads due to SECDED implementation. Lowering
supply voltage increases the probability of soft errors. To
address this, [16] evaluates the drowsy cache and the decay
cache exploiting voltage scaling and shut-down schemes, re-
spectively, in order to decrease the power leakage. [16] also
proposes an adaptive error correcting scheme to different
cache data blocks, which can save energy consumption by
protecting clean data less than dirty blocks. [10] proposes
the combined approach of parity and ECC codes to gener-
ate the reliable cache system in an area-efficient way. [20]
presents an energy-efficient combined method with Ham-
ming and Reed-Solomon codes in order to correct at least
double-bit transient faults. However, they all exploit expen-
sive error correcting codes in order to protect all the data.
Recently, Cai et al. [4] profile the effects of cache size se-
lection on reliability and power consumption as well as per-
formance by extensively simulating several benchmarks on
different cache size configurations. They explore cache pa-
rameters to increase reliability while considering power and
performance.

The technique presented in this paper is different from all
the previous techniques in two distinct ways: 1) we do not
try to reduce soft errors, rather try to reduce the failures due
to soft errors, and 2) our technique is specifically designed
for multimedia applications and can be used in conjunction
with these previously proposed architectural techniques.

2.2 Horizontally Partitioned Caches
Horizontally partitioned caches (HPC) [5, 29, 23, 11] have

been investigated extensively with perspectives of improve-
ments in performance and energy consumption. [27] presents
compiler techniques with several approaches aimed at energy
reduction for this architecture. However, there has been no
previous work in exploiting this architectural feature to mit-
igate the impact of soft errors. In this paper we extend and
employ the HPC architecture for the above purpose.

3. OUR APPROACH

3.1 Application Data Partitioning
Multimedia applications are typically characterized by Qual-

ity of Service (QoS) requirements that define the precision,
accuracy and quality of the delivered multimedia streams.
Thus, while a soft error in an image pixel may only cause
minor distortion in the image, or negligible loss in QoS, a
soft error in the loop control variable may result in a mem-
ory segment violation, or a failure. Other examples of a
failure caused by soft errors include a system crash, or the
application trapped into an infinite loop.

In the context of multimedia applications, we can define
the concept of failure criticality of a variable. A variable
is failure critical if a soft error in the variable can result in
a failure. As per this definition, a loop control variable is
failure critical, while the image pixel is failure non-critical.

Although a detailed analysis of all the variables can be
performed and the variables can be divided into failure crit-
ical and failure non-critical, such fine grain analysis would be
very complex. However, for multimedia applications, the as-
sumption that all the multimedia data is failure non-critical,
and all the rest of the data is failure critical, is a good ap-
proximation. We employ such a separation principle in our
approach.

Size of failure critical and failure non-critical data
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Figure 2: Size of failure-critical and failure-
noncritical data in multimedia applications

Figure 2 plots the percentage of failure-critical and failure
non-critical data in a number of common multimedia bench-
marks, as found by our method. The plot shows that even
this simple data partitioning strategy can mark from 30% to
63% of data as failure non-critical. A better data analysis
technique can discover more failure non-critical data, and
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therefore will improve the effectiveness of our technique.
However, even this simple technique of finding the failure
non-critical data is quite effective. Also note that it is very
easy for the designer to identify the multimedia data, which
is typically present as large arrays in the application spec-
ification. If the multimedia data is mixed with the control
variables, they can be separated by programmers or design-
ers in order to exploit our technique.

3.2 Architecture Model and Approach
We extend the concept of Horizontally Partitioned Caches

(HPC) for mitigating the impact of soft errors. As shown
in Figure 3, we protect one of the caches in the HPC from
soft errors by SECDED, while keeping the other one unpro-
tected. We call the cache protected from soft errors as Soft
Error Protected Cache (SE protected cache), and the tra-
ditional unprotected cache as Soft Error Prone Cache (SE
prone cache).

TLB
Processor

Processor

D
ec

od
er

C
od

er

Pipeline
Memory

SE prone cache

protectedSE cache

Figure 3: Horizontally Partitioned Cache Architec-
ture for Selective Data Protection

Similar to existing HPC architectures, the memory is di-
vided into pages, and each page has a Cache Mapping At-
tribute or CMA. The CMA defines which cache the page is
mapped to. When a new page is requested in the cache,
it comes into the cache defined by the CMA. The CMA
is stored in the Translation Look-aside Buffer (TLB) along
with the address mapping. When the processor requests any
cache data, first the TLB lookup is performed to see if the
page is present in the cache, and if yes, in which one? There-
fore, only one cache lookup is performed per access. In the
case of the SE protected cache with SECDED, every time
data is written into the cache, the data has to be encoded.
And every time it is read from the cache, the data needs
to be decoded and check needs to be performed. Thus, the
SECDED decoder becomes the part of timing critical path
and has power and performance overheads.

In order to minimize the performance impact of the HPC
architecture, we only consider SE protected cache sizes, such
that the total penalty of the SE protected cache due to the
SECDED implementation is less than that of the SE prone
cache. Since the SE protected cache is smaller, this archi-
tecture may lead to performance penalties due to excessive
cache misses. Fortunately, the failure critical data that will
be mapped to this cache has very good cache behavior.

Figure 4 plots the miss rates of the failure critical and
failure non-critical data for various cache sizes. We observe
that the slope of the miss rate of the failure critical data over
cache sizes is less than that of the failure non-critical data.
This observation implies that the size of the SE protected
cache can be reduced without much performance penalty.
The reason behind this idea is that the failure critical data
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Figure 4: Cache miss rates of failure critical and
failure non-critical data

that we have marked is comprised of the local variables,
function stack, etc., which have much better cache behavior
in locality than that of the multimedia data. As a result,
we can achieve low failure rates without much power, per-
formance and energy consumption overheads.

4. EXPERIMENTAL FRAMEWORK
In order to demonstrate the effectiveness of our approach,

we have developed a compiler-simulator-analysis framework,
as shown in Figure 5.

4.1 Applications
We use multimedia applications from the domain of image

processing, audio encoding/decoding, and video processing
as our benchmarks. In the domain of image processing ap-
plications, we use three image filters, namely susan edges,
susan smoothing, and susan corners, from MiBench [6]. In
the domain of audio applications, we use adpcm encoder and
adpcm decoder, from MiBench, and G721 encoder and G721
decoder from MediaBench [12]. As a representative video ap-
plication, we select H263 encoder from the PeaCE project
[30]. These examples form a representative set of typical
multimedia applications.

We mark all the arrays that contain the multimedia data
with the “ FNCdata ” keyword. We would like to stress
again that it is very easy for the application developer to
identify the multimedia data. Multimedia data is typically
present in large arrays. The compiler groups all the marked
arrays and makes them global variables. Along with the
executable, the compiler also generates a page mapping file,
which lists all the pages containing the FNC data.

4.2 Simulation Platform and Soft Error
Injection

We simulate a platform similar to the HP iPAQ h4300 [8].
We tuned the SimpleScalar sim-cache simulator [3] to model
this architecture and further modified the simulator to sup-
port the HPC cache architecture in Figure 3. The simulator,
along with the executable, takes a page mapping file as in-
put, and maps the pages listed in the file to the SE prone
cache (the cache which is not SE protected). Everything
else is mapped to the SE protected cache.
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Figure 5: Experimental Framework

The simulator models errors by randomly injecting single-
bit and double-bit errors in the SE prone cache. The SE pro-
tected cache implements SECDED, and therefore can auto-
matically correct single-bit errors. Consequently, we insert
only double-bit errors in the SE protected cache. To be
able to accomplish the experiments in a reasonable amount
of time, we perform accelerated injection of soft errors in
the cache. Our injection module implemented in the Sim-
pleScalar simulator generates single-bit errors at the rate
of 10−9 single-bit errors per instruction per KB of cache.
However, we maintain the accuracy in the relative rates of
single-bit and double-bit errors, and therefore inject double-
bit errors at the rate of 10−11 double-bit errors per instruc-
tion per KB of cache. Note that the acceleration of soft error
injection does not affect the performance or the energy con-
sumption.

4.3 Cache Configurations
To evaluate the effectiveness of our HPC architectures for

reducing the failures due to soft errors, we define three cache
configurations: 1) unsafe, 2) safe, and 3) HPC. The un-
safe configuration denotes a traditional cache architecture
(a single SE prone cache). The safe configuration repre-
sents the previously proposed cache architecture which con-
sists of traditional cache architecture with ECC protection
(a single SE protected cache). The HPC configuration repre-
sents a horizontally partitioned cache architecture with two
caches consisting of a SE protected cache and a SE prone
cache. We compare our proposed HPC architecture ( HPC
cache configuration) with the unsafe cache configuration and
the safe cache configuration by extensively simulating our
benchmarks and comparing the failure rate, runtime, energy
consumption, and QoS.

4.4 Modeling

4.4.1 Failures
The occurrence of soft errors in failure critical data may

have catastrophic results. In this context, we define the
concept of failure in a simulation. We term a simulation as
a failure if the output of the multimedia processing cannot
be opened by the application meant to observe the media
data. For example, in the context of image processing, the
application susan edges generates ”.pgm” files, which can be
viewed by the graphical viewer xv. If the xv is unable to open
the output file, then we consider the simulation as a failure.
A simulation can be a failure due to various reasons, e.g.
the output image is not produced, the name of the output
image is incorrect, the header of the processed image is not
correct, the size of the output image is incorrect.

If the application crashes or generates incorrect results,
it is easy to detect a failure. However, to detect a failure
when the application goes into an infinite loop, we restrict
the number of simulation cycles to be less than 10 times of
that of a normal simulation. If the application takes more
time, the simulation is stopped and declared a failure. To
compute the failure rate, the application is simulated until
we achieve 10 failures. We have chosen such a soft error
injection rate that we do not get more than a 10% failure
rate.

4.4.2 Performance
For performance comparison we estimate the runtime of

applications using the statistics generated by the cache sim-
ulator. We assume the Instructions Per Cycle (IPC) of the
processor to be 1. Our unsafe cache configuration resembles
the Intel XScale memory subsystem with cache access la-
tency of 2 cycles, and cache miss penalty of 25 cycles. Thus,
the runtime for the unsafe cache configuration, Ru, is esti-
mated as Ru = I + ASEprone × 2 + MSEprone × 25, where
I is the number of instructions executed, and ASEprone and
MSEprone are the number of accesses and misses to the tra-
ditional SE prone cache. For the safe cache configuration,
there is one extra cycle penalty due to the SECDED check.
Thus, the runtime for the safe cache configuration, Rs, is
estimated as Rs = I + ASEprotected × 3 + MSEprotected × 25,
where ASEprotected and MSEprotected are the number of ac-
cesses and misses in the SE protected cache. For the HPC
cache configuration, we keep the SE protected cache size
smaller than the SE prone cache size. This method ensures
that the access times for both the caches are the same, and
equal to 2. Thus, the runtime for HPC configuration, Rh,
is estimated as Rh = I + (ASEprotected + ASEprone) × 2 +
(MSEprotected + MSEprone) × 25.

4.4.3 Energy Consumption
We estimate the energy consumption of the whole system

comprising the processor pipeline, caches, memory and the
off-chip buses. We estimate the energy per access of the
SE prone cache ESEprone using CACTI [26] cache energy
models. The SE protected caches implement SECDED, and
therefore consume additional energy for coding (decoding)
and writing (reading) extra control bits (effectively increas-
ing the linesize) for each access. To estimate the energy
per access for the SE protected cache with the extra coding
bits ESEprotected, we use CACTI with an increased linesize
value parameter. To estimate the energy overhead due to
the SECDED coder and decoder, we synthesize them using
the Synopsys Design Compiler [28] with lsi10k libraries of
0.5 um technology. Note that the decoder is much more
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complex than the coder, however, since the decoder is a
part of “read operation”, it should be faster. After scaling
the power numbers to 0.18um technology, the decoder of
our implementation consumes Edec = 0.39 nJ per decod-
ing, and the coder consumes Ecod = 0.2 nJ per coding. As
in [27], we estimate that the off-chip bus consumes about
Ebus = 10 nJ per access, while the memory access energy
is Emem = 32 nJ per burst. For the processor, we assume
that it consumes 400 mW operating at 600 MHz, which is
the normal operating mode of the Intel XScale processor [9].
Thus, Eproc = 0.67 nJ .

Using the above-mentioned energy models, we estimate
the system energy E as, E = {(ASEprone × ESEprone) +
ASEprotected×(ESEprotected+Edec)+(WSEprotected×Ecod)}+
{(MSEprone+MSEprotected)×(Ebus+Emem)}+{(MSEprotected×
Ecod) + (RSEprotected × Edec)} + {Eproc × (ASEprotected +
ASEprone)}, where WSEprotected are the number of writes in
the SE protected cache, and RSEprotected is the number of
replacements in the SE protected cache.

4.4.4 Quality of Service
QoS is very application specific, and is different for differ-

ent applications. For QoS comparison in image processing
applications, we use the PSNR (Peak Signal to Noise Ratio)

metric in dB defined as: PSNR = 10LOG10(
MAX2

MSE
), where

MAX is the maximum pixel value and MSE is the Mean
Squared Error, which is the average of the square of differ-
ences between the pixel values of the erroneous output and
the correct output. QoS for audio applications is similarly
defined. For video applications the PSNR is averaged over
the image frames.

5. EXPERIMENTAL RESULTS
To demonstrate the effectiveness in mitigating failures due

to soft errors for systems with our partially protected HPC
cache as compared to systems with the traditional unsafe
cache and the previously proposed safe cache, we divide our
experiments into two parts.

The first set of experiments compares the failure rate, run-
time, energy, and QoS for all the benchmarks for safe, unsafe
and HPC cache configurations.

To explore the effectiveness of HPC configuration over var-
ious cache sizes, we perform design space exploration as our
second set of experiments.

5.1 Effectiveness of HPC
In this subsection we evaluate the effectiveness of HPC

on all the benchmarks for the fixed cache sizes. Similar to
cache sizes in the Intel XScale architecture, the unsafe cache
configuration consists of a 32 KB SE prone cache, the safe
cache configuration consists of 32 KB SE protected cache,
and the HPC configuration consists of a 32 KB SE prone
cache and a 2 KB SE protected cache.

Figure 6 plots the failure rates achieved by the three cache
configurations on a logarithmic scale and normalized to the
failure rate of the unsafe cache configuration for compari-
son. The plot shows that the HPC configuration achieves
failure rates close to that of the safe cache configuration.
Both of these configurations achieve failure rates about 47×
less than that of the unsafe cache configuration. In both
the safe and HPC configurations, failures occur only due to
double-bit soft errors, since all the single-bit errors are cor-
rected by ECC in SE protected caches, or while they occur
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Figure 6: Failure Rate

in failure non-critical data in SE prone cache in the HPC
configuration. On average, as shown in Figure 6, the HPC
configuration shows a lower failure rate than that of the safe
cache configuration. This is because the SE protected cache
size is smaller in the HPC configuration. As a result, less
failure critical data is exposed to soft errors in the HPC
configuration. In summary, the HPC configuration provides
failure rates better than or close to those of the safe cache
configuration.
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Figure 7: Runtime

Figure 7 plots the runtime for the three cache configura-
tions, in which the runtimes are normalized to the runtime of
the unsafe cache configuration. Figure 7 clearly shows that
the performance overhead of the HPC cache configuration
is consistently lower than that of the safe cache configu-
ration. As compared to the previously proposed safe cache
configuration, the graph shows that the runtime for the HPC
configuration takes 28% less on average. This is not only be-
cause safe configurations incur a cache access time penalty
but also because the smaller SE protected cache, the lower
cache access time will be, and the separation of data results
in less data conflict in HPCs. However, as compared to the
unsafe cache configuration, HPCs incur about a 7% runtime
penalty on average due to higher miss rate and ECC perfor-
mance overhead.
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Figure 8: Energy Consumption

Figure 8 displays the energy consumption of the three
cache configurations normalized to the energy consumption
of the unsafe cache configuration. This graph clearly demon-
strates that the HPC cache configuration consumes less en-
ergy due to the absence of the overhead in the energy spent
in coding and decoding FNC data in the safe cache con-
figuration. The plot shows that as compared to the safe
cache configuration, the HPC configuration consumes 29%
less energy on average. As compared to the unsafe cache
configuration, the HPC configuration consumes 10% more
energy while the safe configuration has more than 50% of
energy overhead due to protection for all the data.
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Figure 9: Composite Metric: LOG(Failure Rate) ×
Runtime × Energy

To simplify the multi-dimensional comparison of various
metrics (failure rate, energy, runtime), we define a compos-
ite quality metric (CMcfg) for each cache configuration as
CMcfg = LOG(Fcfg)×Rcfg×Ecfg, where Fcfg is the failure
rate, Rcfg is the runtime, and Ecfg is the energy consump-
tion of cache configuration cfg. The lower the composite
metric, the better the configuration. Note that the failure
rate differences can be up to several hundred times while
the differences of the energy consumption and the perfor-
mance are within 50%, so we use the failure rate on the
log scale (LOG(Fcfg)) to give the fair weights to each met-

ric. Figure 9 shows the composite metric for all the three
cache configurations for each benchmark. The plot clearly
shows that the HPC configuration is a superior design choice
for all benchmarks. Approximately, the HPC configuration
is up to 3× better than the unsafe cache configuration for
ADPCM encoder benchmark, and up to 4× better than the
safe cache configuration for susan smoothing in terms of a
composite metric.
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Figure 10: Quality of Service

Figure 10 plots the QoS comparison among the three cache
configurations by normalizing each PSNR value to that of
the unsafe cache configuration. The plot shows that as com-
pared to the safe cache configuration, our HPC cache config-
uration incurs a QoS penalty of 26%, which is calculated as
(Ps−Ph)/Ps, where Ps and Ph are the normalized PSNR val-
ues for the safe cache configuration and the HPC cache con-
figuration, respectively. When compared to the unsafe cache
configuration, our HPC configuration improves the QoS by
an average 80%. Note that we perform experiments using
accelerated SER. In reality the SER is much less. Conse-
quently, the failure rate and QoS results of our experiments
are not correct in the absolute sense; they just have rela-
tive accuracy. Thus, even though the QoS degrades by 26%,
the actual error in the image will be very small in absolute
terms. For example, if 5 pixels were getting modified in 100
images earlier, then after using our technique about 6 pixels
will be erroneous in 100 images, which is still insignificant.

Although a similar argument is applicable to reduction
in failure rate, due to the catastrophic nature of failures,
even a slight increase is important. Our technique is able to
reduce the failure rate by 45× at less than 1.3× degradation
in QoS. We believe this result is extremely good.

To summarize, our results demonstrate that as compared
to the traditional unsafe cache configuration, our proposed
HPC cache configuration can reduce the failure rate by 45×,
while incurring only 7% runtime, and 10% energy overhead.
As compared to the previously proposed safe cache config-
uration, our proposed HPC cache configuration can achieve
almost the same failure rates while improving both the run-
time by 28% and energy by 29%, but trading off QoS by
26%.

5.2 Design Space Exploration
We have shown that HPC cache configurations are a su-
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perior design choice over all benchmarks for a specific cache
size. In this section, we investigate the impact of changing
cache sizes on the three configurations, i.e., unsafe, safe and
HPC configurations. There may be several cache sizes in
each configuration. For the safe and the unsafe configura-
tions, we use SE protected and SE prone cache sizes ranging
from 512 B to 32 KB in exponents of 2. Thus, there are
7 cache configurations in the safe cache configuration and
unsafe cache configuration. For the HPC cache configura-
tion, we vary the SE prone cache size from 1KB to 32 KB,
while varying the SE protected cache size from 512 B to
less than the SE prone cache size 2. Thus, there are 21 HPC
cache configurations in all. Although we performed these ex-
periments for all possible cache associativities, from direct
mapped to fully associative, in exponents of 2, in this pa-
per we present results only for 4-way set associative caches.
More details are in our technical report [13].
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Figure 11: Failure Rate Comparison

Runtime (Susan Edges)

2KB/512B

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1.1E+07

1.2E+07

1.0E+02 1.0E+03 1.0E+04 1.0E+05
Cache Size (bytes)

R
u

n
ti

m
e

 (
c

y
c

le
s

)

Unsafe Safe HPC

Figure 12: Performance Comparison

2Our experiments show that the optimal size for all bench-
marks is no more than 32 KB
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Figure 13: Energy Comparison
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Figure 14: Comparison of quality of service

5.2.1 Failure Rate Comparison
Figure 11 plots the failure rates of benchmark susan edges

for safe (squares), unsafe (diamonds), and HPC (triangles)
cache configurations for different total cache sizes.

The first observation we make in this graph is that the
failure rate for the unsafe configuration initially increases
with the cache size, but eventually becomes constant (in
order to make it clear, we present failure rates for up to 1
MB of cache size in the case of the unsafe configuration in
Figure 11). The initial increase in failure rate is because
with increasing cache size, the amount of data in the cache
increases, and more data is now vulnerable to soft errors.
Once all the application data is cache resident, increasing
the cache size any further does not increase the failure rate.
For benchmark susan edges the memory footprint (size of
unique memory addresses) is 48 KB. Therefore after 64 KB
the failure rate saturates as shown clearly in Figure 11.

The second important observation is that the failure rate
in the HPC configuration is consistently close to the safe
configuration. On average, the failure rate for HPC con-
figurations is 38× better that for the unsafe cache configu-
rations. As compared to the safe cache configuration, the
HPC configuration presents 2.5× higher failure rate for su-
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(a) benchmark: susan edges
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(b) benchmark: susan corners
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(c) benchmark: g721 decoder
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(d) benchmark: h263 encoder

Figure 15: Comparison of composite metric among safe, unsafe and HPC configurations

san edges benchmark. The dark circle represents the HPC
configuration that was found to be best by our composite
metric. It corresponds to a 2KB SE prone cache and 512 B
SE protected cache.

5.2.2 Performance Comparison
Figure 12 plots the runtime (in cycles), increasing with a

decrease of cache size mainly due to higher cache misses, for
the safe, unsafe, and HPC configurations. The safe cache
configurations suffer from high runtime primarily because of
increased cache access time. The runtime of HPC cache con-
figurations is on average 24% less than that of the safe con-
figurations. As compared to the unsafe cache configurations,
HPC configurations have 13% runtime degradation but the
safe configurations lose about 48% performance. Thus, the
HPC configuration can provide the better performance than
the safe cache configuration with comparable failure rates.

5.2.3 Energy Comparison
Figure 13 plots the energy consumption for the three cache

configurations, which is decreasing and then increasing with
an increase of cache sizes. The first decrease comes from
lowering miss rates and the second increase results from high
access energy overhead for larger cache sizes. The plot shows
that the energy consumption of the safe cache configuration

is high, primarily due to the SECDED decoder and coder
overhead. On average, HPC configurations consume 24%
less energy than safe cache configurations, and 17% more
energy than unsafe cache configurations. Again, HPC cache
configurations are better in terms of both performance and
power than safe configurations with similar failure rate.

5.2.4 Quality of Service Comparison
Figure 14 plots the PSNR in dB as a QoS metric of the

safe, unsafe and HPC configurations. Increasing the cache
size reduces QoS since SER is proportional to the cache size.
This effect explains the lower QoS, for example, in 32 KB SE
prone HPC cache since it has additional soft errors (double-
bit errors) in a SE protected cache ranging from 512 B to
16 KB. The graph again shows that the QoS in the HPC
configuration is “in-between” the safe and the unsafe config-
urations. On an average, the QoS of the HPC configurations
is 13% better than the QoS of unsafe cache configurations.
As compared to the safe cache configurations, the QoS of
the HPC cache configurations is smaller by 33% on average.

5.2.5 Composite Metric Comparison
Figure 15(a) plots the composite quality metric for all

three cache configurations. The plot shows that the safe
cache configurations and the HPC configurations are the
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contenders for the best design points. The best design point,
however, corresponds to the HPC configuration with 2 KB
SE prone cache and 512 B SE protected cache. We get sim-
ilar plots for the other benchmarks, e.g., susan corners in
Figure 15(b), G721 decoder in Figure 15(c), and H263 en-
coder in Figure 15(d). They show that our proposed HPC
cache configurations mark the best design points for all mul-
timedia benchmarks.

6. SUMMARY
In this paper we propose a novel approach for mitigating

failures caused by soft errors in multimedia embedded ap-
plications where power, performance and reliability are all a
concern. We introduce selective data protection using Hori-
zontally Partitioned Caches and propose a simple technique
for mapping data into such caches geared towards their use
in multimedia applications. Our experimental results show
that our technique reduces runtime and power consumption
by around 30% and maintains the same or the comparable
failure rate in comparison with soft error resilient SECDED
cache while suffering only a slight degradation in QoS.

In the first set of experiments we demonstrated that as
compared to the traditional unsafe cache configuration, our
proposed HPC cache configuration can reduce failure rates
by 45×, while incurring only 6.7% runtime and 10.2% en-
ergy overhead. As compared to the previously proposed safe
cache configuration, our proposed HPC cache configuration
can achieve almost the same failure rates while improving
the runtime by 28.6% and energy by 29.3%, but trading off
QoS by 26%. The second set of experiments showed that
the best HPC cache configuration, in terms of the suggested
composite metric, can reduce the failure rate by 45× com-
pared to the best unsafe cache configuration, while incurring
16.1% runtime and 28.4% energy overhead. As compared to
the best safe cache configuration, the best HPC cache con-
figuration can achieve the lower failure rate while improving
the runtime by 21.9% and energy by 19.3%, but trading off
QoS by 18.5%. These results on representative multimedia
benchmarks clearly demonstrate the utility of our approach
for mitigating soft errors that can affect the safe execution
of these applications at a fraction of the cost and energy of
a fully secure cache based system.

Our future work includes finer data partitioning, which
can increase the effects of our approach, and compiler tech-
niques to intelligently differentiate, partition and map fail-
ure non-critical data from failure critical data. We are also
working to extend the applicability of our technique to other
general applications concerning reliability as well as power
and performance.
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