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ABSTRACT

Technology scaling trends have forced designers to consider
alternatives to deeply pipelining aggressive cores with large
amounts of performance accelerating hardware. One alter-
native is a small, simple core that can be augmented with
latency tolerant helpers. As the demands placed on the pro-
cessor core varies between applications, and even between
phases of an application, the benefit seen from any set of
helpers will vary tremendously. If there is a single core,
these auxiliary structures can be turned on and off dynami-
cally to tune the energy/performance of the machine to the
needs of the running application.

As more of the processor is broken down into helpers, and
additional cores are added to a single chip that can poten-
tially share helpers, the decisions that are made about these
structures become increasingly important. In this paper we
describe the need for methods that effectively manage these
helpers. Our counter-based approach can dynamically turn
off three helpers on average while staying within 2% of the
performance when running with all helpers. In a multicore
environment, our intelligent and flexible sharing of helper
provides an average 24% speedup compared to static shar-
ing in conjoined cores. Furthermore we show a benefit from
constructively sharing helpers among multiple cores running
the same application.

Categories and Subject Descriptors:

C.1 [Processor Architectures]: Multiple Data Stream Archi-
tectures

C.3 [Special-Purpose and Application-based Systems]: Mi-
croprocessor/microcomputer applications

General Terms: Design, Performance.

Keywords: CMP, factored core, helper engine, phase, helper
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configuration, sharing policy, constructive sharing, flexible
sharing.

1. INTRODUCTION AND MOTIVATION

While the unceasing march of Moore’s law has given com-
puter architects a continually increasing number of transis-
tors to design with, emerging technology trends including
poor wire latency scaling, increased power density, and re-
duced transistor reliability threaten to limit the usefulness
of those designs. Chip Multi-processing based designs [5]
address some of these scaling constraints by statically par-
titioning processor resources on the die into different cores
that can exploit available parallelism in a more power-efficient
manner.

Researchers have also proposed decoupling the large memory-
laden structures that are crucial to single thread perfor-
mance from the critical processor loop and redesigning them
as specialized helpers [6, 7, 13, 1]. The essence of these
helpers is that they are latency tolerant. They can provide
an added performance advantage without impacting core
scalability.

In some ways, helpers are analogous to power grid ar-
chitectures that supply major urban areas with electricity.
While coal or nuclear power plants typically supply the ma-
jority of power needs, during periods of peak power demand,
auxiliary power plants (often powered by natural gas) are
used to meet temporary load requirements. In the context of
microarchitecture, we have a simple processor pipeline that
can be augmented by auxiliary helpers when the need for a
particular speculative technique is high. In our analogy to
the power grid, the presumed goal of utility companies is to
avoid power outages that can adversely impact normal elec-
trical consumption patterns. Similarly, as microarchitecture
desingers, we would like to optimize performance by finding
a way to determine when helpers are needed for our proces-
sor pipeline so that they can be efficintly managed. This is
achieved by taking advantage of the dynamic reconfigurabil-
ity or polymorphism of helpers and allowing a core to adapt
to changing applications, workloads, or phases. This is par-
ticularly critical in embedded devices designed for general
purpose use. Here, die area can be efficiently utilized by
sharing helper engines among multiple cores [10].

In order to resolve these optimization problems, several
questions must first be addressed - which resources should be



shared; how should they be allocated; how can we efficiently
manage their power? To answer these questions at runtime,
we need a set of shared helper management policies that
can adaptively allocate resources in a way that takes into
consideration the needs of each executing workload.

In this paper, we present novel rule-oriented shared-helper
management policies that are empirical based. We show
that through the application of metrics based on a few simple-
to-gather run-time statistics, processor resources can be al-
located to a set of running programs in a way that is nearly
optimal.

We begin by examining a single-threaded core with a va-
riety of helpers. Our metrics predict which resources will
be most valuable to an executing program so that inefficient
helpers may be put into a low power state without impact-
ing overall performance. By using a statistic as simple as
the number of cache hits, we can pick the best overall con-
figuration in a single try. Furthermore, we show how these
techniques can be extended to help guide the sharing of re-
sources between multiple cores on a chip. We observe how
different helpers have different sharing requirements and de-
mands that result in that prior work may not be able to
find the best sharing combination. We have implemented
a variety of different helpers and extended our simulator
to support multiple executing processes so that a detailed
treatment of the subject can be presented.

This paper makes the following contributions:

e Analysis of program behavior and resource require-
ments in an architecture with many major components
decoupled via helpers.

e Proposal of an intelligent mechanism to dynamically
tune helpers to the specific needs of the application
for optimal power/performance.

e Extension of this mechanism to intelligent sharing of
resources among multiple cores. Prior work has only
considered whether or not simple sharing is possible.
We demonstrate how different types of helpers may be
shared differently and how sharing must be flexible to
attain maximal performance.

e Investigation of constructive sharing when the same
application is allowed to share fetch state across dif-
ferent phases of execution and different input sets.

The rest of this paper is organized as follows. In Section 2,
prior work on helpers and CMP sharing is discussed. Sim-
ulation methodology can be found in Section 3. Section 4
begins with a description of the different helpers that we
implemented and an analysis of the varying requirements
for different applications for different helpers. We explore a
mechanism to enable or disable helpers, and further extend
this to managing shared helpers in a multicore environment
in Section 5. We conclude in Section 6.

2. RELATED WORK

In [17], Smith proposes a processor implementation that
consists of several distributed functional units, each fairly
simple and with a very high frequency clock. These units
communicate via point-to-point interconnections that have
short transmission delays. He then describes how surround-
ing this simple core pipeline with helpers that perform spec-
ulative tasks off the critical path results in enhanced overall
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performance. Since the helpers are off the critical path, they
can use slower transistors to reduce static power consump-
tion. This is also the motivation behind our factored design,
where the speculative structures are reduced to a bare min-
imum size to support nearby ILP but they are duplicated in
larger sizes outside of the critical path for extracting distant
ILP. On a follow-up paper [6], Kim and Smith discuss the
microarchitecture and ISA that implements this distributed
processing paradigm, which utilizes hierarchical register files
and a global register file to hold global state. Wang et al.
introduce virtual multithreading to run helper threads on
processors that do not have built-in hardware support for
multitreading [22]. In Section 4, we detail the prior work
for each individual helper when discussing the implementa-
tion of that helper.

Sharing some processor resources among cores in a CMP
setting was first proposed by Dolbeau and Seznec [4]. Ku-
mar et al. [10] also examine this idea and present a more
thorough evaluation of sharing. Dolbeau and Seznec [4] pro-
pose the CASH architecture as an intermediate design point
between CMP and SMT architectures. A typical CASH
architecture shares caches, branch predictors, and division
functional units between dynamically-scheduled cores. Ku-
mar et al. [10] also propose resource sharing between adja-
cent cores of a chip multiprocessor to reduce die area with
minimal impact on performance. They investigate the pos-
sible sharing of floating-point units, crossbar ports, instruc-
tion caches, and data caches and provide detailed analysis of
area savings that each kind of sharing entails. Both [4] and
[10] examine a round-robin based access model where a re-
source is allocated to a particular core every cycle. Kumar et
al. also investigate a more sophisticated scheme for caches.
After suffering a cache miss, a core relinquishes the control
of the cache to the other core until the miss is serviced.

Our work differs from these techniques in two dimensions:
1) In addition to reactive (or demand-based) resource shar-
ing such as when sharing caches, we also consider sharing
always active resources such as prefetchers and value pre-
dictors that run ahead of the execution stream and, 2) We
investigate an intelligent approach to assigning resources to
cores based on utilization.

3. METHODOLOGY

The simulator used in this study was derived from the
SimpleScalar/Alpha 3.0 tool set [3], a suite of functional
and timing simulation tools for the Alpha AXP ISA. The
timing simulator executes only user-level instructions. Sim-
ulation is execution-driven, including execution down any
speculative path until the detection of a fault, TLB miss,
or branch misprediction. Latency values for the caches and
register files were obtained using CACTI [16] for a 70nm
process technology at 4 GHz.

We used the SPEC2000 benchmark set for our experi-
ments. Although the results are gathered for all the bench-
marks, we only show results for a randomly selected subset
of 12 programs in the suite to conserve space in this paper.
Details for all benchmarks will be available as a technical
report. The programs were compiled on a DEC Alpha AXP-
21164 processor using the DEC C and C++ compilers under
OSF/1 V4.0 operating system with full compiler optimiza-
tion (-04 -ifo). We picked the 4 most dominant phases as
determined by the hardware phase detection technique de-
scribed in [15] and simulated these phases as representative



Core

Helpers

Instruction Window
and Physical RF

100 entry RFO

128 or 512 entry ROB
128 or 512 entry RF1

BBTB 256-entry 4-way set associative 1024-entry 4-way set associative

L1 Data 8KB 4-way set associative, dual port with 64KB 4-way set associative, single port with
Cache a 32 byte block size, 2 cycle latency a 32 byte block size, 5 cycle latency

L1 Instruction 4KB 4-way set associative, single port with | 64KB 4-way set associative, single port with
Cache a 32 byte block size, 2 cycle latency a 32 byte block size, 4 cycle latency

Value Predictor none 2K-entry stride, 8K-entry L2 markov
(2 predictions per cycle) 2 read and 2 write ports

Address Predictor none 2K-entry stride, 8K-entry markov

(1 predictions per cycle) 1 read and 2 write ports

Stream Buffer none 32-entry FA buffer

Branch Misprediction

15 cycles

Core Width 8-way issue, 8-way decode, 8-way commit
Memory and 152 cycle memory latency, 2MB, 8-way set associative unified (instruction and data)
L2 Cache cache with a 64 byte block size and 20 cycles latency

Functional Units

8 integer ALUs, 2 integer MULT/DIV, 2 FP ALU, 2 FP MULT/DIV, 2 load/store

Table 1:

Simulation parameters for a single core architecture.

These parameters remain the same for the

multicore case except for the L2 cache which becomes a 4MB, 4-way set-associative, 4-bank cache shared

among all cores.

samples of the program. On average, they accounted for ap-
proximately 70% of the execution time of each benchmark.

Table 1 presents the simulation parameters for the archi-
tecture we explore in this paper. We include an 8K entry
gshare branch predictor in our model. In addition to model-
ing all of the structures and latencies in the architecture, we
have extended SimpleScalar to include a cycle accurate, exe-
cution driven model of chip multiprocessing (CMP) [5]. All
the parameters used in our multicore experiments are the
same as in Table 1 for each core, except that we increase
the size of the L2 cache to an 4MB, 4-way set-associative
cache shared among all cores.

Per-thread performance metrics are measured for execu-
tion up to a maximum per-thread instruction count. All
completed threads continue execution past this point while
other threads execute. This prevents freeing of resources
when certain threads complete earlier than others.

We make use of weighted speedup [18] as a performance
measure. This metric ensures that high IPC threads are not
favored and that we are measuring real increases in the rate
of progress of all applications in the mix. Weighted speedup
equalizes the contribution of each thread to the sum of total
work completed in the interval by dividing the IPC of that
job in the mix by the IPC of a single threaded run.

4. TUNING A SINGLE CORE

As our goal is to develop techniques to make good choices
between a variety of different run-time processor configu-
rations, we need to begin with a processor model that has
been highly decoupled. We use the decoupled architecture
proposed by Kursun et al. in [12]. Figure 1 illustrates the
architecture we explore in this study, with many previously
proposed helpers decoupled from the core pipeline. In this
section we limit ourselves to single core designs, and then
in Section 5 we show how to extend the ideas developed
here to apply to cases where multiple cores may compete
for resources.

4.1 Helpers

Because there is no existing simulation infrastructure with
built-in decoupled helpers, we modified our CMP-extended
version of SimpleScalar [3] to include a variety of proposed
designs. The helpers we include, when combined together,
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decouple most of the major pieces of the modern processor.
This section includes a description of our target processor
core and the helpers that assist it.

We consider a small L0 cache in our core, as in [7]. Our
L1 data cache helper extends the cache hierarchy, providing
larger capacity than the LO at a faster latency than our L2.
While data caches are perhaps the most well studied part
of the processor, we will later show the benefits of control-
ling the data cache configuration in conjunction with other
helpers.

Similar to the data cache, we make use of a smaller LO
instruction cache and an L1 instruction cache helper. To
compensate for the smaller cache size, we use out-of-order
instruction fetch as described in [20]. In this scheme, a place-
holder is used in the instruction fetch queue (IFQ) to main-
tain program order - and the execution core stalls if the
next entry to be consumed from the IFQ is still in flight.
We model the complexity this brings to the IFQ by imple-
menting the equivalent of an MSHR (8] for the instruction
cache.

We model a stream buffer architecture guided by a stride-
filtered markov predictor as proposed in [14]. The stream
buffers of the prefetch helper are only accessed on L0 data
cache misses. We allow a single prediction and a single
prefetch per cycle, guided by the address predictor trained
on the L0 miss stream.

Value predictionis one approach to break true data depen-
dencies and create more instruction level parallelism in an
application. We use a hybrid value predictor [21] to predict
load instructions only. This structure can be accessed early
in the pipeline as we only need the PC of the instruction to
make the prediction. Our value predictor helper is limited
to two predictions per cycle. We make use of an extra bit
associated with each instruction in the instruction cache to
dynamically mark instructions for value prediction. In this
study, we only mark instructions that are loads.

Our architecture makes use of a basic block target buffer
(BBTB) [23], a branch address predictor that predicts an
entire basic block each cycle. The PC at the head of the
basic block serves as an index to the predictor, which re-
turns a target address, a fallthrough address, a branch type,
and two per-branch prediction counters: one to make per-
branch direction predictions, and one to arbitrate between
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Figure 1: The single core architecture explored in this study.

the per-branch prediction and the global branch direction
prediction.

Our architecture makes use of a small first level BBTB and
a second level BBTB helper, similar to [13]. Similarly we
decouple branch prediction from the instruction cache using
a fetch target queue (FTQ) [13]. On a first level BBTB miss,
the BBTB helper is probed and fetch stalls until a response
is received from the helper. If the helper also misses, we
guess a fixed fetch block size and continue fetching until a
misprediction is detected.

4.2 Helper Utilization

While there are many circuit level advantages to decou-
pling large structures from the processor core, it also makes
it very easy to tune the processor to the specific needs of
an application. Each of these helpers has a well defined
interface, and the processor can tolerate a wide range of ac-
cess latencies to any one of these helpers (further explored
in Section 5). Thus, adding supplemental control to each
of these devices that will allow them to maintain separate
power states does not introduce unreasonable cost or per-
formance degradation.

As might be expected, for any given program some helpers
will be more helpful than others. If the program is spend-
ing all of its time doing data accesses, it is more likely to
get benefit from the data cache and prefetcher than the in-
struction cache. In a naive design, one might leave all of the
helpers in an “on” state at all times. Clearly, this will be
wasteful if a program gets no benefit from a subset of the
helpers. In fact, we have found that up to half of the helpers
can be turned off at any given point in time, with almost no
performance impact (2%). The problem is knowing which
helpers to turn off.

Note that there is an overhead associated with power
gating, and the coarse-grain organization of these auxil-
iary structures into helpers provides a useful abstraction for
power gating these structures. Moreover, phase-based op-
timization helps to hide the latency associated with power
gating, since the granularity of our helper allocations is much
larger than the latency of power gating.

To further illustrate this, we plotted the set of critical
helpers that are needed to maintain top performance for
each program in Figure 2. Figure 2 shows the minimal set
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of helpers needed to achieve maximal performance for the
top four phases of 11 of the programs we have examined
(shown in the rows). The columns of the table represent
the helpers, (d=data cache, p=prefetching, b=branch pre-
diction, i=instruction cache, and v=value prediction). An X
in a given square indicates for that phase, the corresponding
helper should be turned “on”. Helpers without X’s can be
disabled without affecting performance. We refer to setting
the helpers “on” or “off” as the configuration of the helpers
in one of two power states.

All of the configurations in Figure 2 perform within 5% of
the configuration shown to have the absolute highest perfor-
mance (typically the configuration with all helpers active).
The last two columns present the speed up of this configura-
tion relative to best and worst configurations (all helpers on,
and all helpers off ). These configurations were found strictly
by a brute force search of the design space, simulating every
possible configuration and taking the configuration with the
least number of helpers “on” that was still within 5% of the
case with all helpers turned on.

Obviously, trying each of the 2" possible configurations is
not a viable design choice for a runtime system, but there
are several important points that can be drawn from this
graph. It is clear from Figure 2 that there is no one good
configuration that fits all applications. For many programs
different configurations are even needed for different phases.
This means a new, intelligent, and adaptive management
scheme is going to be needed.

4.3 Helper Configuration

Helper configuration could be tackled in a variety of dif-
ferent ways. While static approaches could use profile or
compiler guided heuristics to find one good configuration
for the application as a whole, this may prove ineffective
due to the time varying behavior of applications. A more
effective static approach may be to inject special reconfigu-
ration instructions that help tune the processor to specific
phases. While these techniques are possible, in this paper
we choose to focus on hardware based dynamic techniques
as they require no a priori knowledge of the program and
operate in a completely on-line manner.

To guide our decision about which configuration to choose,
we need some information on how a program interacts with



the processor. This information must be simple and cheap
to obtain, and should be highly indicative of the benefits
the program is reaping from access to each helper. In or-
der to gather this information, we use simple performance
counters that track the “help” that each helper provides.
For example, performance counters can track the number
of hits in cache helpers, successful predictions by predictor
helpers, and so forth. Specifically, our helpers are modified
to track the following events:

Data/Instruction Cache: the number of times a cache
line that missed in the L0 data/instruction cache hits
in the data/instruction cache helper.

BBTB: the number of times a PC that missed in the LO
BBTB hits in the BBTB helper.

Data Prefetcher: the total number of hits in the stream
buffers and in the L2 cache that were brought in by
the prefetcher. Each line in the L2 cache is augmented
with a bit to indicate whether it was brought in by a
demand miss or a prefetch. On the first use of a line
marked as a prefetch, the bit is flipped.

Value Prediction: the number of instructions issued using
a predicted value.

These counter values are compared to pre-determined thresh-

old values to decide whether the helper engine should be
turned on or off. We performed a sensitivity analysis to var-
ious threshold values for the SPEC 2000 benchmark suite
with reference inputs. We show results for a conservative set
of thresholds to curtail performance degradation. More ag-
gressive thresholds can be used when power reduction is the
primary objective. Furthermore, dynamic threshold values
can be calculated by adjusting the thresholds to maintain
certain “on” and “off” state performance counter standard
deviation values. However, this is beyond the scope of this
paper, and we leave this for future work.

We make use of phase-based memoization [15] to track
the helper configuration per application phase. A small
hardware structure tracks a bit vector per phase for all the
helpers in the architecture. If the bit at a particular loca-
tion is set, the helper represented by that particular location
should be on. Otherwise the helper can be turned off. The
first time a phase is seen, we turn all helpers on and track
the performance using the above counters. Each counter is
compared against the threshold for keeping the helper on,
and the bit vector for that particular phase is updated in
our phase-based memoization table. The helpers can then
be guided by a simple last phase predictor. The sampling
period need not be as long as a phase, and can be limited
to an interval of one million cycles.

We also memoize the observed IPC for each phase during
the sampling period, and if the IPC resulting from a par-
ticular configuration is not within some threshold IPC seen
during sampling (5% for this study), we clear the bit vector
for that phase and force another sampling of the above coun-
ters. This helps recover from phase mispredictions or events
that can impact performance (such as power throttling).

4.4 Performance of Counter-Guided
Configuration
Figure 3 compares the performance of the configuration
from Figure 2 (light grey) to our counter-guided configu-
ration. Performance here is normalized to an architecture
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running with all helpers on. On average, we are able to come
within 1.5% of that performance with an average of only 2.6
helpers turned on. The configuration from Figure 2 comes
within 2% of the performance of all helpers on, only using 2.2
helpers on average. In some cases, we use one more helper
than needed due to our choice of conservative thresholds.
More often than not this is the data cache helper, which
can provide load hits that are not performance critical. One
approach to fine tuning this further would be to incorporate
the notion of load criticality [19] or to try and correlate this
with the number of L2 misses — applications with a large
number of L2 misses may not see benefit from an increase
in L1 hits if the L2 misses that dominate the critical path
of the application are not reduced.

These results demonstrate the ability of performance coun-
ters to fine tune helper engine utilization. This can allow an
architecture to reduce power wasted in helpers that do not
provide useful work or as we will see in the next section,
to coordinate sharing among cores using a common pool of
helpers.

S. MANAGEMENT ACROSS CORES

As demonstrated in Section 4, resource demand varies sig-
nificantly across different applications and even across dif-
ferent phases of the same application. In the case of a single
core, this fact can be exploited to reduce power by finding a
configuration that still provides good performance but with
a bare minimum of helpers left in a high power state. Man-
aging helpers when multiple cores are involved presents a
tougher challenge. While the easiest approach to support-
ing multiple cores on a chip would be to give each one its own
set of helpers, previous work has shown that this instills un-
necessary area complexity without a significant performance
benefit [4, 10]. The alternative that we also explore in this
paper is the use of a common pool of helpers, shared among
all the cores. Sharing has a number of benefits such as re-
ducing the area spent to implement redundant functionality
and the potential of optimization through dynamic resource
allocation. In this section, we present techniques to effec-
tively manage helpers in a multicore environment.

5.1 Design Decisions

There are a large number of design decisions to be made
in examining helpers in a multicore setting: the number of
cores, the number of each type of helper, the topology of the
interconnect between cores and helpers, the physical layout
of cores and helpers, and the application mix to execute
on the cores. This is an enormous design space, and it is
simply not manageable to try all possible combinations. To
get a set of experiments which is tractable, we limit our
search in this paper by considering results for three possible
machine organizations: two cores sharing a single helper of
each type, four cores sharing a single helper of each type and
four cores sharing two helpers of each type. Additionally, we
consider applications that are not cooperative, but our work
could certainly be applied to cooperative multithreading.
We assume that all cores share a common second level cache,
and that any core may connect to any helper.

5.1.1 Helper Latency Tolerance

One question that immediately comes to mind when we
propose that any core may connect to any helper is that it
is going to take a good deal longer to communicate with a
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Figure 4: Impact of Latency on Our Helper Engines

helper on the other side of the chip than with one in close
physical proximity to the core. While this is true when
partitioning arbitrary processor resources, helpers have an
inherent advantage due to their higher latency tolerance.

To demonstrate that helpers are naturally latency toler-
ant, we present Figure 4 which plots the performance impact
of latency on our various helpers by varying the access la-
tency from 1-25 cycles. For these results, we consider a single
core with private helpers, and average the IPC observed over
benchmarks that use the helper from table 2. As seen from
the figure, for most helpers, there is little impact on per-
formance of these helpers from smaller latencies — the most
is seen by the branch target buffer (BBTB) helper, which
suffers an IPC degradation around 1% for each additional
cycle of latency. Prefetching sees the least impact, less than
a 0.01% drop in IPC for each additional cycle of latency.
The prefetcher hides the latency of memory, and even 25
cycles is tolerable when compared with this latency. The
remaining helpers see less than 0.5% degradation per cycle
for each additional cycle. As the latency increases above 10
cycles, its impact on the performance of the helper increases
non-linearly.

Our architecture is also not impacted by nonuniform ac-
cess latency from different cores to a common helper. The
arbiter that selects what requests from a core should be ser-
viced by a helper would be located close to the helper itself.
Therefore, if core A sees a two cycle latency to a helper and
core B sees a single cycle latency to a helper, and if core A
pipelines its requests over two cycles, then the helper will
simply see a stream of requests from A and B without any
notion of heterogeneous latency. A will see its predictions
a cycle later than B will see its predictions, but as we have
demonstrated, this has a negligible impact on performance.

Our multicore architecture and its floorplan are shown in
Figure 5. We use CACTI to estimate the size and dimen-
sions of the L2 cache and all of our helpers. The area of our
core was calculated using the area of EV6 and EV5 scaled
to a 70nm feature size, similar to [9)].

Our flexible sharing requires a link from each core to each
helper. This would double the number of interconnections
compared to a conjoined architecture where each helper is
statically shared between two cores. We used a similar
method of crossbar area estimation as [10]. For our choice
of helpers and their respective bandwidth requirements, the
crossbar area occupies 10% of the total area of the processor,
which is 5% more than conjoined cores.

The other hidden cost in sharing helpers is the potential
increase in requests for each resource, making helper band-
width a serious concern. Ideally, each core would have its
own dedicated port to each helper, but the cost would be
prohibitive. Instead, a helper can make use of port arbitra-
tion to satisfy multiple core requests. One possibility is al-
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Figure 5: Our CMP floorplan, with cores and L2
cache banks distributed around 2 sets of helpers.

lowing cores to take turns accessing a helper. Another would
involve more sophisticated control hardware that would ar-
bitrate among several requests, much like what is done with
a unified second level cache.

In an architecture where cores share a common pool of
helpers, the helpers can either be exclusively assigned to a
core (i.e. partition the helpers), shared among several cores
(i.e. sharing common helpers), or some combination of both
(i.e. some of the cores sharing a common helper). Par-
titioning is useful when the bandwidth or internal storage
demands placed on a helper by a single core would preclude
benign sharing with other cores. In that case, the most fa-
vorable option would be dedicating a helper to a single core.
Sharing can be useful when individual cores do not consume
all of the bandwidth or storage space of a given helper.

5.1.2  Always On vs. On Demand Sharing

Different helpers exhibit different tolerances to sharing.
At a high level, helpers can be divided into those that are
accessed on-demand and those that are always active. On-
demand helpers include those that are hierarchical exten-
sions of core structures, like the instruction cache, data
cache, and branch predictor. These helpers are only accessed
when their corresponding core structure misses. Locality in
the corresponding core structures filters the majority of the
requests obviating frequent accesses to these helpers. This
means that bandwidth to the helper may more easily be
shared among multiple cores. However, the amount of state
contained in the helper may still be insufficient to allow ef-
fective sharing between cores — but bandwidth is not usually
a limiting factor.

Other helpers do not have corresponding core structures,
and are therefore not on-demand. The value prediction and
prefetching helpers are examples of this class of helpers. Any
load instruction can be value predicted and any cache miss
can initiate a prefetch stream, but a helper may not have
enough bandwidth to handle competing requests from mul-
tiple cores if there are lots of loads or cache misses. Helper



state is also a problem here, as sharing cores would need to
contend with one another for value and address predictor
space.

5.1.3  Simple vs. Counter Guided Sharing

One simple approach to sharing is to have conjoined cores
take turns accessing a common set of helpers. Taking turns
is a viable option for on-demand helpers where contention
for helper bandwidth is less common. But helpers that are
not on-demand can suffer from a turn-based approach. Con-
sider value prediction in a two core setting, where each cycle
a new set of load PCs are fetched and could potentially be
value predicted. Taking turns would mean that value pre-
diction would only occur every other cycle, potentially halv-
ing the number of value predicted instructions. Note that
the issue here is not access latency (because helpers are la-
tency tolerant), but the fact that we lose the opportunity
to predict load instructions. This problem only becomes
worse when trying to share among more than two cores. We
further optimize the turn-based strategy by allowing other
cores to access a helper on a given core’s turn if that core
does not require the helper’s bandwidth. This can happen
when a core has suffered a pipeline flush or in the case of
on-demand helpers that simply do not see any accesses to
the helper.

Even though some cores may make use of a helper, the
helper may not provide any benefit, even in the case of on-
demand helpers. Consider a thread whose working set does
not fit in the data cache helper — it will thrash in the data
cache as it tries to contain its working set, but will still be
plagued by misses that must be serviced by the L2 and will
evict potentially useful entries from other threads. Similarly,
a thread may not see any benefit from value prediction and
may simply be stealing available bandwidth from a thread
that does see benefit.

We make use of the utilization counters from Section 4
to guide helper sharing. These counters provide a filtering
mechanism to avoid sharing a helper among cores that see
no benefit from that helper. Cores can then request access
from a global helper arbiter to the helpers from which they
expect to see benefit.

While filtering useless sharing is vital, we also need to
provide an intelligent approach to choose what cores will
share a common helper. In a four core scenario where all
cores (labeled A-D) want a BBTB helper, and there are
only two helpers available, performance may substantially
improve if A and B are allowed to share instead of A and C.
Or, it may be best for A to have its own private helper and
for B-D to share the remaining helper.

To arbitrate sharing among the filtered set of helpers, we
make use of correlating counters that can guide sharing. A
good example of this is the prefetching helper. If multiple
cores are contending for a pool of prefetch helpers, threads
that have a greater magnitude of prefetches should be given
private access to a prefetcher if one is available. If there are
not enough prefetchers to grant a private to threads with a
large number of prefetches, threads with a comparable num-
ber of prefetches should be paired together. This prevents
threads with a greater number of prefetches from starving
other threads from getting access to stream buffers.

At each core, the correlating counters are tested against
a number of thresholds to classify the demand for a par-
ticular helper into a utilization class (i.e. light, medium,
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heavy). The utilization class is then memoized in the phase-
detection hardware to track the expected utilization class of
each helper at each phase.

The global helper arbiter is responsible for taking the re-
quests from all cores for helpers (this has already been fil-
tered at each core by the performance counters and phase-
detection mechanisms) and the actual utilization class for
each helper requested from each core. The global arbiter
then tries to match requests of similar utilization classes to-
gether in the case of helpers that are not on-demand and
tries to mix requests in the case of helpers that are on-
demand. The global arbiter makes decisions about assign-
ments of helpers to cores every 10 million cycles, the same
granularity as our phase detection intervals. This granular-
ity of decision making can easily absorb both the latency
to communicate the counter values to the arbiter and the
latency for the arbiter to make a decision based on these
counters.

We will refer to the architecture that can allow helper
sharing between any set of cores on a CMP our flexible shar-
ing architecture.

5.2 Sharing Results

Utilization counters can potentially improve multi-threaded
workload in two ways: filtering useless sharing and provid-
ing information to choose the best pairing of applications
to share a helper. To better evaluate the contribution of
each of these factors we study both 2-core and 4-core CMPs
sharing helpers. The former case can only see benefit from
filtering useless accesses as there is only one way to share
helpers. The latter case can take advantage of flexible shar-
ing of helpers as well as filtering useless sharing.

5.2.1 2-Core Results

Figure 6 compares the performance of our counter guided
approach to a baseline that simply shares each helper among
two cores. Utilization counters prevent applications from ac-
cessing the helper when they do not see benefit from that
helper. Bars represent normalized IPC, and dots represent
the reduction in the total number of accesses to the helpers.
The application mixes are constructed to include threads
with disjoint demand for helpers. For example, apsi and
crafty heavily use instruction and branch prediction helpers
(on-demand helpers) while equake, gap, and mcf see sig-
nificant improvement using value prediction and prefetch
helpers.

On-demand helpers do not see much improvement from
counter guided approach because they already inherently
filter requests as can be seen from small reduction in the
number of accesses to the helper. However filtering useless
accesses is essential to always-on helpers. Equake sees a
27% speedup just from eliminating useless accesses to the
prefetch helper from apsi. The large reduction in accesses
to the helpers for these mixes is another indication that
the counter guided approach can improve performance and
reduce power at the same time.

5.2.2 4-Core Results

Next, we examine the benefits of flexible sharing. First,
to better evaluate the difference between the two types of
helpers (section 5.1.2), we more closely examine the BBTB
helper (an on-demand helper) and the prefetcher helper (not
on-demand). For each, we examine situations where four
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Figure 6: Impact of filtering useless accesses to a single set of helpers shared by two cores.

are relative to conjoined sharing without filtering.

cores have private versions of all other helpers but share ei-
ther the BBTB or the prefetcher. The four cores are then
forced to share either one or two instances of either the
BBTB or the prefetcher. In this section, with the excep-
tion of our baseline architecture, simple sharing always uses
counter-guided filtering to reduce accesses to helpers. But
cores may or may not be able to flexibly share helpers. In
simple sharing schemes, cores may only share helpers with
certain other cores.
We consider the following architectures:

baseline - Four cores share a single helper - this configura-
tion does not use counter-guided filtering.

allprivate - All cores have their own helpers - no sharing
is done.

lhelper - Four cores share a single helper using counter-
guided filtering.

average, worst, best - This configuration shares two sets
of helpers among four cores. When using simple shar-
ing, performance depends on what cores are actually
sharing (i.e. conjoined). With four cores, there are
three possible pairings. For simplicity, we show values
for the best of the three configurations, the worst of
the three, and the average over all three.

flexible - The flexible helper sharing policy from section 5.1.3.

One core can share a prefetcher helper with another
core, and a value predictor helper with a different core.

For each helper that we explore, we construct an applica-
tion mix by selecting five benchmarks that benefited from
the helper and five benchmarks that did not benefit from the
helper. We then form five application mixes of four threads
each that represent all possible combinations: all threads
need the helper, three out of four threads need the helper,
two out of four threads need the helper, only one thread
needs the helper and no thread needs the helper — in that
order. For cases where only one or no application demands
a helper, there is obviously little impact from these sharing
approaches — but these results are shown for completeness.
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apsi crafty eon mesa applu apsi crafty galgel applu eon galgel mesa

Results shown

Our helper configurations are as presented in Section 3.
The value predictor helper has only two ports, and can there-
fore only satisfy two requests for prediction per cycle. The
prefetcher can only prefetch one cache line per cycle.

Figure 7 illustrates the performance of an on-demand helper:
the BBTB helper. For the single helper runs, there is not
much improvement from counter-guided sharing because on-
demand helpers naturally will not be accessed if there is no
benefit. However, when sharing two helpers among four
cores, there is a destructive relationship between eon and
crafty when sharing a common BBTB due to aliasing. Our
counter-guided approach is able to determine the best com-
bination for benign sharing — even when all four applications
want to share the BBTB. Because eon and crafty see many
more helper BBTB hits than other applications, they should
not be combined together to avoid contention for space in
the BBTB. The gap in performance between having a sin-
gle BBTB helper and having two BBTB helpers is clearly
greater when more applications demand the BBTB, demon-
strating the impact that contention for space can have, even
for on-demand helpers. The last two mixes of benchmarks,
where only one or no application needs the BBTB, do not
see any impact from sharing approaches.

Figure 8 illustrates the performance of a helper that is not
on-demand: the prefetch helper. Counter-guided sharing is
useful for the single helper run when there are two or three
benchmarks competing for bandwidth that do not see any
benefit from the helper.

The benchmark mix mesa-parser-applu-equake is such
a case, where mesa and parser do not benefit from prefetch-
ing but applu and equake do. By filtering mesa and parser
out via our correlation counters, we are able to use a single
helper to outperform the worst and average cases of con-
joined cores with two helpers.

With two helpers, there is more disparity between dif-
ferent conjoined core runs. Applu and mcf issue far more
prefetches than bzip2 and equake, and unlike the case of on-
demand helpers, it is actually beneficial here to have applu
and mcf share the same helper. If we combine either one
of these applications with one that benefits from prefetch-
ing but does not have the same magnitude of prefetches
(like bzip2 or equake), the application with less prefetches
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will not get a fair share of stream buffer resources. In
the case of mesa-parser-applu-equake, parser contends
for prefetch bandwidth, despite not seeing a benefit from
prefetching, and impedes the prefetching of applu or equake.
The counter-guided approach is able to identify the inabil-
ity of parser to effectively use prefetching, and prevents
this degradation. For all runs, our counter-guided approach
is able to perform as well or better than the best conjoined
core combination.

Figure 9 presents results for sharing all helpers at once.
The first application mix on the figure enjoys a large im-
provement from our counter-guided approach for two main
reasons. First, gap is able to get a private value predictor.
Second, art and eon do not do well when conjoined with
galgel. By giving flexibility to helpers in how they share,
our approach is able to outperform any conjoined combina-
tion. This is also evident from the third benchmark mix,
where value prediction contention hampers the performance
of mcf and gap. On average our counter-guided approach
for one set of helpers sees 13% improvement over a baseline
naively sharing helpers among all cores. Sharing two set
of helpers, our approach provides 54% improvement while
conjoining cores can see benefit ranging from 20% to 40%
depending on how cores are conjoined.

5.2.3 Constructive Sharing

As we demonstrated in the previous section, sharing one
helper among four cores can degrade performance signifi-

cantly when applications running on all cores need the helper.

However, there are cases where common code or data (i.e.
OLTP, parallel processing) may be executing in the CMP
environment, and sharing can actually be constructive if
threads are allowed to share state in a common helper. Our
flexible helper management allows constructive sharing of a
helper among such workloads. We consider the case where
the same application is executing on all cores, but each appli-
cation instance is executing different input sets or different
phases of the same input set.

Figure 10 illustrates the benefit of constructive sharing for
the BBTB and instruction cache helpers. For crafty, eon
and mesa we simulated four different phases of each appli-
cation running concurrently on four cores. For vortex we
used four different inputs. All of these application use both
BBTB and instruction cache helpers intensively. The first
bar shows results when there are private helpers dedicated
to each core, and the second bar shows results when only one
helper is shared constructively among the four cores. The
speedup presented is relative to one helper shared among

four cores, but without any constructive sharing among threads.

Our counter mechanism is still used in this case. Our results
indicate that sharing the instruction cache between multi-
ple cores incurs a similar miss rate as a dedicated cache per
core with the same capacity, as reported in [11]. In vortex,
a constructively shared instruction cache even outperforms
the private cache performance by avoiding misses to cache
blocks used by multiple cores. The contention when shar-
ing the BBTB among applications that have high demand
for this helper can be extremely severe when not shared con-
structively. Crafty and vortex see a 4X speedup when using
dedicated BBTB helpers instead of sharing a single BBTB
helper. This is due to the reduced accuracy of branch predic-
tion when threads thrash for space in the shared predictor.
There is a significant increase in the number of instructions
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Figure 11: Power dissipated in flexible and allprivate
configurations normalized to baseline configuration
with shared helpers.

executed as a result of this mispeculation which can fur-
ther pollute caches and waste energy. Sharing the BBTB
constructively among cores eliminates this thrashing effect
for all applications simulated except crafty which still sees
some impact from this. This application has more complex
branch behavior that can inhibit constructive sharing across
different phases.

5.2.4 Power Savings from Flexible Sharing

To better understand the tradeoffs between sharing helpers
and keeping private helpers for each core, we integrated
Wattch [2] into our simulation infrastructure and obtained
energy results for our flexible sharing policy and the con-
figuration where every core has a private helper. We used
process parameters for a 70nm process at 5.6GHz with 1V
supply voltage. Our results are extracted with the most ag-
gressive conditional clocking strategy, where dynamic power
scales linearly with access to the ports.

Figure 11 illustrates that on average, the flexible shar-
ing policy is able to reduce the energy dissipated, despite
the fact that the performance of the flexible policy can be
slightly worse than the all private configuration.

6. SUMMARY

In this paper we explore helper management policies for
both single and multicore configurations. Cores with decou-
pled helpers provide an opportunity to dynamically tune
processor resources on an application phase basis. With our
counter-guided helper management, we can come within 2%
of the best performing helper configuration (typically the
one with all five helpers active) with an average of less than
three helpers turned on. This counter-guided scheme can
be applied to the multicore environment to more effectively
share a pool of common helpers among a number of cores.
Our approach to sharing is intelligent and flexible enough
when used with four cores sharing two sets of helpers to see
an average 54% weighted speedup over a baseline naively
sharing only one set of helpers. Statically shared helpers
can see benefit performance by an average of 20% to 40%
depending on how cores are shared. Constructive sharing
can provide even more benefit, effectively providing perfor-
mance comparable to private helpers when running the same
application on all cores, even for different inputs and phases.
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