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ABSTRACT

This paper considers the efficient parallel implementation
of control constructs and expressions written in a common
software programming language and synthesised to FPGA
platforms. The context of this work are Syntaz-Driven Lan-
guage Specific Processors (SDLSP). An SDLSP for a given
software programming language has its architecture defined
by the grammar rules of the language itself. Each state-
ment and expression rule in the grammar is implemented
on the FPGA, together with sufficient control logic to load
program statements sequentially onto the processor, and in-
terface with program store. The instructions executed are
a high-level (effectively one-to-one) encoding of the appli-
cation software program. The advantages of this approach
lie in its parallelism and space-efficiency. Syntax-driven lan-
guage processors take less space than a full CPU on FPGA,
and execute statements with a comparable speed; take sig-
nificantly less space in general than directly compiled ap-
proaches (such as Handel-C), although have longer execu-
tion times for the same code.

Categories and Subject Descriptors: D.3 [Program-
ming Languages]: Processors Compilers C.1 [Processor Ar-
chitectures]: Other Architecture Styles High-level language
architectures

General Terms: languages

Keywords: compilation, fpga, language

1. INTRODUCTION

Language Specific Processors (LSP) execute programs writ-
ten in a single language, unlike a CPU which can execute
any suitably compiled program. Common LSPs are inter-
preters or virtual machines [1]. The executable instructions
of LSPs are usually at a higher level of abstraction than
for CPUs (eg. compare Java bytecodes [2] to CPU machine
instructions). LSPs can be implemented on top of CPUs,
thus performing a run-time translation to CPU executable
code; or directly on FPGA (eg. [3]). LSPs are of fixed size
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for a given programming language, the size of the code to
be interpreted being proportional to the size of the source
program.

In this paper, we discuss an LSP whose architecture re-
sembles the structure of the grammar of the language it is in-
tended to process, termed the Syntaz-Driven LSP (SDLSP).
The SDLSP executes instructions that are at the level of
source language statements, ie. at a higher-level of abstrac-
tion than conventional LSP approaches. In general, instruc-
tions are a one-to-one mapping with language constructs
and statements, with expressions taking multiple instruc-
tions depending upon their size. The main advantages of
the SDLSP approach are its space-efficiency and inherent
parallelism, due to the high level (ie. language grammar) of
SDLSP instructions. For example, parallelism is achieved by
allowing independent parts of a single language statement,
construct or expression to execute in parallel. An important
aspect of the SDLSP approach is the parallel evaluation of
expressions. In this paper the architecture and operation
of an SDLSP is detailed, focussing upon control constructs
and expressions. An example is provided, in terms of an
implementation (on FPGA) of an SDLSP for the TINY pro-
gramming language [4].

It is noted that although SDLSPs are specific to the pro-
gramming language that are intended to process, many as-
pects of common (imperative) programming languages are
identical (eg. control-flow constructs, expressions).

The remainder of the paper is structured as follows. Sec-
tion 2 presents background and previous work. Section 3
describes the SDLSP architecture and operation, with sec-
tion 4 outlining an SDLSP for TINY. Section 5 extends the
general SDLSP approach for arithmetic expressions, with
section 6 extending the TINY SDLSP for expression evalu-
ation. Implementation of the TINY SDLSP on an FPGA is
detailed in section 7, together with evaluation results. Fi-
nally, conclusions are presented in section 8.

2. BACKGROUND AND PREVIOUS WORK

Programs written in a software programming language
can be compiled to execute on FPGAs in a number of ways:

1. Application-specific Circuit (ASC): Both subsets of stan-
dard languages (eg. C [5] and Ada [6]) and language
variants (eg. Impulse-C [7], Handel-C [8]) have been
successfully compiled to FPGA, forming a program-
specific (ie. application specific) implementation. Such
approaches can include library modules from other lan-
guages (eg. VHDL).



2. CPU-Specific (CS): This represents a conventional com-
pilation of a program to CPU-specific executable form.
Clearly, many languages are compiled in this manner.
In general, the compiled executable can only be exe-
cuted on the target CPU (or CPU family). We note
that the CPU can be a softcore, targeted at an FPGA;
or a hardcore CPU embedded within an FPGA (eg.
PowerPC with Xilinx Virtex Pro).

Language Specific Processor (LSP): An interpreter or
virtual machine for a specific programming language.
Programs in the language are compiled to a high-level
language specific executable form, which is then in-
terpreted by the LSP. One key example of an LSP is
the Java Virtual Machine, where the executable form
is Java byte code [2]. LSPs can be implemented as a
translation layer on top of a CPU, ie. performing run-
time translation to CPU instructions; or directly on
the FPGA. In the latter case, the architecture of the
LSP is similar to that of a CPU (eg. consider hard-
ware implementations of the Java Virtual Machine [3,
9, 10].

Hybrid Approach: Two or more of the above can be
combined. For example, where a CPU is combined
with an application-specific accelerator or co-processor
to speed up a particular application function.

The CS and LSP approaches are similar, in that both
fetch, decode and execute a sequence of instructions. How-
ever, a key difference is that LSPs often contain language
specific features within the architecture, eg. a Java LSP
(ie. a Java VM) contains security, dynamic memory man-
agement and other language specific facilities [2].

The four approaches highlight different trade-offs that can
be exploited for an efficient implementation. When the tar-
get is a single FPGA, the finite available resources (logic
cells, routing and memory) suggest that in general, as source
programs get bigger (eg. in lines of code), more resources are
required for implementation. When the resources available
on a single FPGA are not sufficient for the implementation
of an application program, a number of strategies can be
adopted, from changing the platform (eg. larger FPGA, dif-
ferent device family, multiple FPGAs, additional RAM for
program store); changing the source (eg. redesign of the ap-
plication). When neither of these strategies are appropriate,
implementations tend towards hybrids, utilising both CS or
LSP together with some ASC for speed. However, moving
from a pure ASC to an implementation including a LSP or
CS is significant, due to the space overheads of the CPU
or LSP (ie. they require accompanying buses, memory and
other devices). Hence, it necessarily efficient to include a
CPU or LSP unless significant parts of the implementation
are executed on these devices.

The compilation process for the ASC, CS and LSP ap-
proaches are similar (ie. involving lexical, syntactic and se-
mantic analysis, together with code generation and optimi-
sation). For circuit generation (for ASC) or code-generation
(for CS and LSP) the compilers instantiate mappings for
each source language statement /construct/expression to tar-
get circuit / executable. Essentially, there is a mapping
from statement /construct in the language to a separate sub-
circuit (ASC), set of CPU instructions (CS) or set of lan-
guage specific high level instructions (LSP). In ASC, some
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degree of sharing of resources can be achieved (thus reduc-
ing FPGA space requirements), particularly with expensive
mathematical operations (eg. divide); although this is more
complex for software languages with concurrency (eg. Ada)
where contention is harder to prevent.

As stated above, instructions interpreted by the LSP are
of a higher abstraction level compared to machine instruc-
tions — eg. object create Java bytecode. Usually, one source
statement / construct / expression is compiled to many LSP
instructions. Each LSP instruction can take many cycles to
execute, depending upon its complexity.

In CS, optimisation techniques can reduce the amount of
space required to store the program [11], so reducing overall
resources required. It is noted that the CPU is not affected
(nor buses linking CPU and memory), with the resources
taken by the CPU constant.

3. THE SDLSP APPROACH
An SDLSP is distinct from a LSP in the following ways:

1. the architecture of an SDLSP follows the grammar
rules of the language;

2. SDLSP instructions are simple encodings of the source
language;

an SDLSP executes instructions in a non-atomic nested
manner;

an SDLSP allows independent parts of statements /
constructs / expressions to be executed in parallel.

The following sections detail the SDLSP approach.

3.1 Intuition

An SDLSP executes each statement, construct or expres-
sion in the source program sequentially. Thus, the high-level
instructions interpreted by the SDLSP correspond to syntac-
tic elements of the language. For example, one instruction
may be an “if” statement. The expression representing the
condition expression would form another instruction.

To interpret syntactic-level instructions, the SDLSP con-
tains a separate component for each syntactic element in the
language — ie. separate components for both the “if” and for
expression evaluation. The “if” instruction is presented to
both the “if” and expression components in parallel. When
all components involved in the execution of a high-level in-
struction have completed, the instruction completes.

Instruction execution is nested, in that one instruction
A may commence execution before B, but B may complete
before A. Such nesting follows the permissible nesting of
constructs within the grammar of the language. For ex-
ample, an “if” instruction will start prior to those in the
condition expression and the body of the “then” or “else”
blocks; however, the condition expression and “then” body
or “else” body will all complete prior to the “if” instruction
completing. Hence, the operation is faithful to the grammar
of the language.

3.2 Architecture

The SDLSP architecture is based upon the structure of a
formal BNF (Backus-Naur Form) [12] representation of the
grammar of the programming language. This is different
than conventional LSPs, which are based on the architecture



of CPUs and operate on low-level bytecodes (ie. not at the
syntactic level of the language) [1].

The remainder of this section considers BNF, together
with the derivation of the structural architecture of an SDLSP
from a given BNF grammar.

3.2.1 BNF (Backus-Naur Form)

BNF (Backus-Naur Form) [12] is an unambiguous math-
ematical (ie. formal) description of a language, having been
used extensively for over 40 years for software programming
languages (and many others). BNF represents a language as
a set of terminals (ie. keywords) and non-terminal symbols
(ie. syntactic structures), with production rules mapping
non-terminal symbols onto non-terminals and/or terminal
symbols. BNF is limited to describing context-free gram-
mars [12], sufficient for common software programming lan-
guages (eg. Ada, C, Pascal, Java), and others (eg. VHDL,
Verilog).

A simple example of BNF is given in Figure 1 where
the start symbol for the grammar is “A”. The grammar
describes a language where programs begin with symbol
“start” (ie. rule “A”), have one or more statements (rules
“NT1” and “NT2”)), and finish with symbol “end”. Each
statement can be a conditional (rule “NT3”), or assignment
of expression to an identifier (rule “NT4”). Expressions for
the conditional and right-hand side of the assignment are
simple, being constant integers (rule “NT5”). An example
program conformant to the grammar is given in Figure 2.

3.2.2 Structural Architecture

An architecture based upon the BNF (ie. syntax) of a
language represents all run-time semantically significant el-
ements of the language (eg. a control statement) as dis-
tinct components in the architecture. These components
are linked according to the syntax rules (ie. BNF produc-
tion rules) of the language. For example, the “if” statement
in Figure 1 has an expression to determine whether to exe-
cute a set of statements; this requires the corresponding “if”
component within the architecture to be connected to the
component responsible for expression evaluation (to obtain
the result).

Each component implements the semantics of the state-
ment/construct that it represents. For example, the “if”
component waits for the condition expression to complete,
and initiates execution of either the “then” or “else” set of
statements as appropriate.

The architecture only contains components that are sig-
nificant at run-time. For example, most programming lan-
guages contain syntactic elements that are present for scop-
ing or to permit unambiguous parsing at compile-time. These
are not required at run-time, after code generation, and so
are not needed in the architecture.

As an example, Figure 3 shows the components and con-
nections required for the BNF of Figure 1. Note that sym-
bols “start” and “end” do not appear in the architecture as
they are non-semantically contributing at run-time. Com-
ponent “NT3” implements “if”; “NT4” implements assign.
The grammar start symbol “A” is shown as the root for the
component architecture. “NT1” and “NT2” are not shown,
effectively as they are only in the grammar to enable pro-
grams to contain one or more statements in any order.

The symbol “NT5” is included as it represents simple ex-
pressions within this grammar. It passes the result of eval-

A = ‘‘start’’ NT1 ‘‘end’’

NT1 ::= NT2 | NT2 NT1

NT2 :: NT3 | NT4

NT3 ::= “¢if >’ NT5 ¢‘then’’ NT4
‘‘else’’ NT4

NT4 ::= string ‘‘:=’’ NT5

NT5 ::= 0 | 1

Figure 1: Example: BNF Grammar

start
tmp =
if (1)
tmp2 :=
end

0
then tmpl := 1
1

Figure 2: Example: Source Program

uating an integer (“0” or “1”) as a condition to the “if”
node (ie. to symbol “NT3”); or to the right-hand-side of
the “assign” node (ie. to symbol “NT4”).

Identifier and constant stores are added to hold (in dis-
tinct locations) identifiers declared within the grammar and
constants respectively. Noting that some constants maybe
including implicitly within an instruction (see section 3.3).

By adding store and instruction decode to the component
architecture, a full SDLSP structural architecture is realised.
This is illustrated in Figure 4 for the component architecture
of Figure 3. The grammar start symbol is replaced by a
fetch/decode component, responsible for loading the next
instruction from program store; decoding that instruction;
initiating execution of that instruction.

Further consideration of the architecture is given later in
the paper, particularly in terms of implementation.

3.3 Instruction Selection

Instruction selection for a SDLSP is significantly less com-
plex than during conventional code generation during com-
pilation for a CPU target. Essentially, there is an exact one-
to-one mapping of language construct to SDLSP instruction.
For a CPU there it is usually a one-to-many mapping from
language construct to machine instructions, with many dif-
ferent combinations of instructions to choose from, including
different addressing modes, with optimal instruction selec-
tion difficult [12].

The instructions to be interpreted by the SDLSP are formed
by a conventional parse and code generation phase. We as-

N NT4

N

string

T3
0|1

Figure 3: Example: Components



Decode

Program
Store

NT3 NT4

Identifier
Store

Constant
Store

Figure 4: Example: Structural Architecture

Opcode | Stop | Field Instruction
Width
expr 00 - constant 2+d
assign || 01 0/1 ident_addr : expr_addr | 3+ 2a
if 10 0/1 | expr-addr : then_addr :
else_addr : after_addr 3+ 4a

Table 1: Example SDLSP Instructions (Simplistic
Encoding).
Key: a = address width (bits); d = data width (bits)

sume that an appropriate parser is used for the language
grammar — often an LR bottom-up parser is used for BNF
grammars [12], eg. those produced by the YACC parser-
generator [13]. We also assume that the parser produces an
Abstract Syntax Tree (AST) and symbol table that can be
used during code generation.

Instructions are generated by walking the AST, with 1
instruction generated for each run-time semantically signif-
icant language level statement / construct; 1 or more for
each expression. The tree walk does not differ from that
used in conventional compilers, indeed any approach can be
used that is suitable for context-free grammars [12].

Instructions are binary, in the basic form:

OPCODE : FIELD

The opcode is fixed width (for a particular SDLSP), with
each statement / construct mapped to a distinct opcode.
Clearly, the number of bits required by the opcode is depen-
dent upon the number of distinct statements / constructs in
the language.

The field varies according to the opcode, being an encod-
ing of all other pertinent information required by that op-
code to execute. For example, an “if” construct typically has
a condition expression, with the field of the “if” instruction
containing the address of the first instruction representing
the expression. The field is a fixed width, dependent upon
the language.

A simplistic instruction set is given in Table 1 for an
SDLSP for the language given in Figure 1. An opcode width
of 2 bit is used to differentiate between the two statement
forms (ie. “NT3” and “NT4”) and the condition expression
(“NT5”).
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Opcode | Stop | Field Instruction
H ‘ Width
assign || O 0/1 ident_addr : constant | 24+ a+d
if 1 ‘ 0/1 else_addr : after_addr | 2+ 2a

Table 2: Example SDLSP Instructions (Efficient En-
coding).

Key: a = address width (bits); d = data width (bits)

Source Opcode | Stop | Field Field

Comment

0 || tmp := 01 0 0:0 tmp in location O :
expression at line 1

1 || expr:0 00 - 0 constant 0

2 || if<x 10 0 3:4:-:6 | expression at line 3 :
then block at line 4
else block at line - :
after starts at line 6

3 || expr:1 00 - 1 constant 1

4 || tmpl := | 01 1 1:5 tmpl in location 1 :
expression at line 5

5 || expr:1 00 - 1 constant 1

6 || tmp2 := | 01 1 2:6 tmp2 in location 2 :
expression at line 7

7 || expr:1 00 - 1 constant 1

Table 3: Example SDLSP Using Simplistic Instruc-
tions for Figure 2 Program.

An instruction “stop” bit indicates whether the instruc-
tion is the last of a block. For example, an “if” needs to
know when the block of statements for the “then” or “else”
has completed, so the “if” itself can complete execution.

For the three instructions in Table 1, the field contains
relevant information. The constant value of the expression
is contained in the field of “expr”; the identifier location and
expression location are in the field of “assign”; the addresses
of the condition expression, “then” and “else” blocks, to-
gether with first instruction after the complete “if” block
are contained in the field of the “if” instruction.

Table 3 shows shows the instructions required for the pro-
gram of Figure 2. For an address width of 3 and data width
of 1 (since only binary values are permitted by the gram-
mar), the number of bits required is 54.

Note that for the grammar being considered, a number of
efficiency savings in the instruction set can be achieved:

e remove “expr” instruction and encoding constants as
immediate within “if” and ”assign” — this saves one bit
of opcode, and removes need for storage of “expr_addr”
within “if” instruction field;

e ensure that the “then” block of statements occurs im-
mediately after the “if” — — this removes need for stor-
age of “then_addr” within “if” instruction field.

The net effect is that the number of instructions falls from
3 to 2; with fewer overall bits required to store the program.
Table 4 shows the instructions required for the program of
Figure 2. For an address width of 3 and data width of 1
(since only binary values are permitted by the grammar),
the number of bits required by the program falls from 54 to
27.

3.4 Storage Allocation

Conventional code generation during compilation for a
CPU target must consider low-level architectural storage is-



Source Opcode | Stop | Field | Field
Comment
0|l tmp:=0 0 0 0 tmp in location 0
1 || if<x 1 0 -:3 else block at line - :
after starts at line 3
2| tmpl:=1|0 1 1 tmpl in location 1
3| tmp2:=1 |0 1 2 tmp?2 in location 2

Table 4: Example SDLSP Using Efficient Instruc-
tions for Figure 2 Program.

sues, including register allocation and temporary variable
storage. For compilers targeting an SDLSP, storage alloca-
tion issues are constrained to:

1. the mapping of variables declared in the source pro-
gram to locations in the identifier store;

2. the mapping of constants declared in the source pro-
gram to locations in the constant store and/or to an

immediate field in the instruction;

3. the use of temporary variables.

All variables declared within the source program are mapped

to distinct locations in the identifier store. Similarly, con-
stants are mapped to distinct locations in the constant store,
if they are not stored in the field of the instruction (see above
and section 6). Temporary variables are only required dur-
ing expression evaluation, and are considered further in sec-
tion 5).

We note that for compilers targeting CPUs, the use of
procedure/function frames on the stack [12] allows (depen-
dent on the scoping rules of the programming language) the
effective mapping of several variables to the same location
of physical storage, so reducing the overall storage require-
ment. This approach could be utilised for an SDLSP, al-
though could require the addition of a stack and frame-
pointer, particularly for multiple copies of the same vari-
able (ie. if the language allows recursive procedure/function
calls). However, this is outside the scope of the paper, as
procedure/function calls are not considered herein.

3.5 Operation

The basic operation of an SDLSP is that instructions are
fetched and decoded in order, with the actual execution of
the instructions is non-atomic and nested (as described in
section 3.1). The remainder of this section describes the
operation of an SDLSP in more detail.

3.5.1 [Initialisation

The decode node of the architecture (see Figure 3(b)) con-
tains a Program Counter (PC). The PC is initialised to 0,
or the location in program store of the first instruction to
execute.

3.5.2 Fetch and Decode

The SDLSP initiates a fetch of the instruction in program
store at the address contained in the PC. The decode node
then passes the field of the instruction to the node respon-
sible for processing the corresponding opcode — termed the
target node. The decode node now waits for a node to sig-
nal that it can fetch the next instruction — termed the fetch
signal.
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Note, the fetch signal does not necessarily come from the
target node; nor does the fetch signal imply that the instruc-
tion has completed execution. To illustrate, we consider an
“if” control statement. This will send fetch signals to ini-
tiate fetching of the instruction for the condition, to fetch
statements for either the “then” or ‘else” bodies, and at
completion of the “if” block.

Some instruction executions (eg. “if”) may need to change
the PC. Hence, the fetch signal can be accompanied by an
address. If the decode unit receives an address with the
fetch signal, the PC is updated to this new value prior to
the next fetch.

3.5.3 Execute

When a node receives an instruction from the decode node
(ie. becomes the target node) it executes the logic required
to fulfill the semantics of the instruction. This may require
waiting for completion of execution of other nodes. We now
consider the execution of the three instructions of Table 1:

e “expr” — this instruction evaluates a constant (in the
instruction field) passing the value of the constant to
the “assign” and “if” nodes (noting exactly one of
these will be active, waiting for the value).

e “assign” — this instruction stores the address of the
target identifier, then issues a fetch signal to decode,
as it needs to wait for the expression to evaluate. The
“assign” node subsequently receives the value, stores
it in the appropriate identifier location, and issues a
fetch signal.

e “if” — this instruction stores the field addresses, then
issues a fetch signal to decode, as it needs to wait for
the condition expression to evaluate. The “if” node
subsequently receives the value to determine whether
the “then” or “else” block of statements is to be exe-
cuted. If the “then” is to be executed, the “if” node
issues a fetch signal and waits for the “then” block to
complete. If the “else” block is to be executed, the “if”
node issues a fetch signal together with the address of
the “else” block (from the instruction field). When the
appropriate “then” or “else” block has completed, the
“if” node issues a fetch signal together with the ad-
dress of the first instruction after the “if” node (from
the instruction field).

The last instruction in each grammatical block of state-
ments has the stop bit set. This enables the node repre-
senting the surrounding construct to recognise the block
completion. For example, during the execution of an “if”
statement, the “if” node needs to know when the “then” or
“else” block has completed execution.

4. CASESTUDY: CONTROL STATEMENTS
IN TINY

This section provides further insight into the SDLSP ap-
proach by describing an SDLSP for the TINY software pro-
gramming language [4]. TINY contains conventional imper-
ative language control structures and expression arithmetic;
it does not contain functions / procedures, or data types
other than integers. TINY contains sufficient complexity to
illustrate the SDLSP approach. The remainder of this sec-
tion discusses the overall architecture of the TINY SDLSP,



program ::= stmt—sequence

stmt—sequence ::= statement (; statement)

statement ::= if—stmt | repeat—stmt |
assign—stmt | read—stmt |
write—stmt

if —stmt ::= if exp then stmt—sequence

[else stmt—sequence] end
repeat stmt—sequence

until exp
identifier := exp
read identifier
write—stmt write exp
exp simple—exp [comparison—op simple—exp]
comparison—op < | =
simple—exp term [addop term]
addop
term
mulop
factor

repeat —stmt

assign—stmt
read—stmt

+ 1 -
factor
= x|/
( exp )

[mulop factor ]

1= | number | identifier

Figure 5: TINY Grammar.

read x ;
if 0 < x then fact
repeat
fact fact * x;
X = x — 1
until x = 0;
write fact
end {end of if}

= 1;

)

Figure 6: Example: TINY Program

concentrating upon the control statements of the language.
Discussion of expressions is left to section 6.

4.1 Architecture

The TINY grammar is given in Figure 5, with example
program in Figure 6. The architecture derived from the
TINY grammar is given in Figure 7. The basic statements in
the grammar (read, write, assign, if, repeat) are at the top-
level, under the decode node. The “read” statement only
uses the identifier store (ie. a read is to a destination vari-
able); the remaining statement types utilise expressions (for
condition expressions in the “if” and “repeat” statements).
Expressions in turn utilise the identifier store (noting con-
stants are literals within instructions — see section 6.1).

The operation of the architecture is similar to that de-
scribed in section 3.5. Each of the components implement
the appropriate semantics for the associated language state-
ment / construct / expression. The semantics are conven-
tional control flow / arithmetic expression evaluation (fur-
ther details in [4]).

Note that both the ‘if” and “repeat” instructions may
change the PC when sending a fetch signal to the decode
node.

The TINY grammar permits nested “if” and “repeat”
statements. This requires local storage to hold statement
context (ie. addresses in the field part of the instruction)
until the instruction completes. Local storage is provided
within the component. The amount of local storage needed
is a static property of the input program, reflecting the max-
imum nesting of control statements within the program. If
the SDLSP were generated for a particular program, such
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Read

Identifier
Store

Figure 7: SDLSP for Tiny Language.

Expression

Opcode | Stop | Field Instruction
Width

read 000 0/1 ident_addr 4+ a
write 001 0/1 | expr_addr 4+ a
if 010 0/1 | else.addr : after.addr | 4 + 2a
repeat || 011 0/1 | expr_addr : after.addr | 4 + 2a
assign | 100 0/1 ident_addr 4+ a
expr 101 0/1 configuration 4+c

(see Section 6 :

upto 8 addresses)

Table 5: TINY SDLSP Instructions.
Key: a = address width (bits); d = data width
(bits); ¢ = expression configuration width

lexical analysis can define the amount of local storage pro-
vided. Otherwise, a maximum nesting can be defined by
an SDLSP — eg. nesting of 8 depth could be provided, not-
ing that few programs will nest even this deeply. If the
local store is exhausted, it needs to save to general mem-
ory, although this is not part of the current TINY SDLSP
implementation.

4.2 Instructions

Similar to the example in section 3.3, distinct opcodes are
required for each of the top-level statements (read, write,
assign, if, repeat). Note that a separate opcode is not re-
quired to indicate an expression, as the decode component
is always aware whether it is loading a statement instruc-
tion or an expression instruction (see section 4.1). The basic
instructions are defined in Table 5. Instructions for the pro-
gram of Figure 6 are given in Table 6 (expression fields for
TINY are discussed in section 6.1).

S. EXPRESSION EVALUATION FOR
SDLSPS

The evaluation of expressions for SDLSPs provides an op-
portunity to exploit natural parallelism within the source
program, by calculating several sub-parts of the expression
simultaneously. This raises two main issues: provision of a
parallel architecture upon which expressions are evaluated;
generation of appropriate instructions.

5.1 Architecture

An initial approach for a syntax-driven implementation
of expressions is to essentially mimic the approach taken
in compilation for a conventional processor. Each operator
is included separately, with two inputs (as all are binary
operators) and one output returning the result of the oper-
ation. The order of the operators in program store enforces



Table 6: TINY SDLSP Instructions for Figure 6.

Source Opcode | Stop | Field Field
Comment
0 read x 000 0 0 x in loc. 0
1 if 010 0 -:11 no else
2 expr:0<x 101 1 configuration : 0 : 0 | addresses of x,0
3 fact := 100 0 1 fact in loc. 1
4 expr:1 101 1 configuration : 1 address of constant 1
5 repeat 011 0 10:11
6 fact := 100 0 1 fact in loc. 1
7 expr:fact*x | 101 1 configuration : 1:0 addresses of fact,x
8 X 1= 100 1 0 x in loc. 0
9 expr:x-1 101 1 configuration:0:1 addresses of x,1
10 || x=0 101 1 configuration:0:0 addresses of x,0
11 || write fact 001 1 1 fact in loc. 1

Details of expression instruction configuration fields in Table 7

Key
—»-dataflow
@input / output

port

Inputs (Constants / Variables)

Figure 8: Example Graph-Based Expression Archi-
tecture.

precedence. This approach has no parallelism, in that each
operation forming part of the expression is taken sequen-
tially, in a similar manner to CPU operation, with a similar
number of instructions (essentially one per operator).

One approach for exploiting available parallelism is to
form a graph of operators, with inputs (either constants or
variables) flowing from the leaves to the top of the tree in
a data-flow manner. By including multiple copies of opera-
tors within the graph, parallelism can be exploited. This is
shown in Figure 8, where inputs flow from bottom, through
operator blocks (which calculate only when both inputs are
available), to a returned result. In the figure, pairs of oper-
ators are included within the same operator block — largely
this is for implementation considerations, as the operators
within a block largely share logic.

5.2 Instructions and Operation

For an operator graph such as that shown in Figure 8, an
expression instruction field must contain the required con-
figuration of the tree. That is, for each operator block, one
operator must be selected; together with the addresses or
values of the inputs. For Figure 8, this requires 3 bits of
operator block configuration and upto 12 addresses (ie. 6
constants and 6 identifiers). We note that the number of
addresses can be reduced in many ways. For example, by
utilising a separate bit field to specify whether an address
is for constant or identifier store; or by optimising constants
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Figure 9: Expression Architecture.

within expressions. This is considered further in the next
section.

Importantly, both simple (eg. single-operator) or more
complex (ie. multi-operator) expressions can be configured.
For example, a simple expression can be expanded to one
that more naturally maps onto the operator graph:

a+b = ((1%0)+a)+ (b+ (1x0))

Note that there is a time cost in expanding simple expres-
sions to include relatively expensive multiply operations, al-
though in practice a number of operator graphs could be
available (from simple to complex). An appropriate graph
could be selected at compile time for each source expression;
each expression instruction would identify which graph to be
used.

6. CASE STUDY: EXPRESSIONS IN TINY

TINY defines rules of precedence and associativity over
arithmetic operators that enable an unambiguous arithmetic
expression to be described in the source program, and parsed
into an AST by the compiler.

For the TINY SDLSP, one potential architecture for ex-
pression evaluation is shown in Figure 9 (which is essentially
an expansion of the “Expression” component of Figure 7).
Multiple copies of “4+” and “-” operators are provided to al-
low greater evaluation parallelism than if only a single copy
of each were provided. The result is that independent parts
of the same expression can be evaluated in parallel, but are
still expressed within one instruction (see section 6.1) — eg.



|| Expression Configuration
2 A<:B+:C+:DC1:EC1: FC2:
GV2:C10:C20: V2x
4 A+:B+:C+:DC1:EC1: FC2:
GC2:Cl10:C21
7 A+:B+:C+:DCl1:E*: HV3:JV3
FC2:GC2:C10:C20: V3fact: V4 x
9 A-:B+:C+:DV1:EC1:F*:
G*HC3:GC3:C10:V1lx:C21:C30
A=:B+:C+:DC1:EV1:FC2:
GC2:C10:Vlx:C20

10

Table 7: Expression Opcode Configurations for Ta-
ble 6.

consider the following expression (where C represents con-
stants and V variables):

((C3*V3) + V1) - ((C4 / V4) + V2)

Both the multiply and divide can occur in parallel, and with
different variables and constants.

6.1 Instructions for Expressions

For the expression architecture of Figure 9 (and referring
to the “expr” instruction in Table 5), the configuration re-
quires 16 control bits to select the required operators and
paths — these bits are shown in Figure 9 in parentheses. Note
that simple expressions, such as “C+V”, can be achieved by
utilising constants. The field also contains upto 8 addresses
— ie. constant or variable addresses. The exact number of
addresses can be inferred from the configuration. Exam-
ples of expression opcodes are given in Table 7, where the
configuration data corresponds to the labels in Figure 9.

Expressions of arbitrary length must be broken into suit-
able parts, where each part is of suitable form for the archi-
tecture of Figure 9. This can occur by transformation of the
source code prior to code-generation, or during code gener-
ation by outputting a number of expression instructions for
a given source expression. This paper assumes the former.

6.2 Operation

Each expression instruction involves execution of all parts
of the expression evaluation architecture (of Figure 9). At
the end of an expression instruction, the top-most node (ie.
that containing “< = - +” in Figure 9) outputs the result to
all higher nodes (see Figure 7). Exactly one of these nodes
will be active waiting for an expression result.

7. EVALUATION

The SDLSP for TINY described above has been imple-
mented using Handel-C targeting a Spartan-2 device. For a
full SDLSP with 16-bit variables, 1176 LUTs (147 flip-flops)
are required. Note that 860 LUTs are due to to utilising
Handel-C multiply and divide. In terms of speed, the cir-
cuit clocks at around 20MHz for single cycle multiply and
divide; 52MHz for multi-cycle.

The number of instructions loaded and executed by SDL-
SPs compared to other approaches is lower. However, one
instruction on an SDLSP is equivalent to many machine in-
structions on a CPU. This can be seen by noting the TINY
source program of Figure 6 compiles to 40 instructions using
the TM compiler [4], whilst the TINY SDLSP requires only
12 instructions, of which 5 are expressions (see Table 6).
Over many programs (using 16 bit variables and 8 bit store
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addresses), the SDLSP implementation uses only 32.3% of
instructions compared to conventional compilation.

An important comparison in terms of program size (to-
tal number of bits required for all instructions) For these
programs, the instructions ranged between 12 and 28 bits,
mean average 16; expressions between 25 and 41 bits, mean
average 34.

Overall, the implemented SDLSP will process a single in-
struction at the stated frequency, whatever the bit size of
the instruction, assuming a sufficiently wide memory (ie. at
least that of the widest instruction).

Further comparison is difficult, as the SDLSP implemented
is that for a limited language. However, we note that JOP
LSP for Java is around a factor of 5 bigger; MicroBlaze and
other softcore (32-bit) CPUs are around 1.5 to 5 times as
big — all clock at around 70MHz for Spartan-2 (same FPGA
as the implemented SDLSP).

8.  CONCLUSIONS

The contribution of this paper is an investigation into an
alternative implementation approach for software program-
ming languages implemented on FPGAs. Syntax-driven lan-
guage specific processors (SDLSP) were proposed to inter-
pret a specific software programming language at a state-
ment/construct/expression level, with an architecture based
upon the structure of the language grammar.

SDLSPs exploit statement level parallelism (ie. execute
independent parts of the same statement in parallel); show
good space efficiency for FPGA implementations (due to
executing instructions at a high level of abstraction); and
execute at a comparable speed to a softcore CPU.

Current work is concentrating on extending the approach
to encompass all typical imperative programming language
features (eg. procedure/function calls, parameter passing,
non-integer data types); and concurrency (eg. thread oper-
ations, context-switch).

9. REFERENCES

[1] J. Smith and R. Nair, Virtual Machines. Elsevier, 2005.

[2] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification. Addison-Wesley, 1997.

[3] M. Schoeberl, “A Time Predictable Java Processor,” in Proc.
DATE, 2006, pp. 800-805.

[4] K. C. Louden, Compiler Construction: Principles and
Practice. PWS, 1997.

[5] M. Reshadi and D. Gajski, “A Cycle-Accurate Compilation
Algorithm for Custom Pipelined Datapaths,” in Int. Symp.
CODES+ISSS, 2005.

[6] M. Ward and N. C. Audsley, “Hardware Implementation of the
Ravenscar Ada Tasking Profile,” in Proceeedings of CASES
2002, 2002, pp. 59-68.

[7] D. Pellerin and S. Thibault, Practical FPGA Programming in
C. Prentice Hall, 2005.

[8] Celozica Product Information, Celoxica Ltd, 2006. [Online].
Available: http://www.celoxica.com

[9] Lightfoot Product Information, Digital Communication
Technologies, 2006. [Online]. Available: http://www.dctl.com

[10] Espresso Product Information, Aurora VLSI, Inc., 2006.
[Online]. Available: http://vodka.auroravlsi.com/

[11] R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

[12] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[13] J. R. Levine, T. Mason, and D. Brown, Lez and Yacc.

O’Reilly and Associates, Inc., 1992.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


