
Code Transformation Strategies
for Extensible Embedded Processors

Paolo Bonzini, Laura Pozzi
Faculty of Informatics

University of Lugano (USI)
Switzerland

paolo.bonzini@lu.unisi.ch, laura.pozzi@unisi.ch

ABSTRACT
Embedded application requirements, including high perfor-
mance, low power consumption and fast time to market, are
uncommon in the broader domain of general purpose appli-
cations. In order to satisfy these demands, chip manufac-
turers often provide developers with the possibility to de-
fine application-specific Instruction Set Extensions (ISEs).
Many techniques have been proposed that automatically
identify the most beneficial ISEs from source code, so that
compilers can identify the ‘best’ instruction set for the un-
derlying machine. However, can we simply retrofit these
techniques into a traditional compiler, or does ISE identi-
fication demand different tuning of the heuristics utilized
throughout the optimization pipeline? In this paper, we
show why compilers should sometimes make different deci-
sions when targeting customized processors, and we show
how traditional ISE identification techniques can improve
significantly if the code is properly transformed in order
to expose more beneficial extensions. The proposed ap-
proach was validated using the SimpleScalar simulator for
the ARM processor, augmented with the possibility to de-
fine additional instructions. Using benchmarks taken from
the MiBench suite, we show that the proposed transforma-
tions improve state of the art ISE identification techniques
by 55% on average and 4x maximum.

Categories and Subject Descriptors: D.3.4 [Proces-
sors]: Optimization

General Terms: Algorithms, Performance, Design

Keywords: Customizable processors, ASIPs, Instruction-
set extensions, Compilers

1. INTRODUCTION
Processor Customization is an important technique aimed

at meeting the stringent requirements of Embedded Proces-
sor design: a blend of high performance, low power, and fast
time to market that is seldom found outside the embedded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

COMPILER
FOR

MACHINE M

source code
of program P

machine (M) code
of program P

source code
of program P

machine (M) code
of program P

description of
machine M

RETARGETABLE
COMPILER

source code
of program P

machine (M) code
of program P

description of
machine M

CUSTOMIZABLE
PROCESSOR

COMPILER

fa) fb) fc)

Figure 1: a) A compiler for a specific machine. b)
A retargetable compiler reads in a machine descrip-
tion and generates code for it. c) A compiler for a
customizable processor can generate the description
of the best machine for a given application, and then
produce code for it.

applications world. Customizable Processors are quickly be-
coming available in the market; they are often composed of a
standard microprocessor with a simple Instruction Set, that
can be augmented with Instruction Set Extensions (ISEs) so
that critical parts of the applications can be run in hardware,
in application-specific functional units. The automation of-
fered by these processor toolchains is increasing, and source
code analysis techniques have been proposed to identify the
most profitable ISEs for a given application.

Two important observations can be made when looking at
this automation trend. The first is that a compiler is taking
on a new meaning, as seen in figure 1. Initially, the compiler
simply translated a high-level source code into machine code
for a given machine, as in figure 1(a). Figure 1(b) shows the
role of retargetable compilers that later emerged, and that
are able to translate source code into machine code for a set
of machines, by reading a machine description as input. We
can now go one step beyond and introduce a compiler for
a customizable processor—shown in figure 1(c)—that can
automatically generate the machine description, and then
compile onto it (in the case of this paper, decide extensions
to the Instruction Set).

A second important observation, central concept in this
paper, derives directly from the first: are traditional com-
piler techniques, aimed at standard (non customizable) mi-
croprocessor execution, suitable for this new compilation
process, i.e., compilation including the definition of Instruc-
tion Set Extensions? Or do traditional techniques need to
be redesigned, or at least retuned, in order to be beneficial

242

unsigned short

crc (unsigned short crc, unsigned char data)

{

unsigned char i, x, carry;

for (i = 0; i < 8; i++)

{

x = ((data & 1) ^ ((unsigned char) crc & 1));

data >>= 1;

if (x == 1)

{

crc ^= 0x4002;

carry = 1;

}

else

carry = 0;

crc >>= 1;

if (carry)

crc |= 0x8000;

else

crc &= 0x7fff;

}

return crc;

}

unsigned short

crc (unsigned short crc, unsigned char data)

{

unsigned char i, x;

for (i = 0; i < 8; i++)

{

x = (data ^ (unsigned char) crc) & 1;

data >>= 1;

if (x)

{

crc ^= 0x4002;

crc >>= 1;

crc |= 0x8000;

}

else

crc >>= 1;

}

return crc;

}

a) b)

Figure 2: a) C code for updating a 16-bit CRC; b) Same code after algebraic simplification, jump threading
and value range propagation.

in this new scenario? In this paper we argue that there is in-
deed a need to revisit traditional compiler transformations,
and we notice that current techniques for automated ISE se-
lection can miss significant opportunities that ISE-targeted
compiler techniques will expose.

The rest of the paper is organized as follows. Section 2
motivates this research, and section 3 formalizes the prob-
lem we want to solve. Section 4 presents the algorithm we
implemented and discusses the placement of the proposed
techniques in the compiler optimization pipeline. Sections 5
and 6 detail the experimental setup and validate our ap-
proach. Related work is discussed in Section 7, while Sec-
tion 8 concludes this paper.

2. MOTIVATION AND CONTRIBUTIONS
Figure 2(a) shows a C function that updates a 16-bit CRC

(using the polynomial x16 + x15 + x2 + 1) starting from
an input byte. This code is extracted from the EEMBC
suite’s test harness [1]. The compiler can simplify the code
a good deal using techniques such as algebraic simplification,
jump threading and value range propagation, as shown in
figure 2(b). Still, this is not yet a good starting point for
ISE search. In fact, ISE identification techniques tradition-
ally operate at the basic block level, with only a few ex-
ceptions discussed in section 7, and therefore could identify
only small sections in this code as custom instructions. How-
ever, this snippet hides very high potential, since ideally the
whole CRC computation could be implemented as a custom
instruction.

By performing if-conversion and total loop unrolling pre-
vious to ISE identification, the CRC function is transformed
into a single basic block, and state of the art ISE tech-
niques [2] are then able to identify the whole block as a very
high-performance 2-inputs 1-output custom instruction. On

the other hand, we cannot expect a compiler for a non-
customizable processor to aggressively perform such trans-
formations systematically: a traditional compiler is guided
by heuristics that limit register pressure and code size in-
crease. But in the case of an IS-extensible processor, since
the whole unrolled body can be placed in a single custom in-
struction, and all intermediate results are transformed into
wires, no register pressure and no cache pollution problems
arise.

In this paper we propose to tune a set of control-flow
transformations which are beneficial for selecting custom
ISE. This set is not extensive and can certainly be increased
by future research; still it was sufficient to recognize and
experimentally prove two important claims: that compilers
targeting customizable processors need to be supplemented
with new compilation strategies; and that state of the art
ISE identification techniques can benefit greatly from the
methods here proposed.

3. PROBLEM FORMULATION
The flow typically followed in a compiler that supports

ISE is depicted in figure 3(a): an application high-level code
is first compiled into a standard intermediate representation
(block 1a), which can be seen as a collection of Control Data
Flow Graphs (CDFGs). CDFGs capture both control and
data flow behavior of an application: for each node (basic
block) in the control-flow graph, a data flow graph is asso-
ciated to it.

Then, an ISE identification algorithm is run on the data-
flow graphs (block 2). The problem it solves is formal-
ized in [3]; its output is a set of subgraphs that maximize
a merit function—modeling the improvement in execution
from hardware implementation of the subgraphs—under im-
posed microarchitectural constraints (such as the number of

243

ISE
identification

frontend
compilation

rest of
compilation

Assembler
 code

ise_0 ...

C code

ISE
identification

a)

b)

ISE-targeted
transforms

rest of
compilation

Assembler
 code

ise_1 ...

1a

1b

2 3

32

Figure 3: a) Typical flow for ISE identification: an application is first compiled into intermediate representa-
tion, then ISE search is performed on it, and then code featuring the new ISE is generated. b) We propose
to complete this flow, by applying ISE-targeted transformations to the code, with the aim of exposing better,
high-performance ISEs. In this phase, a set of possible CDFG transformations is considered, and the one
yielding the best ISE is selected.

read and write ports of a register file). The chosen subgraphs
will become the ISEs of the customized processor.

Further on (block 3), all other compilation phases and
finally code generation produce assembler code, featuring
special opcodes corresponding to the identified ISEs.

In this paper, we propose to apply a set of ISE-
targeted transformations to the intermediate representa-
tion of the application, as shown in Figure 3(b) (block
1b), before ISE identification, in order to expose more
efficient ISEs. Therefore, we consider an additional
phase where the CDFG directly obtained by application
source code can be transformed into a semantically equiv-
alent one, but yielding better gain during the subse-
quent ISE identification phase. In particular, we pro-
pose a solution to the problem of deciding which trans-
formations to apply in a particular instance, or which se-
mantically equivalent CDFG, among all possible ones, will
expose best performance to the ISE phase. Essentially,
this problem reduces to defining a transformation space,
and choosing a point in it that maximizes ISE poten-
tials.

Before formalizing this problem, we study the meaning
of the transformation space, depicted in figure 4. When a
set of possible transformation types has been defined (if-
conversion and loop unrolling in this example) spots in the
intermediate representation can be identified where one of
the transformations can potentially be triggered. In the ex-
ample of figure 4(a), modeled on crc, there are 2 such spots,
labeled A and B in the code snippet.

The transformation space can be represented as a tree
where every level considers one transformation spot. For
transformations types such as if-conversion the choice is bi-
nary, and the left branch indicates that the transformation
is performed. For loop unrolling, instead, different unrolling
factors may also be chosen. The leaves of the tree repre-
sent all the CDFGs, semantically equivalent to the initial
one, that can be obtained by applying the different trans-

formations. The space thus appears to be exponential in the
number of transformation spots.

We consider a predefined order for transformation spots
to be explored: innermost first, and then in order of ap-
pearance in the code. Note that the order of application
of transformations does not change the resulting CDFG,
for the reduced set of transformation types we have cho-
sen. Studying the effect of transformation types that suffer
from phase-ordering is left to future work.

The problem to be solved in block 1b can be stated as
follows:

Problem 1 (ISE-targeted code transformation).
Given a graph CDFG and a set of possible transformations
to be applied to it in different spots, select the point in the
transformation space that maximizes ISE gain, i.e., select
the transformed CDFG’ that, when fed to an exact ISE
identification algorithm, exposes and returns the ISE with
highest gain.

For example, the solutions to the above problem, for ap-
plications crc and des, are highlighted with a square in fig-
ure 4. These correspond to if-conversion and total unrolling
for crc, and to unrolling both loops by a factor of 2 (with no
if-conversion) for des. We propose an algorithm for finding
a solution to this problem in the next section.

Note that, by describing the problem this way, we do not
deal with whether the applied transformations yield the code
with the best performance (this can only be verified after
compilation and simulation are complete), but only that
they expose the best-gaining ISE to an exact ISE identifi-
cation algorithm, a property that can be verified during the
immediately following step of ISE identification. This is a
very effective way of formulating a problem which is inher-
ently difficult to treat in a general way. In fact, the speedup
opportunities that ISE offer are high enough that the best
ISE can be assumed to generate the best-performing code
as well; possible counterexamples are discussed in section 6.

244

for (...) {

if (...) {

}

}

A

B

B

A

....

....

if (...)

for (...) {}

else

A

B

for (...) {}C

yes no

0totaltotal 0

....
....

....

00

....
02

22

A

C

B

....

b)

a)

Figure 4: Transformation space, for two examples:
crc(a) and des (b). For every spot in the application
where a transformation can be triggered (labeled as
A and B in the first code snippet, and A, B and C in
the second), a decision has to be taken on whether to
apply the transformation, and how, e.g. with which
factor in the case of unrolling. Each leaf represents a
transformed CDFG’, semantically equivalent to the
initial one. Different leaves expose different poten-
tial to ISE.

Figure 5 details part of the transformation space for crc
(three of the 6 possible leaves), showing how different points
in the space expose different potential to ISE. Indeed, ISE
identification can find different custom-instructions in each
case—depicted as a shaded oval—and each will provide a
different cycle saving. The best point, solution to the prob-
lem above, is given by the bottom-left CDFG’, as it con-
tains the best-performing custom-instruction, as anticipated
in the motivational example. Note that the transformations
leading to it are not necessarily the right choice for a com-
piler which does not target a customizable processor.

4. METHODOLOGY
We propose a solution to problem 1 that considers two

compiler transformations: loop unrolling (total and par-
tial) and if-conversion. While these transformations are well
known, we propose different heuristics from traditional ones
to decide when they should be applied. Indeed, we experi-
mentally show that such strategies are different from existing
ones, which means that the trivial solution of applying ISE
identification at the end of the optimization pipeline does
not necessarily yield the best performance.

A (if conv)

2
8

(tot)
4

B (unroll)

0

noyes

...

...

Figure 5: Details of the transformation space for
crc, depicting 3 of the 6 possible transformed CD-
FGs. Each of them exposes a different ISE potential,
the best being represented by the if-converted and
totally unrolled one.

Of course an obvious solution to problem 1 is to exhaus-
tively explore the transformation space, applying ISE se-
lection to each point, and then selecting the one yielding
maximum gain. However this solution is not viable when
many transformation spots are considered, and in addition,
it has the drawback of possibly applying ISE to points corre-
sponding to huge basic blocks, perhaps resulting from total
unrolling. Therefore it is essential to anticipate which points
can be eliminated from the search.

In fact, the solution we propose actually applies ISE iden-
tification to a single point only, and then is able to select,
after the single ISE pass, the one point that is the solution
to problem 1.

The steps we propose are the following

1. Select a single point in the space, to which ISE iden-
tification will later be applied. This corresponds to
traversing once the transformation space, taking a de-
cision at each level, in order to reach a leaf. The rules
for taking such decisions depend on the transformation
type, and are explained in the following subsections.

2. Apply an exact ISE identification algorithm [2] to the
CDFG’ corresponding to the chosen point.

3. Analyze the ISE chosen and identify the transforma-
tions actually exploited by it. Select as a winner point
the one corresponding to those transformations.

This is better understood by looking at figure 6, based
again on the crc motivational example. Step 1 of the algo-
rithm described above selects the leftmost leaf of the tree
(indicated with a square) as the one to be fed to ISE iden-
tification. This corresponds to an if-converted and totally

245

....

....

yes no

0totaltotal 0

a) b) d)

....

....

yes no

0totaltotal 02

c)

2
22

....

....

yes no

0totaltotal 02

e)

2

STEP 1 STEP 2 STEP 3

Figure 6: A snapshot of the algorithm, on the crc example. a) In step 1, a leaf is chosen as the single CDFG
to which ISE is applied. b) In step 2, an ISE is identified. It contains nodes from first and last iteration
c) step 3 therefore detects that loop unrolling is exploited, and commits the total-unrolling choice. Since
edges to the multiplexer are also included in the ISE, steps 3 detects that if-conversion is also exploited, and
commits the choice. As a result, the leftmost leaf is the winner. d) In case the identified ISE only spans 2
iterations instead, e) only an unrolling of 2 is committed and a different point is selected as the winner.

unrolled CDFG. The rules leading to this decision are ex-
plained in the following subsections.

Then, ISE identification is applied to it during step 2, and
in figure 6(b) it can be seen that the identified ISE spans
across the entire basic block. Analysis of the ISE shows
that it contains nodes from the first and the last iteration.
Because of this, total unrolling is committed during step
3: in fact, this signifies that the transformation has been
“exploited” by ISE identification. Additionally, the identi-
fied ISE includes edges that reach into a multiplexer. Such
edges are created by if-conversion; therefore, this transfor-
mation was also useful, and is committed. The leftmost leaf,
circled in figure 6(c)—the same that ISE identification was
run on—is then selected as the winner point.

Figure 6(d) shows a different case, in which the identified
ISE spans across first and second iteration only (in this case
an isomorphic one is also found across 3-4, 5-6, and 7-8).
In this case, an unrolling factor of 2 is enough to expose
the best ISE, and a different point, circled in figure 6(e), is
selected as the winner.

One important concept in this algorithm is that perform-
ing ISE selection on a single point of the transformation
space is sufficient to actually evaluate multiple points.

In the following, we detail each transformation, and we
also show how we determine an upper threshold on the un-
rolling factor, above which additional ISEs will not be ex-
posed.

Our implementation relies on the CDFGs being in static
single assignment form [4]. Each variable is subscripted, and
a different subscript is used for each assignment. Addition-
ally, the compiler inserts special definitions at control flow
junctions (φ functions); these represent different values that
the variable can assume, depending on the incoming edge
that is followed. This permits a very simple implementation
of if-conversion and induction variable analysis.

4.1 If-conversion
An if-conversion pass can be beneficial to the creation of

better ISEs, as it can expose additional parallelism and ex-
ploit multiplexers in the synthesized functional units. How-
ever, unconditional if-conversion can have adverse effects on
performance. After if-conversion, the then and else branches
will always execute, and this may induce a greater penalty
than removing one or more branches. For a simple, non-

superscalar processor, this may happen if the sizes and fre-
quencies of the two branches are heavily skewed: in other
words, if one branch is much bigger and also rarely executed.

In fact, even when the architecture supports predi-
cated execution, traditional compilers usually perform if-
conversion only if the then and else branches consist of very
few instructions. In our case, the compiler can attempt if-
conversion unconditionally, and then roll back the transfor-
mation if no ISE will benefit from it.

We can apply if-conversion whenever we find a CDFG re-
gion composed of three or four basic blocks and satisfying
topology constraints—in this case, the compiler can take a
left-branch in the transformation space, during step 1 of the
proposed algorithm. The basic blocks must be connected
appropriately to represent if-then or if-then-else constructs,
with a header, a junction, and one or two conditionally ex-
ecuted blocks. The junction will be the sole exit of the re-
gion; note that (unlike the conditionally executed blocks)
the junction may have predecessors coming outside the re-
gion1. Furthermore, the conditionally executed blocks must
not contain any memory access or procedure call, and their
outputs must be used only in the junction block’s φ function.

If-conversion merges the header with the conditional
blocks, and possibly with the junction as well. When nec-
essary, outputs in one of the graphs may be merged with
inputs in the other graphs. New nodes are created for the
junction block’s φ function, and connected to the conditional
blocks’ outputs. If an ISE includes a newly created edge, the
compiler finalizes the if-conversion by committing it on its
SSA-based intermediate representation: that is, the com-
piler takes a left branch in the transformation space (during
step 3 of the algorithm).

Figure 7 details all the steps of this transformation. Fig-
ure 7(a) is the CDFG version of the code in figure 2(b).
Figure 7(b) shows the single bigger basic block, which is
exposed to the ISE selection pass after the transformation.
The DFG includes, in the left half, a good candidate for a 3
input, 2 output ISE that includes a multiplexer. Figure 7(c)
and (d) show the compiler’s internal representation for this

1This is acceptable because we are only interested in its
φ functions, not in its code. We will only examine two φ
arguments, coming from the other blocks in the if-converted
region.

246

program before and after if-conversion is committed. Here,
crc5 is changed from a φ function to a multiplexer, repre-
sented by the C language’s ternary operator ?:.

4.2 Unrolling
Unrolling can expose ISE in two ways. A single, discon-

nected multiple-output ISE can span across multiple itera-
tions, performing them in parallel (we call this an opportu-
nity for horizontal unrolling) or, if loop carried dependences
exist, a single connected ISE can chain multiple iterations
(vertical unrolling).

Step 1 of the proposed algorithm requires the compiler to
choose an unrolling factor at every level of the transforma-
tion tree. This corresponds to a factor that is foreseen to
be the maximum one, above which no further ISE potential
can be exposed.

For spots that consist of a single basic block, with a self-
loop and only one additional outgoing edge, the whole loop
body may be covered with a single ISE. The compiler checks
if this is possible, and computes the highest value of the un-
rolling factor n for which this condition holds. The following
sets are obtained from the data-flow graph and φ functions
of the loop body:

Hin the inputs that must be provided to the ISE for each
iteration. This is the number of operations in the ba-
sic block that cannot be computed in hardware: for
example, memory accesses or results of function calls.

Hout the outputs that the ISE should yield on each itera-
tion. Again, these follow from language characteristics
that cannot be mapped to hardware: in this case, val-
ues that are passed to subroutines or written back to
memory.

Vin the inputs that are connected to an output without
passing through a node in Hin. When the loop is un-
rolled, only one value every n needs to be passed to the
ISE. The ISE can compute the values of these inputs
autonomously for the n−1 unrolled copies of the loop.

Vout the outputs reachable from the inputs in Vin without
passing through a node in Hin. Likewise, the program
need not receive the value of these outputs from the
ISE, except for iterations n, 2n, etc.

Tin the subset of Vin nodes that have a constant value at the
beginning of the loop. If the loop is totally unrolled,
the initial value of these inputs can be hard-coded in
the ISE.

Tout the subset of Vout nodes that are dead at the end of the
loop. If the loop is totally unrolled, the final value of
these outputs need not be communicated back to the
program. For example, the loop index usually con-
tributes to both Tin and Tout.

For example, the CDFG in figure 7(b) has Hin = Hout = ∅
because it does not contain any subroutine call or mem-
ory access. Vin includes all 3 inputs i, data and crc. Vout

includes all 4 outputs (thick-bordered nodes). From fig-
ure 7(d) we see that Tin contains only i1, defined by a φ
function whose value is zero at the beginning of the loop.
Tout contains i2, data3 and exit1 which are dead at the end
of the loop.

|Hin| and |Hout| pose a strong limit on the unrolling fac-
tor, above which an ISE will not cover all unrolled iterations.
Horizontal unrolling puts two or more identical blocks in the
same ISE, so that they are executed in parallel. Having |Hin|
inputs and |Hout| outputs on each iterations means that, af-
ter unrolling by a factor of n, the ISE would need n|Hin|
inputs and n|Hout| outputs.

Completing this reasoning, we obtain useful inequalities
that reduce the transformation space exploration. These
provide an upper limit to the unrolling factor, above which
no further benefit can be exposed to the ISE selection pass.

If a loop is unrolled partially by a factor of n, a hypo-
thetical ISE that covers the whole loop body will have the
following number of inputs and outputs:

totin = n|Hin| + |Vin| (1)

totout = n|Hout| + |Vout| (2)

If the loop is totally unrolled, instead, the number of in-
puts and outputs will be lower:

totin = n|Hin| + |Vin| − |Tin| (3)

totout = n|Hout| + |Vout| − |Tout| (4)

Now, we transform the equations above into inequali-
ties by noticing that totin and totout should not exceed
the number of maximum inputs and outputs allowed for an
ISE. These inequalities effectively prune the transformation
search space, because they limit the number of unrolling
factors that need to be explored.

The compiler, during step 1 of the proposed algorithm,
will pick the highest integral n that satisfies the above in-
equalities and that, for a loop rolling a constant number
times, divides the number of iterations. If no value of n is
a solution, no ISE can cover the whole loop body. Then,
the compiler will still unroll the loop by 2, to look for small
ISEs across loop iterations—remember that unrolling is not
definitive until an ISE is found that can exploit it.

In the case of figure 7(a) we have totin = 2 and totout = 1.
This means that the whole loop can be placed into an ISE
with an input/output constraint equal to 2-1, and the com-
piler will perform total unrolling of the loop. If the program
includes other code that is hotter, the loop might not be
placed in an application-specific functional unit, and un-
rolling will not be committed in the compiler’s intermediate
representation. If the ISE is chosen, however, the processor
will be able to update the CRC in a single clock-cycle and
without any memory access.

Unrolling is easily performed on the data-flow graph.
First, multiple copies of the loop are created and juxtaposed
in the same graph. Then, we create edges between each of
the copies’ outputs and the next copy’s inputs. In case of
total unrolling, inputs that are constant in the first itera-
tion are hard-coded. Both these operations are easily done
by looking up the region’s φ functions.

5. EXPERIMENTAL SETUP
We implemented our techniques on top of the GCC devel-

opment trunk (which will become GCC 4.2 in the beginning
of 2007), and of the most recent available version of Sim-
pleScalar/ARM. Our extension of SimpleScalar can accept
the definitions of up to seven ISEs, each with up to four

247

1

1

>>

datacrc

^

crc1

>>

crc 4002

8000

^

|

&

==

1

1

>>

1

8

i

+

<

a)

1

1

>>

data
crc

^1

>>

4002

8000

^

|

&

==

1

1

>> 1

8

i

+

<

b)

〈bb1〉
i1 = φ(0, i2)
data2 = φ(data1, data3)
crc2 = φ(crc1, crc5)
x1 = (data2 ˆ crc2) & 1
data3 = data2 >> 1
if (x1 == 1) goto 〈bb2〉 else goto 〈bb3〉

〈bb2〉
crc3 = ((crc2 ˆ 0x4002) >> 1) | 0x8000
goto 〈bb4〉

〈bb3〉
crc4 = crc2 >> 1
goto 〈bb4〉

〈bb4〉
crc5 = φ(crc3, crc4)
i2 = i1 + 1
exit1 = i2 < 8
if (exit1) goto 〈bb1〉

〈bb5〉
return crc5

c)

〈bb1〉
i1 = φ(0, i2)
data2 = φ(data1, data3)
crc2 = φ(crc1, crc5)
x1 = (data2 ˆ crc2) & 1
data3 = data2 >> 1
crc3 = ((crc2 ˆ 0x4002) >> 1) | 0x8000
crc4 = crc2 >> 1
crc5 = (x1 == 1) ? crc3 : crc4

i2 = i1 + 1
exit1 = i2 < 8
if (exit1) goto 〈bb1〉

〈bb5〉
return crc5

d)

Figure 7: a) CDFG of the crc example after the compiler’s scalar optimization passes; b) after if-conversion, the
CDFG is replaced by a single basic block; c) SSA representation before if-conversion; d) SSA representation
after if-conversion. Nodes with a double border are output nodes.

inputs and up to two outputs; ISE descriptions are written
in C and dynamically linked to the simulator. Dually, we
augmented the compiler’s machine description to match our
changes to the simulator.

The compiler includes the ISE identification algorithm
called Iterative, described in [3] and refined in [2], and uses it
to choose the best seven ISEs. It can solve the ISE identifi-
cation problem for basic blocks of up to around 1000 nodes.
Our merit function is an estimate of the speedup; it is ob-
tained from profile-derived execution frequencies, from the
instruction count of the subgraph, and from the estimated
latency of the ISE hardware implementation. The compiler
can include read-only memories in ISEs, as in [5].

After ISE selection, the compiler can also emit C code for
the instructions which SimpleScalar will dynamically link to.
The tool is able to find multiple occurrences of an ISE within
the same basic block, but the identified custom instructions

are not reused by GCC in other places in the code. On
the other hand, the ISE identification algorithm we adopted
pushes for largest, best performing ISEs, regardless of size.
Reuse across basic blocks is therefore unusual. This is in
contrast with other ISE identification techniques, such as
fusion by Tensilica [6], that tend to identify small, reusable
ISEs.

The implementation of if-conversion and loop unrolling
is based on the Tree-SSA optimization framework. This is
available since GCC 4.0 and provides a well tuned set of ba-
sic compiler construction blocks which is also relatively easy
to use. Tree-SSA supports static single assignment form,
alias analysis, and a diverse set of scalar and loop optimiza-
tions. These ARM back-end is produces good-quality code
and is easy to extend.

We present results for a series of benchmarks taken from
the MiBench [7] suites. We selected benchmarks that have

248

XScale
Branch predictor 8k bimodal, 2k 4-way BTB
Fetch queue 4 instructions
Fetch/decode width 1 instruction
Issue width 1 instruction, in-order
L1 i-cache 32k, 32-way set-assoc.
L1 d-cache 32k, 32-way set-assoc.
L2 cache None
Memory bus width 32-bit
Memory latency 12 cycles

Table 1: Configuring SimpleScalar for a popular ARM implementation

if-conversion ISE-targeted unrolling traditional unrolling
rawcaudio yes no no
rawdaudio yes no no
aes no yes yes
aes-table no no yes
blowfish no no yes
des no yes no
sha no yes yes
bitcount no yes yes
crc yes yes yesa

aOn a customizable processor, however, eligible loops are totally unrolled during ISE formation.

Table 2: Transformations that trigger during compilation of the benchmarks.
Traditional unrolling may still trigger after ISE identification decreases the loops’ size.

a small kernel, typically consisting of a single function, and
that have little or no initialization code. This helps identi-
fying clearly the speedup that can be obtained from intro-
ducing extensions to the instruction set.

We added two benchmarks to those taken from MiBench.
One is an AES implementation that, unlike the one in
MiBench, uses bit manipulation instead of precomputed ta-
bles. The other one is the motivational example in figure 2.

All these benchmarks were compiled with GCC’s -O2 opti-
mization level, enabling feedback-directed optimization and
inter-procedural analysis2. Note that GCC’s usual unrolling
heuristics are not disabled: this is because, as previously
mentioned, code size reduction due to ISEs may cause them
to trigger more often.

We tuned SimpleScalar to match the architecture of the
XScale, a commonly used, relatively high-end, ARM im-
plementation. As shown in table 1, this is a single-issue
processors with in-order execution. The latency and area
of custom instructions were estimated using Artisan UMC
0.18μm technology. We allowed the introduction of hard-
ware lookup tables in the ISE, that are synthesized from
read-only global arrays if it is found profitable.

We considered the processor’s cycle time to be the latency
of a 32-bit multiply-accumulate cell. ISEs with longer la-
tencies have an execution stage during multiple cycles. The
same datasets were used for the profiling run and for the
optimized run. Each experiment was run once because the
results are deterministic.

2These are activated using the GCC options -fprofile-use
-fwhole-program -fipa-cp.

6. RESULTS
Figure 8 shows the result of running the benchmarks on

an augmented XScale. For the first bar, ISEs were identified
without transforming the CDFGs, while for the second one,
our ISE-targeted transformation strategies were enabled. It
can be noticed that the proposed strategies can improve
performance tangibly (hatched over solid bar), up to 4x for
crc, and 1.55x on average.

In one benchmark only, des, performance is not improved.
This is due to the fact that while the ISE identification algo-
rithm used is exact in selecting a single ISE in a single basic
block, it is actually greedy in selecting multiple ISEs, i.e. it
is greedy in the covering phase. This is further elaborated
later in the text.

Table 2 shows the set of transformations that the com-
piler picks for each benchmark. Encryption benchmarks
are especially suited to unrolling, because they are com-
posed of many identical rounds. The motivational example
in section 2 shows a performance gain from CDFG trans-
formations close to 4x. As expected, both transformations
improve performance on this benchmark. Other tests usu-
ally benefit from either if-conversion or loop unrolling, but
not both. The inner loops in rawcaudio and rawdaudio span
more than one basic block even after if-conversion, and thus
are not unrolled; on the other hand, if-conversion gives a
substantial improvement. Most crypto benchmarks do not
benefit from if-conversion as their inner loops mostly consist
of table lookups. If these tables are constant, the compiler
will move them inside the ISEs: for this reason, these appli-
cations can achieve speedups as high as crc, but only at a
substantial area cost.

249

 0

 1

 2

 3

 4

 5

 6

 7

 8
sp

ee
du

p

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

blo
wfis

h
de

s
sh

a

bit
co

un
t

cr
c

AFU
AFU+CFG

Figure 8: Speedup obtained on customizable proces-
sors, without (solid), and with CFG transformations
(hatched).

 0

 1

 2

 3

 4

 5

 6

ar
ea

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

blo
wfis

h
de

s
sh

a

bit
co

un
t

cr
c

AFU
AFU+CFG

Figure 9: Area cost of the AFUs that were gener-
ated without (solid), and with CFG transformations
(hatched).

 1

 1.4

 1.8

 2.2

 2.6

 3

 3.4

 3.8

 4.2

sp
ee

du
p

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

blo
wfis

h
de

s
sh

a

bit
co

un
t

cr
c

no AFU
AFU

Figure 10: Speedup obtained by CFG transforma-
tions, on vanilla versus customizable processors.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

sp
ee

du
p

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

blo
wfis

h
de

s
sh

a

bit
co

un
t

cr
c

GCC heuristics
our heuristics

Figure 11: Comparison between GCC’s and our
heuristics for if-conversion and unrolling, on a non-
customizable XScale processor.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

co
de

 s
iz

e
ra

tio

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

blo
wfis

h
de

s
sh

a

bit
co

un
t

cr
c

unroll, no AFU
AFU

ifconv, unroll, AFU

Figure 12: Code size on a non-customizable proces-
sor with unrolling, and on a customizable processor
without and with CFG transformation.
1.0 = non-customizable processor, no unrolling.

250

Figure 9 shows the area needed by ISEs for all bench-
marks. In most cases, the identified ISEs include ROMs.
These can be up to 2 kbit in size, and each have up to four
ports. Our toolchain does not take into account area in order
to choose the best ISE; however, these figures are probably
overestimated because they assume that ROMs are imple-
mented with multiplexers, and do not take into account block
memories that might be built into reconfigurable fabrics.

Loop unrolling introduces good speedups on benchmarks
where it is triggered. des is an exception, with the speedup
falling from 4.6x to 4.2x. This is a second-order effect due
to the fact that while the ISE identification algorithm used
is exact in the selection of a single ISE, it is not exact in
the selection of multiple ones. Therefore, even though the
chosen unrolling strategy does expose a higher-performance
ISE, during the choice of the subsequent ones the limit of
seven is met while still leaving the DES initial permutation
outside the hardware. For more stringent input/output con-
straints than 4-2, unrolling opportunities are more limited
and the performance dip disappears.

Figure 10 compares the speedup that control flow trans-
formations achieve on a customizable processor, with the
speedup that they achieve on a standard ARM. For the cus-
tomizable processor, we take the input/output constraint
which performs best, and speedup is computed as the ratio
between this and the speed without CDFG transformations.
For benchmarks such as aes, the speedups are smaller com-
pared to the 6x leap determined by the introduction of ISEs;
but in general, control-flow transformations are a good bet
on customized processors.

Also, while not directly related to the techniques we de-
scribe, it is interesting that after ISEs are selected the com-
piler may choose to unroll more loops because ISEs cause
code size reduction—sometimes the very loops that were al-
ready unrolled by our pass. Indeed, the plots in figure 12
show the code size reduction benefits of an extended instruc-
tion set, and how these still hold when CDFG transforma-
tions are applied. Of course, unrolling will yield larger code;
still, for many benchmarks, the code size improvement from
instruction set extensions offsets the greater footprint of un-
rolled loops.

Compilation time changes are not plotted because they
were mostly in the noise. ISE search usually took just a
few milliseconds; it took about 40% of the compilation time
only for the two AES implementations, since they have large
basic blocks where the nodes are interconnected in complex
ways. The cost of ISE search did not change substantially
on any benchmark when our transformations were enabled.

Finally, figure 11 validates our claim that traditional com-
piler strategies for standard (non-customizable) processors
are not suitable for exposing ISEs, and that there is need
for the ISE-aware strategies proposed here. For each bench-
mark, the transformed CDFGs that maximized customized
processor performance (i.e. corresponding to the selected
transformation point) were generated, but the code was then
compiled for a non-extensible ARM processor; the resulting
performance is shown in the second bar. The first bar, in-
stead, shows the performance of code generated by an un-
modified, traditional compiler. As it can be seen, our trans-
formation strategies often causes worse performance, show-
ing that compilation strategies that maximize customizable
processors performance cannot be easily reconciled with
those used in standard processor compilation.

This is due to worse register allocation for sha and bit-
count, and to excessive usage of conditional execution for
rawcaudio and rawdaudio. In the case of blowfish, our heuris-
tics are better because GCC’s choice of unrolling factor
causes too many i-cache misses. In the case of crc, the com-
piler missed the clear opportunity to use conditional execu-
tion; this has been reported to the GCC developers.

7. RELATED WORK
The work in this paper touches on two aspects: compiler

transformations targeted towards customizable processors,
and improved ISE identification. We will analyze related
work on both aspects.

Techniques like loop unrolling and if-conversion have been
studied extensively in the past, in the context of RISC or
VLIW processors [8, 9], in order to increase instruction level
parallelism. This work shows that the heuristics that guide
them are not always suitable to customizable processors
compilation, and it is the first to propose strategies par-
ticularly targeted to exposing Instruction Set Extensions.

The problem of ISE identification is that of analyzing ap-
plication source code in order to find application segments—
subgraphs of the basic blocks of the application—that would
benefit from being implemented as a custom instruction. In
the last decade several methods have been proposed to pro-
vide a solution to this problem [10, 6, 2, 11, 12]. However,
none of them focuses on how control-flow transformations
could expose better instruction set extensions. Typically ISE
search is run on basic blocks obtained from straightforward
front-end compilation of source code. The work presented
here, on the other hand, can use any of the methods men-
tioned above to identify efficient ISEs, after the the inter-
mediate representation is transformed in order to expose the
best potentials.

One work [13] represents an exception since it does apply
hyperblock formation in the context of automatic genera-
tion of hardware accelerators. However, the present work’s
aims are more ambitious and generally applicable as we for-
mally study the problem of how compiler transformations
can beneficially affect ISE generation, and we provide strate-
gies specifically targeted to extensible processors, which dif-
fer from those seen up to now.

In [5], inclusion of writable memory onto instruction-set
extensions is considered. The method presented here is or-
thogonal to extensions of that kind, that is, we propose
compiler transformations that expose better identification
of ISE, and that are also beneficial when memory opera-
tions are allowed in the ISE.

[14] suggests a different, more dynamic acceleration de-
vice. A Configurable Compute Accelerator can be config-
ured on the fly to implement a sequence of non-accelerated
instructions; since the device’s interconnections are fixed,
there are constraints on the input/output ports, as well as
the maximum depth of the implemented subgraph. The au-
thors describe a code motion algorithm that increases the
size of the data-flow subgraphs to be executed in hardware.
This technique could be applied to CDFGs together with the
other transformations we describe in this paper. Dually, our
techniques could be applied to a CCA-based architecture.

An important point to consider is the placement of the
ISE selection pass within the rest of the compiler. Custom
Processor producers such as Tensilica [15] or ARC [16] offer
tools that work on the source code and aid the designer in

251

selecting and implementing extensions to their microproces-
sors. At the other end of the spectrum, Clark proposes to
select ISE near the end of the compiler pipeline [12].

In general, the problem of compilation phase ordering is a
significant part of automating ISE design. Just like different
phase orderings can have a significant impact on the quality
of the compiled code, different placement of ISE selection in
the compiler pipeline may result in a very different choice
of extended instructions. In our case, the compiler performs
ISE selection before all the low-level optimizations that GCC
performs on its RTL representation.

However, our solution to problem 1 basically extends ISE
selection with a pre-pass that includes CFG transformations;
this is orthogonal to when in the compilation process the
selection takes place. Techniques such as [17] can be used to
find the optimal sequence of optimization passes for a given
user application. Alternatively, [18] employs a probabilistic
approach to determine good phase orderings.

8. CONCLUSIONS
In order for a customized processor solution to be a win-

ner, automation at various levels of the design is of the ut-
most importance. This paper deals with the compilation
of embedded applications onto Instruction Set Extensible
processor. Compilation takes a new meaning, where the
compiler chooses the instruction set of the target processor,
then compiles onto it. Given this scenario, we claim that
traditional compiler techniques are not sufficient anymore.
Instead, ISE-targeted code transformations should be devel-
oped to expose better performing custom instructions.

We formalize the problem of ISE-targeted code trans-
formation and propose an efficient solution considering if-
conversion and loop unrolling. Cycle accurate results are
presented using GCC and SimpleScalar, and show how the
benefit of ISE can increase if appropriate control-flow trans-
formations are performed. On a standard XScale micropro-
cessor, the same transformations are often slightly detrimen-
tal, demonstrating ISE-targeted strategies to be different
from traditional compiler heuristics.

Future work in the area of customizable processors com-
pilation will have to address several open problems. It can
be fruitful to extend this technique to other typical compiler
optimizations, for example tail duplication or SIMD vector-
ization. This, however, will complicate the structure of the
transformation space, so that our current algorithm may no
longer be applicable. Additionally, we have not attempted
yet to control the cost of the hardware identified by the ISE
identification algorithm. This problem is more important
as our techniques increase the possible size of the chosen
functional units.

The emerging of customizable processors puts the com-
piler in a new central role. However, this new perspective
poses several challenges to the compiler writer. Addressing
these problems will be a key step towards making automated
design a viable option.

9. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

useful comments on earlier drafts of this paper.

10. REFERENCES
[1] T. R. Halfhill, “EEMBC releases first benchmarks,”

Microprocessor Report, 1 May 2000.

[2] L. Pozzi, K. Atasu, and P. Ienne, “Optimal and approximate
algorithms for the extension of embedded processor instruction
sets,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. CAD-25, no. 7, pp.
1209–29, July 2006.

[3] K. Atasu, L. Pozzi, and P. Ienne, “Automatic
application-specific instruction-set extensions under
microarchitectural constraints,” in Proceedings of the 40th
Design Automation Conference, Anaheim, Calif., June 2003,
pp. 256–61.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 13,
no. 4, pp. 451–490, October 1991.

[5] P. Biswas, N. Dutt, P. Ienne, and L. Pozzi, “Automatic
identification of application-specific functional units with
architecturally visible storage,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition,
Munich, Mar. 2006, pp. 212–217.

[6] D. Goodwin and D. Petkov, “Automatic generation of
application specific processors,” in Proceedings of the
International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems, San Jose, Calif., Oct. 2003,
pp. 137–147.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization, Dec. 2001.
[Online]. Available:
http://www.eecs.umich.edu/mibench/Publications/MiBench.pdf

[8] M. S. Lam and R. P. Wilson, “Limits of control flow on
parallelism,” in Proceedings of the 19th Annual International
Symposium on Computer Architecture. Gold Coast,
Australia: ACM and IEEE Computer Society, 1992, pp. 46–57.

[9] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated
execution using the hyperblock,” in MICRO 25: Proceedings
of the 25th Annual International Symposium on
Microarchitecture, Portland, Oreg., Dec. 1992, pp. 45–54.

[10] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh,
“Instruction generation for hybrid reconfigurable systems,”
ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 7, no. 4, pp. 605–27, Oct. 2002.

[11] P. Yu and T. Mitra, “Scalable custom instructions
identification for instruction set extensible processors,” in
Proceedings of the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems,
Washington, D.C., Sept. 2004, pp. 69–78.

[12] N. Clark, H. Zhong, and S. Mahlke, “Automated custom
instruction generation for domain-specific processor
acceleration,” IEEE Transactions on Computers, vol. 54,
no. 10, pp. 1258–70, Oct. 2005.

[13] T. J. Callahan and J. Wawrzynek, “Instruction level parallelism
for reconfigurable computing,” in Field-Programmable Logic:
From FPGAs to Computing Paradigm, ser. Lecture Notes in
Computer Science, R. W. Hartenstein and A. Keevallik, Eds.,
vol. 1482. Berlin: Springer, Aug. 1998, pp. 248–57.

[14] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and
K. Flautner, “An architecture framework for transparent
instruction set customization in embedded processors.” in
Proceedings of the 32st Annual International Symposium on
Computer Architecture, Madison, Wisconsin, June 2005.

[15] T. R. Halfhill, “Tensilica’s software makes hardware,”
Microprocessor Report, 23 June 2003.

[16] ——, “ARC Cores encourages “plug-ins”,” Microprocessor
Report, 19 June 2000.

[17] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman, “ACME:
Adaptive Compilation Made Efficient,” in Proceedings of the
2005 ACM Conference on Languages, Compilers, and Tools
for Embedded Systems. New York, NY, USA: ACM Press,
June 2005, pp. 69–77.

[18] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson, “In search
of near-optimal optimization phase orderings,” in Proceedings
of the 2006 ACM Conference on Languages, Compilers, and
Tools for Embedded Systems, June 2006, pp. 83–92.

252

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

