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ABSTRACT
Multitasking is one of capabilities we often want to have in memory-
constrained embedded systems. To support multiple address spaces
within a small physical memory, a simple memory management
frequently encounters the lack of available memory. Our paper
presents an efficient heap memory management scheme that re-
duces memory footprints by adaptively sharing heaps among mul-
tiple tasks in JVM environments. We modified KVM from Sun
Microsystems so that Java applications acquire or release heaps in
a shared pool on an as-needed basis. To protect address spaces
among tasks in the absence of virtual memory capabilities, we use
memory protection units (MPUs) by incorporating them into our
heap sharing scheme. Our experiments with J2ME MIDP applica-
tions show significant reductions by 33% on average, ranging from
6% to 50% in memory usage over the execution. The overheads of
our scheme in garbage collection are kept low. The execution times
in our scheme increase only by 0.2% on average.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—dynamic storage management; D.3.4 [Programming Lan-
guages]: Processors—memory management(garbage collection);
D.3.4 [Operating systems]: Storage Management—allocation/ deal-
location strategies, garbage collection, virtual memory

General Terms
Performance, Design

Keywords
dynamic memory management, memory protection unit, garbage
collection, heap sharing
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1. INTRODUCTION
Multitasking is a growing trend in many small embedded sys-

tems. In spite of advances in processors and operating systems,
many embedded systems are suffering from the limited size of phys-
ical memory and the lack of virtual memory capabilities, which im-
pedes both the flexible execution and rapid development of appli-
cation software. Without virtual memory, all application programs
should run within the given physical memory area. Since com-
pilers and linkers usually generate code on a contiguous address
space, applications are provided with the same-sized contiguous
physical memory space to minimize modifications to the code gen-
eration tools (refer to Figure 1 (a)). Evenly distributing memory
space to all applications, however, may result in inefficient usage
of memory in multitasking. One program can be aborted due to
the shortage of memory while another program runs only partially
using allocated memory. We often observe that the amount of live
objects changes over the execution and the peak of memory usage
lasts only for a short period. Considering the changes in memory
usage, we can build a more effective memory management for mul-
titasking by giving surplus memory of one task to another memory-
hungry task. Since the amount of memory used in the heap segment
is dominant over those in code, data and stack segments, our study
focuses on reducing the amount of memory spent in the heap. To
realize our focused goal, we propose a method for sharing heap
memory among multiple applications. The target systems for our
study are the small embedded devices that lack the virtual memory
capability. Figure 1 (b) depicts the conceptual design of memory
usage. The operating system provides a contiguous address area
for code, data and stack, while it provides heap with fragmented
areas out of a shared pool. Note that a task can have more than one
non-contiguous heap areas.

Allocating heap in a shared pool without the virtual memory ca-
pability incurs several problems such as: (1) how a task seamlessly
manages multiple fragmented heap areas, (2) how large each heap
area should be, (3) when heap areas should be given to and re-
claimed from applications, and (4) how we protect memory address
space including all heap areas from other programs’ undesirable ac-
cesses. Our proposed scheme fully resolves all these problems. We
modified KVM [8] from Sun Microsystems to manage the frag-
mented heap areas. Our modified KVM acquires heap areas and
releases the heap areas with proper granularity as the heap mem-
ory usage changes. We protect address space by incorporating the
protection mechanism of the memory protection unit (MPU) from
ARM processors into our heap sharing scheme. The MPU can pro-
tect multiple memory segments at lower costs than the memory
management unit (MMU), and is adequate for multitasking in the
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Figure 1: (a) simple memory assignment, (b) heap sharing
among multiple tasks

embedded systems with no virtual memory support. The MPU as-
sociates a memory area to a protection domain which imposes an
access criterion to that area. Most modern processors provide at
least two modes of operation: user mode and privileged mode. By
comparing the access permissions of associated domains with cur-
rent operation modes of processors, the MPU examines whether the
accesses to the corresponding memory areas are legal.

Sharing heaps and protecting fragmented heaps, our proposed
memory scheme achieves the following goals.

• It reduces a considerable amount of memory footprint by
smartly exploiting the phases in memory usage pattern of ap-
plication programs.

• It protects all fragmented address spaces of a program using
the MPU.

• It shows almost no increase in execution time by carefully
triggering garbage collections and live object compactions.

The remainder of this paper is organized as follows. We provide an
overview of our method for sharing a heap among multiple appli-
cations in Section 2. We describe the design and implementation of
our memory management scheme in Section 3. We experimentally
examine the effectiveness of our scheme in Section 4. Finally we
discuss related work and conclude this paper.

2. HEAP SHARING AND PROTECTION

2.1 Allocating Heaps from A Shared Pool
Tasks in multitasking environment often have different memory

requirements in size. Suppose there are three tasks to run together
on a device equipped with 256 KB heap memory and each of them
uses up to 64 KB, 96 KB, 128 KB heap memory, respectively. To
focus our discussion on heap we assume the memory required for
code, data, and stack is allocated outside the 256 KB heap memory.
Using a simple area assignment, tasks need to secure contiguous
memory areas of at least 64 KB, 96 KB, and 128 KB, respectively.
Since those three areas cannot fit in 256 KB heap memory (256 <
64+96+128), one of the tasks cannot start due to the shortage of
memory if we simultaneously launch all three tasks.
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Figure 2: Acquisitions and releases of heap areas out of the
shared pool for three simultaneous tasks.

On the other hand, if tasks begin with only the required amount
of memory for their starts and adaptively acquire and release mem-
ory on an as-needed basis, we may be able to launch all three tasks
and execute them to the end within the 256KB memory. Figure 2
illustrates the described situation. Task 1, task 2 and task 3 start
with 32 KB, 32 KB, and 64 KB heaps, respectively at state 1. Each
of them acquires another heap area based on its need at state 2 and
3. Task 1 releases one of its heap areas at state 4, which is used by
task 2 later at state 5. Note that a fragmented heap area is shared
between two tasks. The heap fragment marked with a bold rectan-
gle in state 5 is once occupied by task 1 and later by task 2. In this
way of sharing, task 1 gives its surplus heap memory to task 2.

2.2 Address Space Protection for Individual
Tasks

Fully utilizing the facility of MPUs, we protect fragmented ad-
dress areas of one task. MPUs provide an effective address space
protection even though they do not support virtual memory systems
as the MMUs do. MPUs associate an address area with a region
which grants an access right such as no-access, read-only, and read-
write to that address area. Several ARM cores such as ARM740T,
ARM940T, ARM946E-S and ARM1026EJ-S are equipped with
the MPUs [3]. There are slight variations in the MPUs among
ARM processors. ARM740T, ARM946E-S, and ARM1026EJ-S
have eight unified instruction and data regions. ARM940T has six-
teen regions: eight regions for instruction segments and additional
eight regions for data segments. Since we focus on heaps which
are more dynamic and larger in size than code, data, and stack, we
take only eight data regions into our consideration for address space
protection.

Each region in the MPUs is identified and prioritized by its num-
ber. The attributes of regions, such as the starting addresses, leng-
thes, access rights, and caching polices, are configured by the op-
erating system. All these configurations can be modified by updat-
ing special registers (CP15 registers) in ARM processors. When
a higher priority (i.e. larger number) region overlaps with a lower
priority region, accesses to the overlapped region are controlled by
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Figure 3: The protection of memory address areas using MPU
regions.

the access permission of the higher priority region. Figure 3 illus-
trates how to use MPU regions for protecting address areas of each
application program which is previously shown in Figure 2. Shaded
regions have read-write permission for privileged accesses and no-
access permission for user accesses, while white regions have read-
write permission for privileged accesses and user accesses. Since
the priority of region 3 is higher than region 0, tasks can access
only the memory areas covered by region 3 when they are actively
running (state 1). The memory areas of the other non-active tasks
are protected by region 0. We assume the operating system updates
the attributes of region 3 during context switches. By updating the
configuration of region 3 with proper memory areas of a running
task, we can effectively protect the address space of each task. To
protect later obtained heap areas of task 1 and 2 at state 2, we use
another MPU region (region 4) which is also prioritized higher than
region 0 and has the read-write permission for privileged and user
modes. We use up to three MPU regions at state 5 to protect all
heap areas of an active task.

Restrictions in MPU regions Recall that MPU provides eight re-
gions. An application program can occupy up to four separate re-
gions since usually four out of eight regions are used for other pur-
poses such as background memory, kernel memory, shared mem-
ory, and memory mapped area of peripheral devices. In addition,
the size of each region should be a power of two between 4 KB and
4 GB. The example shown in Figure 3 also conforms to the limita-
tions imposed by MPUs. All regions are power of twos in size and
each task uses less than or equal to four regions.

The role of the operating system When a task requests the op-
erating system to allocate more heap memory, the global memory
manager in the system checks whether there is a remaining MPU
region. If any, it associates that remaining region to a free block
with a proper size. The priority of the region is given at higher than
0, since region 0 covers the background region for protection. The
access permission of the region is read-write for privileged mode
and user mode, since heap will contain data storages that can be
read from and written to by a user task. The global memory man-
ager sets the attributes of the region by writing to special registers.
For example, the global memory manager introduces region 4 at
state 2 in Figure 3 by setting the attributes of region 4 to protect
the newly obtained heap area of task 1 and 2. The global memory
manager also keeps the records of unused regions and maintains the
list of free memory blocks in a shared heap. Since the regions and
their access permissions used by tasks are different, the operating
system stores those information in the corresponding process con-
trol blocks. Whenever context switches occur, the operating system
stores the settings of MPU regions for suspended tasks and updates
the settings of MPU regions for the tasks to schedule.

When a task requests to release a heap area, the global memory
manager sets the associated region back to unused state and updates
the information on unused regions and free memory blocks.

The role of application programs An application program should
be able to recognize whether it needs more memory or it is ready to
relinquish some of its memory back to the system. Knowing when
it needs more memory is easy. When applications fail to allocate
memory within given the heap fragments, they can request more
heap memory. To be able to return surplus memory, applications
need to free up non-live data. If a region contains only the non-
live data, they can return that region to the system. Compaction
can be used to find an available free space before applications re-
quest more heap area. Applications also use compaction to find
surplus space to release. We will describe the roles of applications
in the next section in the context of Java applications and Java vir-
tual machines. In addition, applications should be able to manage
non-contiguous address space resulting from the acquiring and re-
leasing of memory fragments in and out of a shared pool.

Many Java programs require a significant portion of their address
space for heap area compared to the areas for code, data, and stack.
In addition, Java applications are becoming prevalent in small em-
bedded devices. Our paper focuses mainly on Java applications
for embedded systems. Recall that Java’s protection mechanism
such as no pointers and range check enables multiple java appli-
cations to run together inside a single JVM sharing a single large
heap area. However, when native function calls are allowed, ma-
licious applications can access to other applications’ heap objects
through pointer arithmetics ruining the protection of the memory
area of each application. On the other hand, our proposed approach
can successfully protect the memory areas of all applications even
in the existence of native function calls by separating the heap area
of one application from those of other applications and protecting
address spaces through MPU regions. By modifying memory al-
locators and garbage collectors in Java virtual machines, we can
make applications work with our heap sharing system.
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Figure 4: An overview of the design: (a) the roles of the oper-
ating system and an application program, and (b) the view on
heap from each side.

3. MEMORY SAVING JAVA VIRTUAL MA-
CHINE (MEMSAVE-VM)

Figure 4 (a) provides an overview on how the operating system
and multiple applications interact to share a common pool of heap.
Whenever the Java virtual machine(JVM) for an application needs
more space for its heap, its own memory allocator requests the
global memory manager to give a heap area. On the other hand,
the garbage collector in the JVM relinquishes its surplus heap ar-
eas back to the global memory manager. Responding to the re-
quests from applications, the global memory manager in the oper-
ating system is in charge of allocating and reclaiming heap areas.
Heaps from the view of the global memory manager and applica-
tions are respectively shown in Figure 4 (b). Sharing heap among
multiple tasks is achieved by passing a fragmented heap area from
a task to another via the global memory manager based on the re-
quests of tasks to acquire and release.

Our JVM, called MemSave-VM, is aware that its heap is frag-
mented and identifies each fragmented heap area as a sub-heap.
MemSave-VM is modified from KVM of Sun Microsystems. KVM
is a compact, portable Java virtual machine that has been designed
specifically for small, resource-constrained devices [9]. Note that
how the heap layout of MemSave-VM is different from that of the
original KVM in Figure 5. KVM manages a contiguous, fixed
size heap. Meanwhile, the heap of MemSave-VM is comprised
of one or more sub-heaps which are non-contiguous in address,
and the size of the heap changes as MemSave-VM acquires and
releases sub-heaps. In the original KVM only the boundary be-
tween the group of permanent objects and the group of dynamic
objects moves towards the start of the heap when garbage collec-
tors compact dynamic objects to expand the space for permanent
object allocations. While dynamic objects are garbage-collected,
the permanent objects that contain class related information such
as bytecodes and constant pools, are not garbage-collected. They
stay alive until the end of the execution. Unlike KVM, MemSave-
VM can avoid the compaction of dynamic objects only to get the

fixed-sized heap

. . . .

 multiple fragmented sub-heaps

(b) 

dynamic sub-heap permanent sub-heap 

(a) 

dynamic space permanent
space 

Figure 5: The layout of heap in KVM and MemSave-VM: (a)
KVM with mark-sweep compact GC, and (b) MemSave-VM.

space for more permanent objects. By putting permanent objects
into separate sub-heaps from dynamic objects MemSave-VM elim-
inates the intervention between two types of objects. Furthermore,
this segregation is generally more effective on memory space sav-
ing since it allows you to acquire and release sub-heaps in a more
flexible way. On the contrary, if permanent objects and dynamic
objects reside together in a sub-heap, that sub-heap can never be
released since permanent objects are never garbage-collected.

The memory allocator in our MemSave-VM cooperates with the
global memory manager during the allocation of an object accord-
ing to the following procedure.

(1) The allocator searches the list of free blocks to find a free
block large enough to hold the object.

(2) If it finds a free block, it simply returns the free block. Oth-
erwise, it invokes a garbage collection, and then retries the
search on the revised list of free blocks.

(3) If the allocator still fails to find an adequate free block, it re-
quests more heap memory from the global memory manager
in operating system. Once the allocator acquires a new heap
area, it maps the heap area to one of its sub-heaps and also
enlists the heap area into the list of free blocks. The allocator
now can find a free block for the object.

(4) If the allocator is not provided with an additional heap area
from the global memory manager, the application program is
aborted.

Since the original KVM works only with the given heap at the be-
ginning of the execution, the steps (3) and (4) are not its options.

Our main concern is to design a memory allocator and a garbage
collector capable of managing sub-heaps as discussed above. Since
a sub-heap is the unit of an acquisition and a release, we discuss in
the following sections (1) how large a sub-heap size should be, (2)
how MemSave-VM maintains the list of free blocks of heap, and
(3) through what procedure Memsave-VM releases sub-heaps.

3.1 Determining the Size of Sub-Heaps
Whenever our allocator needs more heap, it requests from the

global memory manager a heap area whose size is a power of two.
Our allocator associates the obtained heap area to a sub-heap. When
that sub-heap is no longer required, our MemSave-VM releases the
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sub-heap back to the system. The size of a sub-heap strongly af-
fects how much heap memory an application uses over the whole
execution as well as at its peak. Since the MPU provides only four
regions for an application and a newly obtained sub-heap is mapped
for an MPU region, an application can have up to four sub-heaps.
If sub-heaps are too small, applications may not secure the mini-
mum heap size required for a successful execution. On the other
hand, if they are too large, the memory usage will unnecessarily in-
crease. In addition to covering the minimum heap size, we need to
consider the lifetimes of sub-heaps. Since a larger sub-heap is less
frequently freed than a smaller sub-heap, unduly large sub-heaps
hamper the efficiency in heap sharing by reducing the chance of re-
leases. We can make each sub-heap of an application have different
size from one another, or alternatively, we can make all sub-heaps
have the same size. In the former policy, we can follow the con-
ventional principle that adaptively increases and decreases the allo-
cated size by doubling and cutting in half. Using this strategy, we
can raise the heap size to N only by log2 N times of enlargement.
This strategy, however, tends to allocate unnecessarily large heap
at the peak of memory usage. In addition, since we can expand the
heap size only by four times, we rather make all sub-heaps have
the same size. We still make a distinction between sub-heaps for
dynamic objects and ones for permanent objects by using different
sub-heap sizes. This results in more efficient use of memory, since
permanent objects are allocated in a different frequency.

We present an algorithm, called determine subheap size(), which
determines the sizes of sub-heaps for dynamic objects and perma-
nent objects. The algorithm is based on profiling information about
the memory usage of an application such as the maximum size of
live dynamic data, and the maximum size of live permanent data,
and the size of the largest object. We can derive the amount of
maximum live data, i.e. the peak live data over the execution, us-
ing profile runs where a garbage collection is invoked after every
object allocation. The largest object size can be easily obtained by
comparing allocation sizes at every allocation.

Determine subheap size() aims to pack the maximum live data
into at most four sub-heaps since an application can have up to four
regions. The largest dynamic object size provides a lower bound for
a dynamic sub-heap size, since we need to allocate an object within
a sub-heap. Determine subheap size() tries to use as many sub-
heaps as possible, since many small sub-heaps can allow sharing
in a finer granularity. The algorithm, however, checks if the small
sub-heap can contain the largest object. If not, the algorithm in-
creases the size of a sub-heap and check the constraint again. The
solution generated by the algorithm provides the smallest size of
sub-heap among all feasible configurations. The number of feasi-
ble configurations is at most three, since we only consider four, two
and one sub-heap(s) by doubling the size of sub-heaps. Note that
determine subheap size() always generates sub-heap sizes which
are power of twos to map them to MPU regions.

In addition to the sizes of dynamic sub-heaps and permanent
sub-heaps, determine subheap size() provides the size of initial
permanent area which is a special area for permanent objects allo-
cated in the first dynamic sub-heap. We basically segregate perma-
nent objects from dynamic objects by putting them in different sub-
heaps. Since the total size of dynamic sub-heaps should be a power
of two, one sub-heap will have extra space even when the size of all
dynamic objects reaches the maximum (maxDynamic). Thus, the
algorithm tries to use that extra space for permanent objects. Since
permanent objects are usually allocated during start-ups and stay
alive until the end of executions, we will accommodate the extra
space in the first dynamic sub-heap. Due to the initial permanent
area within the first dynamic sub-heap, we often do not need any

Algorithm 1 determine subheap size()

Input : maxDynamic /* the maximum dynamic live data */
maxPerm /* the maximum permanent live data */
maxObject /* the size of the largest object */

Output: dynheap size /* the size of dynamic sub-heap */
permheap size /* the size of permanent sub-heap */
initpermsize /*the size of initial permanent area */

1: dynheap size ⇐ ceil power2(maxDynamic)/4; /*ceil pow

-er2(X) : the smallest power of two not smaller than X*/
2: while (true) do
3: current num subheaps ⇐

⌈
maxDynamic
dynheap size

⌉
;

4: init permsize ⇐ dynheap size · current num subheaps
− maxDynamic ;

5: if maxPerm > init permsize then
6: increase current num subheaps by 1 ; /* another

sub-heap is required for remaining permanent objects */
7: permheap size ⇐ max(ceil power2(maxPerm − init-

permsize), 4 × 1024 ) ;
8: else
9: permheap size ⇐ 4×1024 ; /* we do not need a

permanent sub-heap. */
10: end if
11: if current num subheaps ≤ 4 and

dynheap size ≥ maxOb ject then
12: output dynheap size, permheap size and init permsize ;
13: break ;
14: end if
15: dynheap size ⇐ dynheap size × 2 ;
16: end while

separate permanent sub-heap.
The details of determine subheap size() is described in Al-

gorithm 1. The following shows an example running of deter-
mine subheap size() when maxDynamic is 110K, maxPerm is
40K, and maxObject is 10K.

ITERATION 1

• (Step i: line 1 of Algorithm 1) We find the smallest power of
two not smaller than the given maximum dynamic live data,
ceil power2(maxDynamic) = ceil power2(110K) = 128K. Thus,
dynheap size = 128K / 4 = 32K.

• (Step ii: line 3 and 4) We calculate the number of sub-heaps
as

current num subheaps =
⌈

maxDynamic
dynheap size

⌉
=

⌈
110K
32K

⌉
= 4.

We also set the size of initial permanent area as the difference
between the maximum dynamic live data and the size of total
dynamic sub-heaps.

init permsize = dynheap size · current num subheaps

−maxDynamic

= 32K ·4−110k = 18K.

• (Step iii: line 5 – 10) Since maxPerm = 40K > initpermsize
= 18K, current num subheaps is increased to 5. ceil power2(40K
- 18K) = 32K. Thus, permheap size is 32K.
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• (Step iv: line 11 – 15) Since current num subheaps = 5 >
4, dynheap size is doubled to 64K and next iteration begins
by going back to Step ii.

ITERATION 2

• (Step ii)

current num subheaps =
⌈

maxDynamic
dynheap size

⌉
=

⌈
110K
64K

⌉
= 2.

init permsize = dynheap size · current num subheaps

−maxDynamic

= 64K ·2−110k = 18K

• (Step iii) Since maxPerm = 40K > initpermsize = 18K,
current num subheaps is increased to 3. ceil power2(40K -
18K) = 32K. Thus, permheap size is 32K.

• (Step iv) Since current num subheaps = 3 < 4 and maxOb ject
= 10K < 64K, the resulting dynheap size is 64K, init permsize
is 18K, and permheap size = 32K.

3.2 Maintaining Free Blocks Across All Sub-
Heaps

Our allocator uses a list of free blocks sorted in the order of start-
ing addresses. Ordering the list by address is one of techniques
already used in KVM. The slight difference of the free list in our
MemSave-VM is that it contains all free blocks from all sub-heaps.
When our allocator searches for an free block for allocation, it
follows first-fit strategy which uses the first sufficiently large free
block for allocation by searching the list from the beginning. An
advantage of the address-ordered first-fit strategy is that the ad-
jacency of two free blocks is automatically revealed by their ad-
dresses. This enables fast free block coalescing without additional
space cost for boundary tags or double linking. Consequently, the
address-ordered first-fit strategy decreases the minimum required
size of an object [10]. Furthermore, the address-ordered first-fit
strategy shows good cache behavior.

When the KVM allocator finds a free block larger than the re-
quested size, it splits the block into two parts and uses the higher-
addressed part for allocation. It then enlists the lower-addressed
part back to the free-list. We modified our allocator to use the
lower-addressed part for allocation and put the higher-addressed
remainder back to the free-list. Consequently, the KVM allocator
allocates objects from the highest address to the lowest address,
while ours allocates from the lowest to the highest. Since com-
pactors slide live objects from the highest address to the lowest
address, allocating from the lowest address reduces the number of
the copies of live data during compaction.

3.3 Releasing Surplus Sub-Heaps
Our garbage collector is a mark-sweep compact collector. Being

aware that the heap area is composed of one or more sub-heaps,
it releases some empty sub-heaps after GCs. Since our MemSave-
VM maintains all sub-heaps in the order of their starting addresses,
the mark phase is similar to that of KVM. Our sweep phase is also
similar to that of conventional KVM except that two free blocks
residing in separate sub-heaps should be carefully handled during
coalescing. For compaction, KVM’s mark-sweep compact collec-
tor applies a table based method which constructs a table of relo-
cation information, called break table, in free areas. As the areas
of live data are relocated towards one side of the heap (i.e. the

. . . . .

live data free holes

sub-heap1 

heap = sub-heap 1 + sub-heap 2 + ... + sub-heap n

sub-heap 2 

(a) 

. . . . .

(b) 

sub-heap1 sub-heap 2 sub-heap 3 sub-heap n 

sub-heap 3 sub-heap n 

growth of address

Figure 6: A compaction in our proposed method: (a) before
compacting, (b) after compacting.

lowest address of the heap), the break table should move in the
opposite direction (i.e. towards the boundary between dynamic
and permanent areas in Figure 5). While moving, the entries of
break table are sorted if they are disordered. The break table algo-
rithm preserves the allocation ordering of objects. Furthermore, it
incurs no space overhead in storing relocation information within
a contiguous heap area, if the size of smallest object in the heap
is at least two-word which is the size of a break table entry [7].
There is always sufficient room to store relocation information in
the free space within the heap. Since it is appropriate for a memory-
constrained JVM, we also adopt the break table algorithm for com-
paction. Our compaction phase is, however, different in three ways:

Compacting across non-contiguous regions To compact as much
as possible, our compactor pushes all live objects towards the start
of the lowest addressed sub-heap by moving live data of one sub-
heap to another sub-heap (refer to Figure 6). When we compact the
live data across non-contiguous areas, moving a chunk of live data
can involve more than one entry of relocation information since
the chunk can be moved to multiple sub-heaps divided into sev-
eral sub-chunks as shown in Figure 7 (a). Consequently, we often
cannot store all entries of relocation information in the free space
within sub-heaps (refer to Figure 7 (b)). In addition, sorting the
entries of a break table which is distributed among multiple sub-
heaps often requires an extra contiguous space for the indirection
to the entries. To minimize the space overhead, we modified the
conventional break-table method into a two-step algorithm: (1) a
local compaction process within a sub-heap for all sub-heaps and
(2) a global compaction across all sub-heaps. The local compaction
uses the same break table method described previously and incurs
no space overhead. The global compaction also uses a relocation
table constructed outside the heap, but the size of that relocation
table is bounded by a small constant. This global compaction in-
curs at most ∑4

n=2 n table entries, where n(≤ 4) is the number of
sub-heaps. Each sub-heap has at most one chunk of live data after
the local compaction. In the global compaction, the compacted live
data in the kth sub-heap (2 ≤ k ≤ n), can move to at most (k− 1)
preceding sub-heaps divided into at most k sub-chunks. The last
chunk can move within the kth sub-heap. Thus, our algorithm needs
at most nine additional entries outside the sub-heaps.
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move, (b) when the space for relocation information lacks.
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Figure 8: Releasing empty spaces.

Releasing surplus space At the end of the compaction, our com-
pactor knows which sub-heaps are empty. Our MemSave-VM re-
leases all the sub-heaps that contain no live objects (refer to Fig-
ure 8). A sub-heap will contain live objects only in the partial por-
tion of it. If the empty portion of the partially occupied sub-heap is
greater than or equal to the half size of the sub-heap, we can have
three release policies.

(1) Releasing the empty half after each GC

(2) Releasing the empty half when the sub-heap keeps it empty
for a certain number of consecutive GCs

(3) Not releasing the empty half at all

Assuming the global memory manager follows the principles of
the buddy heap system, we can readily free the empty half since
the size of the half is also a power of two. While policies (1) and
(2) more eagerly shrink the heap area than policy (3), they can incur
more GCs or even request a new sub-heap too soon after the release.
Policy (3) releases only the completely empty sub-heaps.

Triggering compactions The original KVM with mark-sweep

compact garbage collector invokes a compaction only if it fails
to find a free block for an allocation even after mark and sweep
phases. The same compaction approach is inadequate for releas-
ing the surplus heap areas since JVM does not voluntarily invoke
compactions when it has enough heap space. Since finding surplus
space large enough to release usually requires compactions, we in-
vestigate several alternative strategies for compaction.

(1) Aggressive compaction: compaction is invoked after every
mark-sweep phase.

(2) Periodic compaction: compaction is invoked after every user-
defined clock cycle.

(3) Selective compaction: compaction is invoked when compac-
tion is necessary to allocate a new object, or when com-
paction can gather empty room large enough to release ac-
cording to its estimation. The estimation is based on the total
free blocks after mark-sweep phase. If the total free size is
larger than or equal to the size of a sub-heap, we estimate
that we have sufficiently large space to release.

We adopt the selective compaction strategy. The aggressive com-
paction is extremely inefficient. The amount of release in the ag-
gressive compaction is similar to that in the selective compaction,
while it consumes too much time in compactions. Setting a proper
period for the periodic compaction is generally difficult since it will
be an application specific parameter. In addition, the memory allo-
cation behavior is usually uneven both in size and frequency. On
the other hand, selective compaction strategy is effective in direct-
ing the releases of empty regions and also efficient in time.

4. EXPERIMENTAL EVALUATION
We implement our proposed dynamic allocator and garbage col-

lector in the KVM within CLDC version 1.0.4 from Sun Microsys-
tems [8]. We run our experiment on a Redhat 9 Linux PC equipped
with a 1.8 GHz Pentium4. KVM uses a mark-sweep compact al-
gorithm for garbage collection. Our garbage collector extends the
existing mark-sweep compact algorithm to accomodate fragmented
heap areas. We also extends KVM and MIDP 2.0 to accept several
parameters we use in our experiment.

Through our experiment we measure the memory requirement of
individual applications when they use our modified KVM to allo-
cate heap segments in a shared pool. Since we individually measure
each application, the functionality of the global memory manager is
mimicked by malloc() and free() in C standard library. For the sim-
ulation of the MPU, we keep the region settings inside the global
memory allocator. These settings will be passed on to the operat-
ing system and stored in the related registers to change the access
criterion.

We conducted our experiments with six MIDP benchmarks. For
interactive programs, we record and play back mouse and key-
board inputs using the MacroExpress from Insight software solu-
tions [12].

4.1 Benchmark Characteristic
Table 1 shows a brief description of each benchmark. Table 2

shows memory related characteristics of each benchmark and the
resulting configurations from determine subheap size(). The sec-
ond column of Table 2 gives the maximum size of live objects. The
numbers in parentheses distinguish the portions from dynamic ob-
jects and permanent objects. The third column shows the size of the
largest object in each benchmark. These values are the parameters
of determine subheap size(). Except for hanoi which uses around
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Table 2: The characteristic of benchmarks and the resulting configurations from determine subheap size().
inputs to determine subheap size() outputs from determine subheap size()

maximum size of live objects largest dynamic initial permanent
benchmarks (Dynamic/Permanent) object sub-heap permanent sub-heap

(KB) size (KB) size(KB) size(KB) size (KB)
mreader 121.59 (93.98/27.61) 3.54 32 2 32
worm 46.27 (28.00/18.27) 3.54 16 4 16
bloodyghost 244.63 (163.64/80.98) 79.59 128 92 64
mdoom 214.96 (194.25/20.71) 32.02 64 61 4
hanoi 2036.24 (2027.97/8.27) 320.02 512 20 4
manyballs 62.57 (53.89/8.68) 3.14 16 10 4

Table 3: The comparison of memory usage between original KVM with mark-sweep compact collector and our MemSave-VM.
KVM with MemSave-VM # regions reduction in

mark-sweep compact collector with heap sharing (dynamic/ space × time
benchmarks (KB * sec) (KB * sec) permanent) (%)
mreader 42488 32650 4 (3/1) 27%
worm 2122 1538 3 (2/1) 27%
bloodyghost 60006 56342 2 (2/0) 6%
mdoom 65713 32939 3 (3/0) 50%
hanoi 75121 40099 4 (4/0) 47%
manyballs 16840 11521 4 (4/0) 38%
avg. 3.33 33%

Table 1: The brief description of benchmarks used in our ex-
periments.

benchmarks description

mreader mobile browser [13]
wormgame feeding-worm game [15]
bloodyghost modern shooter, role-playing game [14]

3D shoot-them-up,mdoom
mini clone of the famous 3D Doom game [13]

hanoi solving the tower of hanoi problem with 15 rings [15]
manyballs watching balls moving on the screen [15]

2 GB of dynamic and permanent objects at maximum, most of the
programs use about tens of KB or hundreds of KB at their peaks.
Refer to the fourth column through the sixth column. The resulting
sizes of sub-heaps from determine subheap size() are all power
of twos, which allows us to map a sub-heap onto an MPU region.
All the experimental results in this paper are obtained using these
heap memory configurations in Table 2.

4.2 The Reduction of Memory Usage
Our goal is to reduce the total heap size used by a program during

its overall execution. Since we need to take account of space and
time, we integrate the heap size over the time spent in execution.
Table 3 compares the memory usage between the original KVM
and our MemSave-VM. The second and third columns present the
integral of heap size for the original KVM and our MemSave-VM,
respectively. The fourth column shows the total number of regions,
and the numbers within parentheses present the number of dynamic
regions and the number of permanent regions used during the whole
execution on MemSave-VM. Our method successfully uses up to
four regions. Note that four out of six benchmarks do not require
any permanent sub-heap due to the initial permanent area within
the first dynamic sub-heap. The last column shows the reductions
in the integral of heap size over time. Our memory management
scheme results in considerable reductions ranging from 6% to 50%
(33% on average).

Figures 9 illustrates in detail how large heap the original KVM
and the MemSave-VM use over the execution. A solid line denotes
the heap size of our MemSave-VM, while a dashed line denotes
that of the original KVM. A bar denotes the amount of live data
before/after each garbage collection when MemSave-VM is used.
Looking at solid lines, we see several step-ups and step-downs
along the execution time line. These ups and downs represent ac-
quisitions and releases of sub-heaps respectively. The areas below
dashed lines and solid lines represent the amount of heap usage
over the execution on KVM and MemSave-VM respectively. The
difference in areas between dashed lines and solid lines shows the
reduction in heap memory usage from MemSave-VM. In all bench-
marks, MemSave-VM shows much smaller heap sizes than KVM.
In addition, all of the benchmarks use no larger heap at their peaks
on MemSave-VM than on the original KVM. Note that the peak
memory usage of worm drops from 64 KB to 48 KB. This is more
tight use of heap since the maximum size of live data for worm is
42.67 KB (refer to Table 2). The contiguous fixed-sized heap re-
quires one 64 KB MPU region to accommodate 46.27 KB live data
since the size of an MPU region should be a power of two. On the
other hand, MemSave-VM utilizes three 16 KB regions to hold the
same amount of live data. In a similar manner, the peak of mdoom
also falls from 256 KB to 192 KB.

The changes in the heights of bars in Figure 9 reflect that the
required amount of heap memory changes during the execution.
These changes can be classified into several types. First, some
changes occur from interactions with users. As users interactively
adjust several features within applications, applications require ad-
ditional heap memory or release surplus heap memory accordingly.
Mreader and manyballs are representatives of the interactive ap-
plications. Depending on the length of article, mreader (mobile
browser) requires different sizes of memory. Within the range of
the number of balls manyballs offers, users can increase or decrease
the number of balls in the middle of execution. Second, some ap-
plications use a lot of memory only during the start-ups and use
much less memory after they are stabilized. Game programs such
as worm, bloodyghost and mdoom show this pattern. Finally, some
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Figure 9: The usage of heap memory over the whole execution: a solid line denotes the heap size of our MemSave-VM ; and a
dashed line denotes the heap size of original KVM; a bar denotes the amount of live data before/after each garbage collection when
MemSave-VM is used.
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Table 4: The total execution time and GC time.
KVM with mark-sweep compact MemSave-VM with heap sharing perf.

benchmark
total (sec) GC (sec) GC frac. total (sec) GC (sec) GC frac. degradation

mreader 327.04 0.021 0.006% 327.25 0.066 0.020% 0.06%
worm 33.15 0.004 0.013% 32.06 0.003 0.008% -3.29%
bloodyghost 234.40 0.051 0.022% 234.43 0.044 0.019% 0.01%
mdoom 256.69 0.006 0.002% 257.41 0.005 0.002% 0.28%
hanoi 36.68 0.149 0.407% 38.15 1.724 4.519% 4.01%
manyballs 260.50 0.011 0.004% 260.81 0.050 0.019% 0.12%
avg. 0.20%

Table 5: The number of garbage collections and the breakdown of the garbage collection time.
KVM with mark-sweep compact MemSave-VM with heap sharing

benchmark frequencies time (sec) frequencies time (sec)
GCs compact mark sweep compact GCs compact mark sweep compact

mreader 38 14 0.018 0.001 0.002 130 30(3) 0.054 0.003 0.009
worm 10 10 0.003 0.000 0.001 7 1(0) 0.002 0.000 0.000
bloodyghost 68 31 0.045 0.002 0.005 65 21(6) 0.037 0.002 0.004
mdoom 11 10 0.004 0.000 0.002 11 7(2) 0.003 0.000 0.002
hanoi 16 6 0.111 0.023 0.015 78 6(3) 1.367 0.173 0.184
manyballs 17 5 0.010 0.000 0.001 120 17(2) 0.044 0.001 0.005

applications are inherently dynamic in memory usage. Hanoi, to
which a user gives nothing but one button click for initiation, shows
this pattern.

Comparing the solid lines with the heights of bars, most bench-
marks successfully adjust heap sizes according to the changes of
the amount of live data. One exception is bloodyghost. Our heap
management scheme is not quite effective for this benchmark. We
cannot use smaller sub-heaps than 128 KB since the largest object
size is about 80 KB. During the execution, we encounter the sit-
uation where half of the sup-heap is empty. Using an appropriate
release policy discussed in Section 3.3 we should be able to release
the empty half. For the convenience of our implementation, we
choose not to release partially empty sub-heap. This is why we get
the inefficient case for bloodyghost. In general, we keep heap space
only the amount we need. Thus, the changes in heap usages enable
us to share heap space among multiple tasks. For example, mdoom
and mreader can simultaneously run within 256 KB heap mem-
ory, if mreader starts by obtaining the 128 KB heap after mdoom
releases 128 KB surplus heap memory. Using a simple fixed size
memory assignment, they require at least 384 KB heap memory to
run simultaneously. Overall, the graphs reveal the effectiveness of
MemSave-VM on reducing the memory footprint, by smartly uti-
lizing the phased behavior of applications.

4.3 Impact on Execution Time
Our proposed method can incur runtime overhead since it needs

to invoke garbage collector more often to be able to run on smaller
heaps. Table 4 compares the total execution time and the GC time
for KVM and MemSave-VM. The set of three columns under
“KVM” respectively show the total execution time, the GC time,
and the fraction of GC time over the total execution time. The
set of three columns under “MemSave-VM” respectively show the
counterparts of our MemSave-VM. The last column shows the per-
formance degradation of our MemSave-VM compared to KVM.
Table 5 shows the frequencies of GCs, the frequencies of com-
pactions, and the breakdown of GC times. The numbers in paren-
theses of column eight refer to the frequencies of compaction phases
that lead to the release of surplus regions.

The total execution times increase by 0.01% – 4.01%, while the
execution time of worm decreases by 3.29%. The excution time
of worm is improved since our scheme incurs fewer GCs and per-

formed only one compaction while KVM does 10 compactions.
The permanent objects in a separate sub-heap do not require com-
paction at all in our scheme. In contrast, KVM performs many
compactions of dynamic objects to have more space for permanent
objects during the start-up phases of applications. Furthermore,
our MemSave-VM can spend a shorter time per allocation, since
we have a smaller heap space to look up. Our scheme still can have
many overheads that can nullify its good characteristics. For ex-
ample, hanoi looses the performance. Since hanoi deals with a lot
more dynamic objects than permanent objects (refer to Table 2), the
numbers of garbage collections are greatly increased by the change
of heap size. For remaining benchmark programs, the increases
in the execution time are relatively small since only tiny portions
of total execution times are spent in GCs (refer to the fourth and
seventh columns in Table 4). Note that the frequencies and times
of compactions using our scheme reveal our selective compaction
strategy successfully adjusts the heap size incurring only a few time
costs (refer to the eighth column of Table 4). To summarize our ex-
perimental results, our heap sharing scheme achieves considerable
reductions in memory usage, while execution times increase only
by 0.2% on average.

5. RELATED WORK
There are many research efforts that aim to reduce the mem-

ory usage to cope with the resource constrained Java environments.
Griffin et al. [6] modified KVM to use reference-counting garbage
collection scheme to foster faster reclamation of non-live memory
blocks. They conducted experiments on several Java applications
for embedded devices. Their work mainly aimed at the improve-
ment in performance and energy consumption of an application
program by reducing the total number of GCs. Chen et al. [5] pro-
posed a GC-controlled leakage energy optimization technique of
shutting off memory banks that hold no live data. They compared
different compaction algorithms, different allocation schemes, and
a couple of memory bank control schemes. They also estimated
how those different compaction algorithms affected the energy con-
sumption in system memory. Their experiments were done on
KVM using several Java applications for embedded systems. Sha-
ham et al. [1, 2] examined the potential improvement of execution
time by freeing dynamic memory at the earliest possible points.
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They developed a tool to rewrite application source code in a way
that more timely garbage collection can be performed. They exper-
imented with SPECjvm98 which is rather a representative bench-
mark for server applications. These existing research efforts help
reduce the memory footprints of applications and the energy con-
sumption in memory systems. They, however, do not dynami-
cally adjust the heap size of an application at runtime in the con-
text of multiprogramming. Yang et al. [4] proposed an adjusting
method to find an optimal heap size that minimizes the number of
GC invocations as well as page faults in the presence of virtual
memory. Their method successfully tracks the memory footprint
of a program during its run time and adjusts the heap size of the
program according to the estimated footprint. They experimented
with SPECjvm98 and pseudojbb benchmarks on the Jikes RVM.
Their method mainly aimed at the improvement of execution time
with the support of virtual memory from MMUs. Meanwhile, our
scheme uses the memory protection units that have been actively
used for guaranteeing protection of memory address space in mul-
titasking embedded systems. Tual [11] proposed a generic architec-
ture for multiapplication smart cards, which used an external MPU
to access through domains to certain memory ranges.

Our memory management method is distinguished from these
existing research efforts in that we focus on small memory-con-
strained but also multitasking embedded devices with no virtual
memory. Our MemSave-VM reduces the memory footprints of an
application by exploiting the phases in memory usage through shar-
ing heap areas and deciding compaction timing carefully. Our heap
sharing scheme also guarantees the protection of all fragmented
memory areas by smartly utilizing MPUs.

6. CONCLUSIONS
We propose a heap memory management scheme for Java ap-

plications to reduce memory footprints in multitasking embedded
systems with no virtual memory. Our MemSave-VM manages the
fragmented heap areas acquired from a shared pool and also re-
leases surplus heap areas back to the shared pool maintained by the
global memory manager. Using the memory protection unit (MPU)
and the help from the operating system, our scheme can protect all
fragmented address spaces of an active task. Our experiments with
six Java MIDP benchmarks show a significant reduction in memory
footprints by 33% on average and experience only a slight increase
in execution times by 0.2% on average. We believe reducing mem-
ory footprints is very important in small embedded systems. Our
proposed technique can help increase the capabilities of embedded
systems.
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