
Integrated Scratchpad Memory Optimization and
Task Scheduling for MPSoC Architectures

Vivy Suhendra, Chandrashekar Raghavan, Tulika Mitra
School of Computing

National University of Singapore

{vivy, chandra1, tulika}@comp.nus.edu.sg

ABSTRACT
Multiprocessor system-on-chip (MPSoC) is an integrated circuit
containing multiple instruction-set processors on a single chip that
implements most of the functionality of a complex electronic sys-
tem. An MPSoC architecture is, in general, customized for an em-
bedded application. A critical component of this customization
process is the on-chip memory system configuration. Embedded
systems increasingly employ software-controlled scratchpad mem-
ory (SPM) due to its inherent advantages in terms of area, en-
ergy, and timing predictability compared to caches. An application-
specific flexible partitioning of the on-chip SPM budget among
the processors is critical for performance optimization. Moreover,
scheduling the tasks of an application on to the processors and par-
titioning the SPM are inter-dependent even though these steps are
decoupled in the traditional design space exploration process. In
this work, we design an integrated task mapping, scheduling, SPM
partitioning, and data allocation technique based on Integer Linear
Programming (ILP) formulation. Our ILP formulation explores the
optimal performance limit and shows that integrated task schedul-
ing and SPM optimization improves performance by up to 80% for
embedded applications.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-time
and embedded systems

General Terms
Design, Performance

Keywords
MPSoC, scratchpad memory, task mapping, scheduling

1. INTRODUCTION
Increasing concerns about the energy and thermal behavior of

embedded systems is leading to designs with multiple homoge-
neous/heterogeneous cores or processors on a single chip. Sig-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

nificant research efforts have been invested in partitioning, map-
ping, and scheduling the tasks corresponding to an embedded ap-
plication on to multiple processors. However, the increasing per-
formance gap between on-chip and off-chip memory implies that
the design of on-chip memory hierarchy has the maximum impact
on the performance of an application. In this paper, we focus on
customization of on-chip scratchpad memory (SPM) for multipro-
cessor system-on-chip (MPSoC) architectures.

SPM refers to the memory residing on-chip that is mapped into
the memory address space disjoint from the off-chip memory. SPM
is usually implemented using SRAM technology and allows fast
access to the data, whereas an access to off-chip memory incurs
longer latency. The main difference between the conventional cache
and SPM is that the SPM guarantees single-cycle access latency
whereas an access to the cache may result in a miss thereby in-
curring longer latency due to off-chip access. As the memory ac-
cess latencies are predictable, scratchpad memories have become
popular for real-time embedded systems. The other advantages of
scratchpad memory include reduced area and energy consumption
compared to caches [4]. However, now the burden of allocating
data to scratchpad memory lies with the compiler.

In this paper, we assume an MPSoC architecture where each pro-
cessor has its private SPM. Moreover, a processor can also access
another processor’s private SPM albeit with an increased latency.
Given an application and a budget for total on-chip SPM, our goal
is to come up with the appropriate configuration and data mapping
for the private SPMs of all processors so as to maximize the perfor-
mance of the application. The appropriate configuration of a pro-
cessor’s private SPM critically depends on the tasks mapped to that
processor. Therefore, task mapping/scheduling and SPM configu-
ration are dependent on each other. Traditional design space explo-
ration frameworks implement these two phases separately, leading
to sub-optimal performance. In this paper, we propose an integer
linear programming (ILP) based technique for integrated task map-
ping/scheduling, SPM partitioning, and data mapping. Our results
indicate that flexible partitioning of the SPM budget among the pro-
cessors compared to equal partitioning results in up to 60% perfor-
mance improvement. Moreover, integrated memory optimization
and task scheduling can improve performance by up to 80% com-
pared to implementing these two phases separately.

The main contributions of our work compared to previous re-
search are (1) we investigate the interaction between task schedul-
ing, SPM partitioning and data allocation; (2) we propose an inte-
grated task scheduling, SPM partitioning and data allocation solu-
tion based on integer linear programming (ILP) formulation.

401

2. PROBLEM FORMULATION

CPU Core CPU Core CPU Core

VS-SPM1

External
Memory
Interface

Processor 1 Processor 2 Processor N

Off-chip memory

Bus

VS-SPM2 VS-SPMN

MPSoC

External
Memory
Interface

External
Memory
Interface

Figure 1: Embedded single-chip multiprocessor with virtually
shared scratchpad memory.

Architectural Model. In this paper, we focus on embedded
single-chip multiprocessor architecture as shown in Figure 1. The
architecture contains multiple processor cores on chip. The cores
can be homogeneous or heterogeneous. The processor cores com-
municate with the shared off-chip memory via a bus. The architec-
ture uses scratchpad memory (SPM), which is fast SRAM managed
by software (application and/or compiler). In the single-chip multi-
processor setting, each processor core can access its private SPM as
well as SPMs of other processors (remote SPMs). Such a setup, as
described in [10], is called virtually shared scratchpad memory or
VS-SPM. A processor core has dedicated access to its private SPM
with minimum latency — usually a single cycle. Access to a re-
mote SPM also incurs low latency (e.g., 4–16 cycles) due to the fast
on-chip communication link among the processor cores. However,
off-chip memory access has very high latency (e.g., 100 cycles) due
to the performance gap between processor and DRAM technology.
Access conflicts between multiple processors may also arise in the
bus, adding non-trivial variable delays to the off-chip memory ac-
cesses. For simplicity, in this work we assume that the latency
incurred by every off-chip memory access is a constant. To avoid
coherency issues, we also make the assumption that a memory lo-
cation can be mapped to at most one SPM. The Cell processor [8] is
an example of a real system with similar architecture even though
its recommended programming model is somewhat different.

In this work, we focus on SPM for data, but our strategy applies
to SPM for instructions as well. That is, our formulation can be
easily configured for allocating general memory objects in the form
of data variables or blocks of program code.

Task Graph. We assume that the embedded application is spec-
ified as a task graph. The task graph is a directed acyclic graph that
represents the key computation blocks (tasks) of an application as
nodes and the communication between these tasks as edges. A task
can be mapped to any of the processing cores. Therefore, asso-
ciated with each task T are the execution times corresponding to
running the task T on each of the processing cores. In case of ho-
mogeneous cores, there is only one execution time associated with
each task. Note that for our problem, the execution time of a task T
on a processor P depends on the placement of its data variables in

the SPM. Therefore, we estimate the execution time assuming that
all the data variables are accessed from the off-chip memory. An
edge from task T to T ′ in the task graph represents data transfer
between these tasks. Therefore, associated with each edge is the
amount of data transferred along that edge.

As memory hierarchy design is the main focus of this paper, each
task is also associated with the sizes and access frequencies of data
variables obtained through profiling. Note that the data access pat-
tern of a task can be different depending on which processor it gets
mapped to (if the processors are heterogeneous). In that case, for
each task we maintain multiple access patterns corresponding to
the different processor cores.

Pipelined Scheduling. Most streaming applications, such as
multimedia and digital signal processing (DSP) applications, are
iterative in nature. For these applications, the execution of the task
graph is evoked repeatedly for a stream of input data. Hence, these
applications are amenable to pipelined implementation for greater
throughput [6]. The pipelined implementation benefits from allow-
ing multiple processors execute multiple iterations of the task graph
at the same time. Even though pipelined scheduling is more chal-
lenging, we consider it in our problem formulation. Note that the
objective for sequential implementation is to minimize the execu-
tion time of a single iteration of the task graph. In contrast, the
objective of pipelined implementation is to minimize the initiation
interval (II), which is the time difference between the start of two
consecutive iterations of the task graph. Minimizing the initiation
interval results in optimal throughput for a streaming application.

Problem Statement. Given a task graph, the architectural model
and a bound on the total available on-chip SRAM, our goal is to
find the optimal SPM configuration that results in minimum ini-
tiation interval (II). This problem can be decomposed into three
sub-problems.

• Mapping/Scheduling of the tasks to the processors as well as
communication among the tasks.

• SPM Partitioning: Finding the optimal size for each private
SPM.

• Data allocation: Allocating data variables corresponding to
the tasks to the SPMs.

We present a flexible approach that explores the solution space of
possible task mapping/scheduling, SPM configuration and data al-
locations together.

3. MOTIVATING EXAMPLE

T2: Polyphase filter
bank/mdct

(9.1M)

T1: Psychoacoustic
Analysis

(6.4M)

T3: Quantization,
Coding
(4.3M)

T4:Format Bitstream
(1.0M)

PCM MP3

Figure 2: Task graph of LAME MP3 encoder. The numbers in
brackets indicate the execution time of the tasks (in cycles). We
assume homogeneous processors for this example.

To illustrate the interaction among task scheduling, SPM parti-
tioning and data allocation, we will use the task graph shown in
Figure 2. The task graph corresponds to LAME MP3 encoder from

402

the MiBench benchmark suite. It consists of four tasks and en-
codes a sequence of MP3 audio frames. Due to the task level par-
allelism, this application can take advantage of task pipelining as
well as multiprocessing. The execution time of the tasks (assum-
ing all the variables are located in off-chip memory) are obtained
through profiling. Our MPSoC architecture has two homogeneous
on-chip processors and a total on-chip SPM budget of 4KB.

P1

P2

bus

T’3

T2

T’1

II = 10.3M

C2,3

T’4

Figure 3: Optimal pipelined schedule for the task graph in Fig-
ure 2 without considering data allocation. Non-primed labels
indicate tasks/communications from the current instance, while
primed labels indicate tasks/communications from the previous
instance.

Existing design-space exploration strategies will first map and
schedule the tasks and communication onto the two processors with-
out considering the allocation of variables to the SPMs. Figure 3
shows the optimal pipelined schedule for the task graph in Figure
2. This schedule can process one audio frame every 10.3M cycles,
which is the initiation interval II for the schedule.

Now, we consider allocating the data variables to on-chip SPMs.
The common practice is to partition the total SPM budget equally
between the two processors, i.e., each processor has 2KB private
SPM. The variables of task T2 are allocated to the 2KB SPM of
processor P1. Similarly, the variables of tasks T1, T3, and T4 are
allocated to the 2KB SPM of processor P2. We call this the EQ
strategy, which stands for equal partitioning of SPM. The alloca-
tion reduces the total execution time of T1, T3, T4 to 8.2M cycles.
Therefore, the II reduces to 8.2M cycles. However, we notice that
the combined execution time of T1, T3, T4 on P2 determines the
II in both cases (with or without allocation). That is, the reduction
of task T2’s execution time does not have any effect on the global
throughput of the application. This example indicates that allocat-
ing a bigger share of SPM to processor P2 would have been a better
strategy.

So we now explore an integrated SPM partitioning and data al-
location strategy. We call this PF strategy, which stands for par-
tially flexible strategy. Note that in this case the task mapping and
scheduling have also been performed beforehand. As expected, this
strategy allocates a larger SPM space to processor P2 and reduces
the II to 7.6M cycles. The 1152 bytes allocated to P1 is used to
keep its execution time below this II value. Given the schedule
shown in Figure 3, this is the optimal II achievable with 4KB on-
chip SPM.

However, fixing the task schedule a-priori without considering
the effect of data allocation on the execution time may miss the
global optima. For example, task T2 has the longest execution time
without data allocation and hence it is mapped onto a separate pro-
cessor. However, its execution time may reduce considerably after
data allocation and hence it may not be optimal to allocate this task
on a separate processor. Exploring the design space of task schedul-
ing, SPM partitioning and data allocation together could potentially
reach a design point that is not possible through decoupled schedul-
ing and SPM allocation.

P1

P2

bus

T1

II = 6.7M

C1,3

T’2 T’3 T’4

Without data allocation

13.0 M

Figure 4: Optimal pipelined schedule for the task graph
in Figure 2 through integrated task scheduling, SPM par-
titioning and data allocation. Non-primed labels indicate
tasks/communications from the current instance, while primed
labels indicate tasks/communications from the previous in-
stance.

Therefore, we devise a flexible approach, which essentially com-
bines the task scheduling, SPM partitioning, and data allocation
phases. We will call this completely flexible strategy (CF strat-
egy). Figure 4 shows the schedule produced by CF strategy for the
same task graph. The schedule is different from the schedule shown
in Figure 3, which does not consider data allocation. In particular,
task T1 has been mapped to a separate processor instead of task
T2. A decoupled scheduling phase can never produce the schedule
in Figure 4 as its performance without data allocation is extremely
poor (II = 13M cycles). However, with data allocation, this sched-
ule produces an optimal II=6.7M cycles. Incidentally, the entire
SPM space is allocated to processor P2.

4. RELATED WORK
In this section, we briefly review previous research in the area of

scheduling task graphs on multiprocessors and data allocation for
scratchpad memory (SPM).

The problem of scheduling a task graph on multiple homoge-
nous processors in order to minimize execution time (or energy)
has been studied extensively. In its general form, this problem is
NP-complete and hence a number of heuristics have been proposed;
see [12] for a comprehensive comparison of these heuristics. These
works mostly consider non-pipelined scheduling. Benini et al. [5]
propose a hybrid constraint programming and integer programming
based approach for finding the optimal pipelined schedule. The
related problem of mapping and scheduling tasks to a set of het-
erogenous processing elements has been studied in the context of
hardware/software co-design [14]. Technically, this partitioning
and scheduling problem for co-design is quite similar to our mul-
tiprocessor scheduling problem. Niemann and Marwedel [15] pro-
pose an ILP-based solution for the co-design problem. Recently,
various research groups have proposed pipelined scheduling solu-
tions for this problem as well, especially in the context of streaming
applications. Chatha and Vemuri [6] propose a branch-and-bound
solution whereas Kuang et al. [11] propose an ILP-based solution.
However, the objective of both these works is to minimize the total
component cost and hence the number of pipeline stages.

Scratchpad memory allocation techniques in uniprocessor set-
ting have been studied extensively in the past. Panda et al. have de-
veloped a comprehensive allocation strategy for scratchpad mem-
ory [19, 18] to improve the program performance. Avissar et al. [3]
propose a 0-1 ILP solution to optimally allocate global and stack
variables. Their more recent work extends this approach to heap
memory [7]. Sjodin et al. [20] also propose a 0-1 ILP solution for

403

scratchpad allocation. Their goal is to reduce the code size through
allocation. Similarly, Steinke et al. [21] formulate an ILP-based
allocation strategy to reduce the overall energy consumption. An-
giolini et al. [1] propose an alternative approach where the SPM is
optimally partitioned into multiple banks in order to improve en-
ergy efficiency through a dynamic programming solution.

An excellent reference to memory system design in the context
of chip multiprocessors is [9]. [13] proposes an optimal memory
allocation technique based on ILP for application-specific SoCs.
The closest to our work is the flexible SPM design for MPSoCs in-
vestigated in [10, 16, 17]. However, they focus on data parallelism
as opposed to task parallelism in the context of homogeneous mul-
tiprocessors. Therefore, they do not need to explore the impact of
scheduling on the SPM design.

5. INTEGER LINEAR PROGRAMMING
(ILP) FORMULATION

In this section we present the integer linear programming (ILP)
formulation for an integrated task mapping/scheduling, scratchpad
memory (SPM) partitioning, and data allocation. We assume that
the application is specified as a task graph. We first formulate
the problem of scheduling the tasks on multiple processors with-
out considering the presence of SPM. This formulation is then ex-
tended to handle the pipelined scheduling. Finally, we formulate
the problem of SPM partitioning and data allocation and integrate
it with the formulation for task scheduling.

T1:sobel
(799,899K)

T2:laplacian
(799,896K)

T3:histogram
(102,806K)

T4:sum
(146,639K)

T5:equalizeSum
(259,260K)

T6:productSum
(188,694K)

1000

1000

1000

1000 1000

1000

Figure 5: An example task graph. The numbers in brackets in-
dicate the execution time of the tasks (in cycles). We assume ho-
mogeneous processors for this example. The edges are labeled
with the communication costs (in cycles) between the tasks.

Throughout our discussion on task mapping and scheduling, we
will use the task graph shown in Figure 5 for illustration purposes.
For simplicity of illustration, we assume an MPSoC architecture
consisting of four homogeneous processors so that the execution
times of a task on all the processors are identical. However, we note
that our formulation handles heterogeneous processors as well.

5.1 Task Mapping/Scheduling
We present here an ILP formulation to optimize performance

through integrated task mapping and scheduling. We present ex-
tensions for pipelined scheduling and SPM partitioning in the next
subsections.

Setting. The task graph for an application has N tasks denoted
as T1, . . . , TN . Without loss of generality, let TN be the last task
(the task without successors) in the task graph. If there are multiple
last tasks in the task graph, then we add a dummy last task as the

successor of all the original last tasks. We have M available pro-
cessors (homogeneous or heterogenous) denoted as P1, . . . , PM .
Associated with each task is its execution time on each of the avail-
able processors — timei,j denotes the execution time of task Ti

on processor Pj , assuming that all the data variables are available
in off-chip memory (no SPM data allocation is considered at this
point).

Let the binary decision variable Xi,j = 1 if task Ti is mapped
to processor Pj and 0 otherwise. A task can be mapped to exactly
one processor.

MX

j=1

Xi,j = 1 (1)

The execution time of task Ti is given by

T imei =

MX

j=1

Xi,j × timei,j (2)

Let StartTaski and EndTaski denote the starting time and the
completion time, respectively, of task Ti. Then

EndTaski = StartTaski + T imei − 1 (3)

Objective Function. The objective is to minimize the critical
path through the task graph. That is, the objective is to minimize
the completion time EndTaskN of the last task TN .

Task Dependencies. Let preds(Ti) denote the set of predeces-
sors of task Ti in the task graph. Ti can only start execution after all
the tasks Th ∈ preds(Ti) have completed execution. Further, if Ti

and Th are mapped to two different processors, then Ti has to wait
for the completion of any data transfer from Th to itself, incurring
a communication cost commh,i.

We model inter-task communications as special tasks running
on a shared bus. Let Ch,i be the communication task between Th

and Ti, and let StartCommh,i and EndCommh,i be the starting
time and the completion time of Ch,i. Then we have the following
constraints.

StartCommh,i ≥ EndTaskh + 1 (4)

StartTaski ≥ EndCommh,i + 1 (5)

Note that task dependencies are indirectly enforced via the commu-
nications between the tasks. To reflect the fact that the communi-
cation cost between Th and Ti is incurred only when Ti and Th are
mapped to different processors, we have the following constraint.

EndCommh,i = StartCommh,i + Lh,i × commh,i − 1 (6)

where Lh,i = 1 if and only if Th and Ti are mapped to differ-
ent processors. The linearization of this definition is given in the
Appendix.

Resource Constraint. The previous constraints effectively pre-
vent two dependent tasks from competing for processor time. We
should also ensure that any two independent tasks mapped to the
same processor have disjoint lifetimes. Mirroring our treatment of
dependent tasks, for every pair of independent tasks Ti and Ti′ , let
the binary variable Li,i′ = 1 if and only if Ti and Ti′ are mapped
to different processors. If Li,i′ = 0, either task Ti executes before
Ti′ or vice versa. Let binary variable Bi′,i = 0 if Ti and Ti′ are
mapped to the same processor and Ti′ executes after Ti. Similarly
let Bi,i′ = 0 if Ti and Ti′ are mapped to the same processor and

404

Ti executes after Ti′ . Then we ensure disjoint lifetime for the two
tasks through the following constraints.

Bi,i′ + Bi′,i − Li,i′ = 1 (7)

StartTaski ≥ EndTaski′ −∞× Bi,i′ + 1 (8)

StartTaski′ ≥ EndTaski −∞× Bi′,i + 1 (9)

As all the communications take place on a shared bus, we should
also ensure that the communications do not overlap with each other.
Analogous to constraints (7) through (9), for all pairs of distinct
communication tasks Ch,i and Cf,g, we have the following con-
straints.

Vh,i,f,g + Vf,g,h,i = 1 (10)

StartCommh,i ≥ EndCommf,g −∞× Vh,i,f,g + 1 (11)

StartCommf,g ≥ EndCommh,i −∞× Vf,g,h,i + 1 (12)

Here binary variable Vh,i,f,g = 1 if Cf,g happens after Ch,i and 0
otherwise. Similarly, binary variable Vf,g,h,i = 1 if Ch,i happens
after Cf,g and 0 otherwise.

C1,6 C4,6

P1

P2

bus

1,059,157K 1,247,851K

T4T3

T6T5

T1

T2

0

C3,5

799,897K

C2,4

912,517K102,806K 1,059,156K

Figure 6: An optimal non-pipelined schedule for the task graph
in Figure 5 on four processors. Processors P3 and P4 are not
assigned any task.

EXAMPLE 1. Figure 6 shows an optimal schedule for the task
graph shown in Figure 5 on four processors obtained using the ILP
formulation. Note that only two out of four available processors are
utilized. This is because utilizing more processors will increase the
length of the critical path through additional communication costs.
We assume that the computation and communication can proceed
in parallel (e.g., execution of task T1 on processor P2 in parallel
with communication C3,5 from processor P2 to P1). Also note that
the tasks on processor P1 determine the critical path; therefore,
tasks on processor P2 are scheduled with slacks.

5.2 Pipelined Scheduling
In this section, we extend the task scheduling formulation in

the previous subsection to take into account pipelined scheduling.
In a synchronous pipelined execution, tasks are distributed across
pipeline stages of uniform length. The length of the pipeline stages,
called Initiation Interval (II), is determined by the maximum time
needed to complete all the tasks in any of the stages. Thus the
objective of pipelined scheduling is to distribute tasks into stages
so as to minimize the II , while respecting task dependencies and
resource constraints.

EXAMPLE 2. Figure 7 shows an optimal pipelined schedule for
the task graph in Figure 5 on four processors. Comparing this

P1

P2

bus

P3

P4

0 799,899K 1,599,799K

T4T3 T6

T5

T1

T2

Stage1 Stage2

(a)

C3,5C2,4
C1,6C5,6C2,5

P1

P2

bus

P3

P4 T4 ’T3’ T6 ’

T5’

T1

T2
(b)

C’3,5 C’1,6C’5,6C’2,4

C2,5

T4T3 T6

T5

C3,5C2,4
C1,6C5,6

T1’’

T2 ’’

C’’2,5

II = 799,899K II = 799,899K

Figure 7: An optimal pipelined schedule for the task graph
in Figure 5 with (a) single-instance execution view, and
(b) steady-state execution view. Non-primed labels indicate
tasks/communications from the current instance, primed la-
bels indicate tasks/communications from the previous instance,
while double-primed labels indicate tasks/communications
from the next instance.

pipelined schedule with the non-pipelined schedule in Figure 6,
we can notice the difference in the objective function. The time
taken to execute a single instance of the task graph increases from
1,248M cycles for non-pipelined execution to 1,600M cycles for
pipelined execution (Figure 7(a)). However, in the steady state
the pipelined execution can process a task graph every 800M cy-
cles (Figure 7(b)), which is the II for this schedule. That is, the
throughput increases significantly compared to the non-pipelined
execution.

An important constraint that becomes apparent here is that any
processor can be exploited in exactly one pipeline stage, because
all the stages will execute in parallel (on different task instances)
in the steady state. On the other hand, a stage can exploit more
than one processor. This also implies that the maximum number of
pipeline stages we can have is equal to the number of processors,
M . Based on this observation, we extend our previous formulation
to solve the problem of pipelined scheduling. Our strategy is to
perform task mapping and scheduling onto processors as before,
and then assign processors to the pipeline stages. Communication
tasks, which are scheduled on a shared bus, will be mapped directly
to pipeline stages as we will elaborate later.

Let the binary variable Wj,s = 1 if processor Pj is assigned to
sth pipeline stage (denoted Stages). Each processor is mapped to
exactly one pipeline stage.

MX

s=1

Wj,s = 1 (13)

Note that in the summation term we have implicitly defined the
number of pipeline stages to be M , the maximum allowed number.
This is necessary to keep the formulation linear. The solution may
contain stages which have no processor assigned to them (that is,

405

one of the other stages may have more than one processor assigned
to it); these are ‘invalid’ stages which will be disregarded.

Objective Function. The objective function is to minimize the
Initiation Interval II , which is determined by the longest time needed
to complete all the tasks in any of the stages. Let StartStages and
EndStages denote the starting and completion time, respectively,
of Stages. Then

II ≥ EndStages − StartStages + 1 ∀s : 1 . . . M (14)

Overlap among Pipeline Stages. A pipeline stage must not
overlap with another stage. Analogous to constraints (7) through
(9), for all pairs of stages Stages and Staget, we have the follow-
ing constraints.

B′
s,t + B′

t,s = 1 (15)

StartStages ≥ EndStaget −∞× B′
s,t + 1 (16)

StartStaget ≥ EndStages −∞× B′
t,s + 1 (17)

Here B′
s,t = 1 if Staget executes after Stages and 0 otherwise.

Similarly B′
t,s = 1 if Stages executes after Staget and 0 other-

wise.

Length of Pipeline Stages. Now we express the constraints
on the length of each pipeline stage. The length of Stages has to
encompass the entire execution period of the processor(s) assigned
to it. For all pipeline stages s : 1 . . . M and all processors j :
1 . . . M we require:

StartStages ≤ StartProcj + ∞× (1 − Wj,s) (18)

EndStages ≥ EndProcj −∞× (1 − Wj,s) (19)

where StartProcj and EndProcj denote the starting and com-
pletion time of processor Pj’s execution, which in turn are deter-
mined by the earliest start time and the latest end time over all the
tasks mapped to processor Pj . For example, the execution time of
processor P4 in Figure 7(a) spans from the start of task T3 until the
completion of task T6. Recall that in the scheduling constraint the
decision variable Xi,j has value 1 if Ti is scheduled on Pj and 0
otherwise. For all processors j : 1 . . . M and all tasks i : 1 . . . N :

StartProcj ≤ StartTaski + ∞× (1 − Xi,j) (20)

EndProcj ≥ EndTaski −∞× (1 − Xi,j) (21)

Overlap among Communication Tasks. Communication
tasks must also be accounted for in the pipeline stages. Unlike
normal tasks, all the communications take place on a shared bus,
which will be utilized in all the stages. As illustrated in Figure 7(b),
communications from different pipeline stages (i.e., from different
instances of the task graph) execute simultaneously within an II .
Constraints (10) through (12) only ensure that the communication
tasks within a single stage (i.e., from the same instance of the task
graph) do not overlap with each other. However, we now need to
ensure that the communication tasks do not overlap across stages.

This is accomplished by first normalizing the execution intervals
of the communication tasks. The normalized interval of a commu-
nication task is its start/completion time relative to the start time of
the pipeline stage that it is mapped onto. For example, the interval
of communication task C2,4 in Figure 7(a) is [799, 899K, 799, 900K],

while its normalized interval is [0, 1000], i.e., relative to the start of
Stage2.

Let us define a binary variable Fh,i,s = 1 if Ch,i is mapped to
stage Stages and 0 otherwise.

MX

s=1

Fh,i,s = 1 (22)

Each communication task is then included in the interval of the
stage it is mapped to.

StartStages ≤ StartCommh,i + ∞× (1 − Fh,i,s) (23)

EndStages ≥ EndCommh,i −∞× (1 − Fh,i,s) (24)

Finally, we require mutual exclusion for all pairs of distinct com-
munication tasks Ch,i and Cf,g:

(StartCommh,i − StartStages)

≥ (EndCommf,g − StartStaget) −∞× V ′
h,i,s,f,g,t + 1

(25)

(StartCommf,g − StartStaget)

≥ (EndCommh,i − StartStages) −∞× V ′
f,g,t,h,i,s + 1

(26)

where V ′
h,i,s,f,g,t = 0 (V ′

f,g,t,h,i,s = 0) if and only if Ch,i is
scheduled in Stages, Cf,g is scheduled in Staget, and the nor-
malized interval of Ch,i is scheduled after (before) the normalized
interval of Cf,g. The linearization of this definition is given in the
Appendix.

5.3 SPM Partitioning and Data Allocation
We now present the ILP formulation for the SPM partitioning

and data allocation problem. Let the total number of variables
for all the tasks be R. Some variables may be shared by several
tasks. Associated with each variable v is its size in bytes, denoted
areav , and the number of times it is accessed in each task, obtained
through profiling. Note that this value can be different depending
on which processor the task gets mapped to (due to difference in
ISA as well as compiler). Let freqv,i,j specify the number of ac-
cesses of variable v by task Ti when executing on processor Pj .
Each one of these accesses incurs different latencies depending on
the location of v:

• 0, if v is located in the private SPM of Pj , or

• a constant latency of cross penalty, if v is located in SPM
of another processor (remote SPM), or

• a constant latency of penalty, if v is located in the off-chip
memory

where cross penalty will generally be less than penalty.
Let the binary decision variable Sv,j = 1 if variable v is allo-

cated in the SPM of processor Pj and 0 otherwise. In our architec-
tural model, a variable can be mapped to at most one processor’s
SPM.

MX

j=1

Sv,j ≤ 1 (27)

We have a constraint on the total available SPM area. Let total area
be the total available SPM area given as input to this problem.

RX

v=1

MX

j=1

Sv,j × areav ≤ total area (28)

406

Objective Function. The objective of task scheduling with SPM
configuration and data allocation is also to minimize the overall
completion time EndTaskN where TN is the last task, or in the
pipelined setting, the initiation interval II , where II is specified as
in constraint (14).

Task Execution Time. The only effect of data allocation to on-
chip memory is that the execution time of each task is potentially
reduced. Previously, each task takes constant execution time —
timei,j denotes the execution time of task Ti on processor Pj as-
suming all the variables are in off-chip memory. Then, the execu-
tion time of a task was given by Equation (2). Now we replace this
equation with

T imei =

MX

j=1

(Xi,j × timei,j −
RX

v=1

freqv,i,j × gainv,i,j) (29)

gainv,i,j = Yv,i,j × penalty

+ Zv,i,j × (penalty − cross penalty) (30)

where Yv,i,j = 1 if and only if task Ti and variable v have both
been mapped to processor Pj ; and Zv,i,j = 1 if and only if Ti has
been mapped to processor Pj and variable v has been mapped to
the SPM of a processor other than Pj . In other words,

Yv,i,j = 1 ⇔ ((Xi,j = 1) AND (Sv,j = 1))

Zv,i,j = 1 ⇔ ((Xi,j = 1) AND (∃k 	= j Sv,k = 1))

The above two constraints can be linearized as shown in the Ap-
pendix.

6. EXPERIMENTAL EVALUATION
The ILP formulation for integrated pipelined task scheduling,

SPM partitioning and data allocation generates the optimal solu-
tion. The goal of our ILP formulation is to explore the interaction
among the different stages of the design space exploration process.
This helps us to identify the performance limit of MPSoC architec-
tures for embedded applications.

As explained in Section 3, we attempt three different techniques
for optimal data allocation to scratchpad memory in increasing or-
der of flexibility and complexity.

EQ: Task scheduling ignores the effect of data allocation to SPM
and the on-chip SPM budget is equally partitioned among
the different processors. This is simply a Knapsack problem,
for which optimal solutions (e.g., dynamic programming) are
known.

PF: Task scheduling ignores the effect of data allocation to SPM.
However, SPM partitioning and data allocation are performed
simultaneously through a simplified ILP formulation derived
from Section 5. As task scheduling is performed a-priori, the
assignments to the ILP variables X , B, V , W , F , and V ′ are
known. In other words, the design space is more restricted.

CF: Task scheduling, SPM partitioning and data allocation are
performed simultaneously through the ILP formulation de-
scribed in Section 5.

6.1 Experimental Setup
We use five applications in our experiments, four of which are

taken from embedded benchmark suites MiBench and Mediabench.
cjpeg, mpeg2enc and osdemo from Mediabench perform JPEG

Benchmark # Tasks # Vars Total var size Avg var size
(bytes) (bytes)

enhance 6 45 7,355,920 163,464
lame 4 124 301,672 2,432

mpeg2enc 6 30 12,744 424
osdemo 6 45 80,000 1,777
cjpeg 4 20 702,296 35,114

Table 1: Characteristics of the benchmarks.

encoding, MPEG-2 encoding and 3D graphics rendering (part of
Mesa 3D graphics library), respectively. lame is an MP3 encoder
from the MiBench consumer suite. enhance, the fifth benchmark,
is a slightly modified version of the image enhancement application
from [22]. We profile the applications to identify the key compu-
tation blocks. Each application is then divided into a number of
tasks where each task corresponds to a computation block. The
control/data flow information are used to identify the dependencies
among the tasks and estimate the communication costs. This pro-
cess generates the task graph for each application.

We use the SimpleScalar cycle-accurate architectural simulation
platform [2] for our experiments. We use an instrumented version
of the SimpleScalar profiler to extract the variable sizes and access
frequencies as well as the execution time (in processor cycles) of
each task individually. As mentioned earlier, the profiler assumes
that off-chip access latencies are constant, and does not account for
bus conflicts. We consider both scalar and array variables for allo-
cation to scratchpad memories. All the shared variables (i.e., vari-
ables that are written by one task and read by another) contribute
towards the communication cost in the task graph. These shared
variables are not considered for allocation into the scratchpad mem-
ories. Table 1 shows the characteristics of the benchmarks. The
profile is shown only for the non-shared (i.e., non-communicating)
variables. In this work, we choose data variables for allocation, but
our strategy can be applied to blocks of program code as well.

We use a 2-processor configuration for the experiments. Total
on-chip scratchpad memory budget varies from 256 bytes to 4MB
for different benchmarks. We use smaller SPM budgets for appli-
cations with smaller total memory requirement (e.g., mpeg2enc)
and larger SPM budget for applications with large average variable
size (e.g., enhance with 163KB). We assume 100-cycle latency
for off-chip memory access and 4-cycle latency for accessing a re-
mote SPM. For the ILP-based techniques, our method constructs
the ILP formulation for (separate or integrated) task scheduling and
data allocation as described in Section 5 and inputs this to CPLEX,
a commercial ILP solver. Upon solving the ILP problem, CPLEX
returns the objective value as well as the valuation of the decision
variables that leads to the objective. The experiments are conducted
on a 3.0 GHz Pentium 4 CPU with 2GB of memory.

6.2 Results
Figure 8 shows the initiation interval (II) obtained by applying

EQ, PF, and CF techniques on the five benchmarks with varying
SPM sizes. First let us compare EQ with PF. The main advantage
of PF is that it allows flexible partitioning of SPM space among
the processors. This flexibility can potentially improve the perfor-
mance dramatically over EQ. For example, PF results in up to 35%
performance improvement for mpeg2enc, 53% improvement for
osdemo, and 60% improvement for cjpeg over EQ. lame en-
joys a modest improvement of up to 7.5% due to the flexible SPM
allocation. The only exception is enhance, which achieves very
little improvement due to PF strategy. This is because enhance

407

1.38E+09

1.42E+09

1.46E+09

1.50E+09

1.54E+09

1.58E+09

1.62E+09

1.66E+09

128K 256K 512K 1M 2M 4M

SPM size (bytes)

In
it

ia
ti

o
n

 In
te

rv
al

 II
 (

cy
cl

es
)

EQ
PF
CF

(a) enhance

0.00E+00

1.50E+06

3.00E+06

4.50E+06

6.00E+06

7.50E+06

9.00E+06

4K 8K 16K 32K 64K 128K

SPM size (bytes)

In
it

ia
ti

o
n

 In
te

rv
al

 II
 (

cy
cl

es
)

EQ
PF
CF

(b) lame

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1.10E+08

1.20E+08

256 512 1K 2K 4K 8K

SPM size (bytes)

In
it

ia
ti

o
n

 In
te

rv
al

 II
 (

cy
cl

es
)

EQ
PF
CF

(c) mpeg2enc

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

4.50E+07

5.00E+07

1K 2K 4K 8K 16K 32K

SPM size (bytes)

In
it

ia
ti

o
n

 In
te

rv
al

 II
 (

cy
cl

es
)

EQ
PF
CF

(d) osdemo

1.00E+06

2.20E+06

3.40E+06

4.60E+06

5.80E+06

7.00E+06

8.20E+06

9.40E+06

1.06E+07

8K 16K 32K 64K 128K 256K

SPM size (bytes)

In
it

ia
ti

o
n

 In
te

rv
al

 II
 (

cy
cl

es
)

EQ
PF
CF

(e) cjpeg

Figure 8: Initiation Interval (II) for the different benchmarks with EQ, PF, and CF strategies and varying on-chip SPM budgets.
This setup corresponds to a 2-processor configuration.

408

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4K 8K 16K 32K 64K 128K

SPM size (bytes)

Im
p

ro
ve

m
en

t
o

ve
r

E
Q

 (
%

)

PF
CF

Figure 9: Improvement in Initiation Interval II due to PF and
CF over EQ for benchmark lame.

has large variables that are harder to allocate. This is also clear from
the fact that the II hardly improves with increasing SPM sizes.

It is important to note that flexibility is most important when re-
sources are not too limited or too generous. With a restricted SPM
budget, there is not much room for improvement irrespective of
the SPM partitioning strategy. Similarly, when the SPM budget is
bigger than the one necessary to accommodate all the frequently
accessed variables, the strategy employed for SPM partitioning be-
comes immaterial. With a larger SPM budget, PF allocates more
variables than EQ; but these variables are accessed less frequently.
PF strategy shows maximum improvement when the on-chip SPM
budget is neither too big nor too small. In those cases, only the
most important variables should be accommodated and the flexi-
bility guarantees that the most important variables can indeed be
allocated.

We now compare PF with CF. The results indicate that the im-
provements depends heavily on the characteristics of the applica-
tions. For example, lame achieves as high as 80% improvement
over PF by considering data allocation during scheduling. This is
highlighted in Figure 9 that shows the performance improvement of
PF and CF over EQ. Similarly, cjpeg enjoys up to 25% additional
performance improvement. osdemo shows 2–5% improvement.
enhance and mpeg2enc, on the other hand, show hardly any
improvement. As explained before, enhance has larger variables
that are difficult to allocate. mpeg2enc is a compute-intensive
application with significant amount of communication among the
tasks. As shown in Table 1, efficient use of SPM space is not im-
portant because non-shared variable accesses do not contribute sig-
nificantly towards the execution time.

Finally, Table 2 shows the runtime for our scheduling and allo-
cation techniques. Schedule denotes the task scheduling time ir-
respective of SPM consideration. This is required as input to EQ
and PF. The data allocation time for EQ as well as SPM partition-
ing and data allocation time for PF assuming a given task schedule
generated a-priori are shown in the next two columns. Finally the
column CF gives the runtime for integrated task scheduling, SPM
partitioning and data allocation. We show both the best-case run-
time and worst-case runtime for each benchmark. We observe that
the worst-case occurs when the SPM budget is neither too big nor
too small. This is expected as these cases are the most difficult
ones to schedule. Note that for enhance with 4MB SPM bud-
get and lame with 16KB, 128KB SPM budget, the ILP solver did
not terminate within 20 minutes (shown as 20+ min in the table).
For these cases, we use the intermediate solution returned by the

ILP solver. Interestingly, even the intermediate solutions obtained
for CF strategy outperforms the optimal result obtained using PF
strategy (Figure 8). This clearly indicates that it is important to
consider memory optimization during task scheduling.

7. CONCLUSION
In this paper, we explore optimization of scratchpad memory

(SPM) in the context of embedded chip multiprocessors. We pro-
pose an ILP formulation to capture the interaction between task
scheduling and memory optimization. We show that (1) flexible
partitioning of the SPM budget among the processors can achieve
up to 60% performance improvement compared to equal partition-
ing and (2) integrating memory optimization with task scheduling
can improve performance by up to 80%. In the future, we plan to
use the optimal performance limits as guidelines to design effective
heuristics.

8. ACKNOWLEDGMENTS
This work was partially supported by National University of Sin-

gapore research grant R252-000-171-112.

9. REFERENCES
[1] F. Angiolini, L. Benini, and A. Caprara. Polymonial-time

algorithm for on-chip scratchpad memory partitioning. In
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2003.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE
Computer, 35(2), 2002.

[3] O. Avissar, R. Barua, and D. Stewart. An optimal memory
allocation scheme for scratch-pad-based embedded systems.
ACM Transactions on Embedded Computing Systems, 1(1),
2002.

[4] R. Banakar et al. Scratchpad memory: Design alternative for
cache on-chip memory in embedded systems. In
International Conference on Hardware-Software Codesign
(CODES), 2002.

[5] L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation
and scheduling for mpsocs via decomposition and no-good
generation. In International Joint Conferences on Artificial
Intelligence (IJCAI), 2005.

[6] K. S. Chatha and R. Vemuri. Hardware-software partitioning
and pipelined scheduling of transformative applications.
IEEE Transactions on VLSI, 10(3), 2002.

[7] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data
allocation to scratch-pad memory in embedded systems.
Journal of Embedded Computing, 2005.

[8] H. P. Hofstee. Power efficient processor architecture and the
Cell processor. In International Symposium on
High-Performance Computer Architecture (HPCA), 2005.

[9] M. Kandemir and N. Dutt. Memory systems and compiler
support for mpsoc architectures. In A. Jerraya and W. Wolf,
editors, Multiprocessor Systems-on-Chips. Morgan
Kaufmann, 2005.

[10] M. Kandemir, J. Ramanujam, and A. Choudhury. Exploiting
shared scratch pad memory space in embedded
multiprocessor systems. In Design Automation Conference
(DAC), 2002.

[11] S-R. Kuang, C-Y. Chen, and R-Z. Liao. Partitioning and
pipelined scheduling of embedded system using integer

409

Benchmark Best runtime (sec) Worst runtime (sec)
Schedule EQ PF CF Schedule EQ PF CF

enhance 12.9 0.01 0.01 23.60 13.07 0.32 0.06 20+ mins
lame 0.20 0.03 0.04 15.26 0.22 0.81 0.52 20+ mins

mpeg2enc 1.56 0.01 0.01 3.75 6.69 0.02 0.07 69.98
osdemo 2.81 0.02 0.01 105.16 2.86 0.04 0.06 1467.33
cjpeg 0.33 0.01 0.01 0.55 0.37 0.04 0.05 3.6

Table 2: Best-case and worst-case runtime for the different benchmarks

linear programming. In International Conference on Parallel
and Distributed Systems (ICPADS), 2005.

[12] Y-K. Kwok and I. Ahmad. Benchmarking and comparison of
the task graph scheduling algorithms. Journal of Parallel and
Distributed Computing, 59(3), 1999.

[13] S. Meftali, F. Gharsalli, F. Rousseau, and A. A. Jerraya. An
optimal memory allocation for application-specific
multiprocessor system-on-chip. In International Symposium
on Systems Synthesis (ISSS), 2001.

[14] G. De Micheli, R. Ernst, and W. Wolf. Readings in
Hardware/Software Co-Design. Morgan Kaufmann, 2002.

[15] R. Niemann and P. Marwedel. Hardware/software
partitioning using integer programming. In Design,
Automation and Test in Europe (DATE), 1996.

[16] O. Ozturk et al. Customized on-chip memories for embedded
chip multiprocessors. In Asia and South Pacific Design
Automation Conference (ASP-DAC), 2005.

[17] O. Ozturk et al. An integer linear programming based
approach to simultaneous memory space partitioning and
data allocation for chip multiprocessors. In IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2006.

[18] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory Issues in
Embedded Systems-On-Chip: Optimizations and
Exploration. Kluwer Academic Publishers, 1999.

[19] P. R. Panda, N. D. Dutt, and A. Nicolau. On chip vs. off chip
memory: the data partitioning problem in embedded
processor-based systems. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 5(3), 2000.

[20] J. Sjodin and C. von Platen. Storage allocation for embedded
processors. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES),
2001.

[21] S. Steinke, L. Wehmeyer, B-S. Lee, and P. Marwedel.
Assigning program and data objects to scratchpad for energy
reduction. In Design, Automation and Test in Europe
(DATE), 2002.

[22] F. Sun, N. K. Jha, S. Ravi, and A. Raghunathan. Synthesis of
application-specific heterogeneous multiprocessor
architectures using extensible processors. In International
Conference on VLSI Design, 2005.

[23] M. Y. Wu and D. D. Gajski. Hypertool: A programming aid
for message-passing systems. IEEE Transactions on Parallel
and Distributed Systems, 1(3), 1990.

Appendix: Linearization of constraints
In this section, we present the linearization of some of the con-
straints in our ILP formulation.

1. Lh,i = 1 iff Th and Ti are mapped to different processors

Recall that Xi,j = 1 if task Ti is mapped to processor Pj and
0 otherwise.

∀j : 1 . . . M Lh,i ≤ 2 − Xh,j − Xi,j

∀j : 1 . . . M ∀k : 1 . . . M, k 	= j Lh,i ≥ Xh,j +Xi,k −1

2. V′
h,i,s,f ,g,t = 1 (V′

f ,g,t,h,i,s = 1) iff Fh,i,s = 1 and
Ff ,g,t = 1 and the normalized interval of Cg,h is sched-
uled after (before) the normalized interval of Ch,i

V ′
h,i,s,f,g,t + V ′

f,g,t,h,i,s + Fh,i,s ≥ 2

V ′
h,i,s,f,g,t + V ′

f,g,t,h,i,s + Ff,g,t ≥ 2

V ′
h,i,s,f,g,t + V ′

f,g,t,h,i,s + Fh,i,s + Ff,g,t ≤ 3

3. Yv,i,j = 1 ⇔ ((Xi,j = 1) AND (Sv,j = 1))

Yv,i,j ≤ Xi,j ; Yv,i,j ≤ Sv,j ; Yv,i,j ≥ Xi,j + Sv,j − 1

4. Zv,i,j = 1 ⇔ ((Xi,j = 1) AND (∃k 	= j Sv,k = 1))

In this case, we need to introduce an additional binary variable
Uv,j = 1 iff ∃k 	= j Sv,k = 1. We first linearize the
definition of Uv,j .

MX

k=1,k �=j

Sv,k −∞× Uv,j ≤ 0;

MX

k=1,k �=j

Sv,k − Uv,j ≥ 0

Then we linearize the original constraint in terms of Uv,j .

Zv,i,j ≤ Xi,j ; Zv,i,j ≤ Uv,j ; Zv,i,j ≥ Xi,j + Uv,j − 1

410

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

