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ABSTRACT
This paper proposes an efficient method to analyze worst
case interruption delay (WCID) of a workload running on
modern microprocessors using a cycle accurate simulator
(CAS). Our method is highly accurate because it simulates
all possible cases inserting an interruption just before the
retirement of every instruction executed in a workload. It
is also (reasonably) efficient because it takes O(N log N)
time for a workload with N executed instructions, instead
of O(N2) of a straightforward iterative simulation of inter-
rupted executions. The key idea for the efficiency is that a
pair of executions with different interruption points has a
set of durations in which they behave exactly coherent and
thus one of simulations for the durations may be omitted.
We implemented this method modifying the SimpleScalar
tool set to prove it finds out WCID of workloads with five
million executed instructions in reasonable time, less than
30 minutes, which would be 200–300 days by the straightfor-
ward method. We also show a parallelization of our method
achieves a good speedup, about 7-fold with 8-node PC clus-
ter.

Categories and Subject Descriptors
C.4 [Peformance of Systems]: Measurement Techniques

General Terms
Algorithms, Design, Performance

Keywords
Worst Case Interruption Delay, Cycle Accurate Simulation

1. INTRODUCTION
For real-time systems and programming for them, worst

case execution time (WCET) analysis is indispensable to
assure a program or a workload completes its job with a
given time constraint. Among many WCET researches (e.g.
those surveyed in [11]), one of the most challenging theme
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is to find the upper bound of the delay caused by one (or
more, sometimes) interruption occurred in the execution of
a program or a workload.

This worst case interruption delay (WCID) is very difficult
to analyze because many factors are involved to determine
it. First it is obviously required to know the WCET of a
set of preemptors which are invoked by the interruption.
Second we have to analyze the worst case scheduling of the
preemptors and the interrupted process to determine the
preemptor set. Finally and most challengingly, we cannot
assume the CPU time consumed by the interrupted process
is as same as that without interrupt because caches and
branch predictors are polluted by preemptors and, from a
microscopic viewpoint, instruction pipeline is flushed.

Since modern microprocessors have complicated mechan-
isms of instruction scheduling, it is not sufficient to find the
interruption point which maximizes the number of cache
misses and/or branch prediction misses. That is, the point
may not be worst because the delay caused by the misses
may be hidden by out-of-order scheduling while the other
point with a less number of misses is more harmful due to
tightly dependent instructions executed after it.

The aim of our research is to find a tight and safe up-
per bound of the delay caused by one interruption by di-
rectly simulating a workload execution on a cycle accurate
simulator (CAS). Our method is highly accurate because
it is equivalent to a huge set of simulations with all possi-
ble cases of interruption points. The most important con-
tribution of this paper is to give an efficient algorithm of
O(N(K + log N)) time complexity, where N is the number
of executed instructions, and K is a large constant for out-
of-order scheduling simulation and is usually dominant over
the O(log N) factor for a simple binary tree traversal.

The rest of paper describes our WCID analyzer as fol-
lows. First the key idea of efficiency, differential simulation
is introduced in Section 2 after modeling interruptions and
target processors. Our implementation based on Simple-
Scalar[1] is described in Section 3 together with experimen-
tal results with SPEC CPU95 benchmarks shown in Sec-
tion 4. After a brief discussion of related work in Section 5,
we conclude this paper in Section 6.

2. DIFFERENTIAL SIMULATION
This section describes the key idea of our method, dif-

ferential simulation, which is based on the observation that
two executions with different interruption points have a set
of durations in which they behave coherently. Before in-
troducing this idea, a model of target processors with its
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Figure 1: Model of Target Machine

conceptual behavior on an interrupt is given. Then, after
showing a straightforward iterative simulation as the base
of our idea, the differential simulation method is described.

2.1 Models of Processor and Interruption
Modern microprocessors with caches, branch predictors

and an out-of-order instruction pipeline may be modeled as
shown in Figure 1. A processor may be considered as a
huge but finite state machine consisting of architectural and
microarchitectural states.

The architectural state is usually represented by the com-
bination of architectural registers and a (physical) memory.
At any point in the execution of a workload, their contents
are determined only by the sequence of instructions, i1, . . . ,
in executed until the point and their initial values (e.g. 0
for all), and thus may be represented by a function of n,
namely A(n). Now let us assume the workload execution of
N total instructions is interrupted at in, i.e. just after the
instruction in completes, a set of preemptors is executed,
and then the original execution is resumed for remaining
in+1, . . . , iN . As far as the interrupted process concerns,
the architectural state A(n) remains unchanged during the
execution of the preemptors1. Furthermore, for any pair of
executions with different interruption points, namely in and
in′ , their architectural states are considered equivalent to
A(k) for any k independent from n and n′.

On the other hand, the microarchitectural state at a ma-
chine cycle t, namely M(t), is greatly affected by an in-
terruption and its timing. Before discussing the effect, we
decompose M(t) into a series of (almost) independent states
of instruction pipeline P (t) and cache-like modules (CLM in
short) C1(t), . . . , Cm(t) for caches, TLBs, branch predic-
tion tables, and so on. The pipeline state P (t) represents
instructions which has been fetched but has not retired (or
been committed) yet, the pipeline stage where each instruc-
tion resides, the delay of stage progression of each instruc-
tion, and so on. The pipeline automaton also has output
functions of its state P , νa(P ) and ν1(P ), . . . , νm(P ) to
provide input symbols to architectural and CLM automata.

1A part of architectural state referred by preemptors should
have been changed, of course, but this change will not affect
the execution of interrupted process unless it interacts with
preemptors. Although interactions among processes and op-
erating system could be handled easily if necessary, we omit
this issue in this paper.

The architectural automaton changes its state from A(n(t))
to A(n(t + 1)) by νa(P (t)) where n(t) is the total number
of retired (or committed) instructions until t, and outputs a
symbol ba(t) = µa(νa(P (t)), A(n(t))) to provide instructions
and data items to pipeline.

The state of a CLM Ck(t) may be decomposed further
into a series of independent substates Ck,1(t), . . . , Ck,s(t)
corresponding to, for example, cache sets. Its input symbol
νk(P (t)) only affects (at most) only one substate, namely
Ck,j(t) and changes it by Ck,j(t+1) = λk(νk(P (t)), Ck,j(t)).
For example, νk(P (t)) represents an address and access mode
(e.g. read or write) to a cache, and changes the substate
of the cache set for the address if it causes a replacement,
recently-used reordering, and so on. A CLM also outputs
a symbol bk(t) = µk(νk(P (t)), Ck(t)) to provide the re-
sult of νk(P (t)), e.g. hit or miss, delay of the access, to
pipeline. Finally, the pipeline automaton changes its state
by P (t + 1) = λp(ba(t), b1(t), . . . , bm(t), P (t)).

Now we model the effect of an interruption at in on each
microarchitectural component. Since we try to estimate the
worst case delay due to the interrupt, each state at the re-
sumption of in+1 at cycle t is defined as follows regardless
of preemptors.

• Pipeline state P (t) is emptied and thus has no instruc-
tions. Therefore, we have to resume the execution from
the instruction fetch for in+1.

• Each CLM state Ck(t) must be set to a value that max-
imizes the execution cycles for in+1, . . . , iN . A rea-
sonable approximation for caches, TLBs and branch
target buffers (BTBs) is to invalidate all the substates
of them so that the first (and subsequent a few if
set-associative) access causes a miss(-prediction). The
worst case values of a branch direction predictor, which
does not have such an apparent ones, will be discussed
in Section3.3.

2.2 Straightforward Iterative Simulation
It is easy to estimate WCID in a straightforward manner

in which a workload is simulated iteratively varying inter-
ruption point as shown in Figure 2. We define an instance
of the workload execution of i1, . . . , iN interrupted at in as
a thread for in and notate it as Tn. We also define T0 as a
special thread without any interruptions. With these defi-
nitions, the straightforward algorithm is outlined as follows.

1. Do a cycle accurate simulation (CAS) for T0 logging
the cycle count from the beginning, τ0

j , each time the
instruction ij retires (topmost bold arrow in the fig-
ure). Note that τ0

j+1 − 1 is the worst case cycle count
for the execution preceding the interruption at ij .

2. For each thread Tj (1 ≤ j < N) do the following. First,
obtain the architectural state A(j) by an architectural
fast-forwarding simulation (thin arrows in the figure).
Then set the microarchitectural state M j(0) to that
defined in Section 2.1 (star marks in the figure), and
do CAS for Tj from ij+1 to iN to have its total cycle
count τ j

N (second and subsequent bold arrows in the
figure).

3. The WCET with one interrupt, namely τw, is given
by;

τw = max
0≤j<N

{τ0
j+1 − 1 + τ j

N}

and WCID is given by τw − τ0
N .

3



☆

☆

☆

☆

T0

i2 i3 i4 i5 ij −1 ij ij+1 iN −1 iNiN −2

T1

T2

Tj

TN −2

TN −1

☆

i1

0
1+jτ 0 1+jτ

j
Nτ j
Nτ

Figure 2: Straightforward Iterative Simulation

It is obvious that this straightforward algorithms takes
O(N2) time. For example, even for a tiny workload of N =
106, a CAS of 1 MIPS takes 0.5 × 106 second or about six
days to simulate 0.5×1012 instructions. Note that it is hard
to do the work with a real machine due to the difficulty of
the simulation of interruption at each instruction execution.
Moreover, even if this is possible with a trick using hardware
counters and intentional pollution of CLMs, 1GIPS machine
at least takes 1,000 second for the work of N = 106, and
100,000 second or 28 hours if N grows to 107.

2.3 Outline of Differential Simulation
The basic idea of the differential simulation is that the

executions of adjacent threads are expected to behave simi-
larly. For example, Figure 3 illustrates abstracted behavior
of two threads Tj−1 and Tj where ij is a jump-and-link (jal)
instruction residing at address α to call a function F() start-
ing from address β. When the thread Tj−1 starts the fetch
of the first instruction of F() (i.e. ij+1) at its cycle tj−1

0 , its

microarchitectural state M j−1(tj−1
0 ) has the following dif-

ference from Tj ’s initial state M j(tj
0) (tj

0 = 0) as follows2.

(1) P j−1(tj−1
0 ) may have ij = jal while P j(tj

0) does not
have anything.

(2) Instruction cache, namely Cj−1
ic (tj−1

0 ), has instructions
spatially following to ij , xxx, yyy and so on providing
they reside in the memory block where ij does, but
Cj

ic(t
j
0) does not have any useful instructions.

(3) Branch target buffer, namely Cj−1

btb (tj−1
0 ), has the ad-

dress β of the first instruction of F() as the target of
ij = jal. Return address stack, namely, Cj−1

ras (tj−1
0 ),

has the address α+1 of xxx as its top-of-stack element.

2The explanation below omits the following microscopic be-
havior of Tj−1 for the sake of simplicity. (1) Since BTB has
nothing when ij = jal is fetched, Tj−1 must mispredict its
target and thus may fetch some instructions from the bo-
gus target filling instruction cache with them. (2) Although
BTB may not have had the address of the first instruction
of F() yet when Tj−1 starts the fetch of it depending on the
BTB update mechanism, the address will be registered into
BTB soon.
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Figure 3: Differential Simulation

On the other hand, neither Cj

btb(t
j
0) nor Cj

ras(t
j
0) have

any useful target addresses.

The differences above, however, will resolve on the way of
the progress of both threads as follows.

(a) Since P j−1(tj
0) only has ij = jal, the progress of F()’s

instructions in the pipeline will not be affected by the
existence of ij . Therefore, when ij retires at tj−1

1 ,

P j−1(tj−1
1 ) will have F()’s instructions in a form as if

P j−1(tj
0) was empty and thus it is equivalent to P j(tj

1)

where tj
1 = tj

0 + (tj−1
1 − tj−1

0 ).

Even if P j−1 does not behave as this hypothesis ex-
pects, two pipelines become equivalent soon unless one
of them touches a CLM substate different from the
other because of the following. A pipeline becomes
sparse when it has instructions with long latency due
to cache and branch prediction misses. Since the prog-
ress of instructions in a sparse pipeline is hardly af-
fected by preceding instructions in it, the state of the
pipeline tends to be determined by instructions cur-
rently residing rather than its old memory. Moreover,
the pipeline becomes almost empty when a branch pre-
diction miss occurs, and thus almost completely for-
gets its old memory. Therefore, it is strongly expected
that we have some tj−1

1′ and tj
1′ such that P j−1(tj−1

1′ ) =

P j(tj
1′) if F() has a sufficiently large number of instruc-

tions, since the CLM differences shown in (2) and (3)
are not touched by both threads.

(b) After two pipelines become equivalent at tj−1
1 and tj

1,
they are kept equivalent until the last instruction of
F() is fetched at tj−1

2 and tj
2. That is, P j−1(tj−1) =

P j(tj) holds for all tj−1 and tj such that tj−1
1 ≤ tj−1 ≤

tj−1
2 and tj

1 ≤ tj ≤ tj
2, because CLM differences shown

in (2) and (3) are not touched by both threads and thus
νx(P j−1(tj−1)) = νx(P j(tj)) and bj−1

x (tj−1) = bj
x(tj)

for all x ∈ {a, 1, . . . , s}. We refer this duration as to
that Tj is coherently executed with Tj−1. The dashed
arrow in the figure represents this coherent execution
of Tj whose simulation may be omitted because we
know P j(tj

2) = P j(tj−1
2 ) and tj

2 − tj
1 = tj−1

2 − tj−1
1 .

(c) The coherence is broken by the fetch of F()’s last in-
struction jump-on-register (jr) to return from F().
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Firstly Tj−1 correctly predicts the return address by
popping Cj−1

ras unless F() has too deep function nest-
ing, but the pop of Cj

ras simply gives us an invalid
prediction result. Secondly the instructions spatially
following ij = jal resides in Cj−1

ic unless they are

replaced in F(), while accessing Cj
ic for them causes

a miss after Tj recognizes the misprediction. How-
ever, these operations makes Cj

ic equivalent to Cj−1
ic

because they both have the instructions in problem
now3. Then, as discussed in (a), both pipelines be-
come equivalent again at some cycles tj−1

3 and tj
3.

(d) Tj is coherently executed with Tj−1 again, until it en-
counters a jal at α for F() again, or until the end of
workload execution if ij is for the last call of F().

(e) The coherence is broken again at the second fetch of
jal at tj−1

4 and tj
4, because Tj−1 correctly predicts its

target while Tj cannot. This misprediction, however,
makes Cj−1

btb equivalent to Cj

btb. Moreover, the exe-

cution of jal makes Cj
ras equivalent to Cj−1

ras because
they both have the address following the second jal.
Then, both pipelines become equivalent once again at
some cycles tj−1

5 and tj
5.

(f) Now we have M j−1(tj−1
5 ) = M j(tj

5) that means Tj

may no longer be simulated because its execution is
apparently coherent with Tj−1 hereafter.

Our idea of differential simulation based on the scenario
above is to simulate Tj ’s behavior only for the durations dif-
ferent from its predecessor Tj−1 (solid arrows in the figure)
omitting those coherent with Tj−1 (dashed arrows in the fig-
ure). An important observation obtained from the scenario
is that the amount of the initial difference between M j−1

and M j is bounded to some constant. More importantly, it
is strongly expected that the number and total length of the
durations to be simulated differentially are also bounded to
some constant independent from N .

If these observations are correct, the thread T0 without
interruption solely requires out-of-order simulation of N in-
structions, while other N − 1 threads needs that of K in-
structions at most where K is some constant determined by
microarchitecture and workload characteristic but independ-
ent from N . Therefore, as far as the simulated instruction
count concerns, WCID can be calculated in O(N) time if
we can construct the architectural state at ij for each j in a
constant time as described later.

3. IMPLEMENTATION
This section describes our method to implement the idea

shown in Section 2.3 using SimpleScalar-3.0[1] as the base.
First, Section 3.1 shows how each thread is managed for the
differential simulation. Then, the mechanism to manage the
differences of CLM substates for each thread is explained
in Section 3.2. Next, special treatment for 2-bit counter
based branch predictors is discussed in Section 3.3. Finally,
Section 3.4 explains an algorithm to count cycles of sleeping
threads whose executions are coherent with others using a
binary tree, which is the sole non-linear portion of our WCID
analysis.

3Cj
ic could have instructions on the mispredicted execution

path but we ignore them for the sake of explanation sim-
plicity.
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Figure 4: Thread Simulation in Interval

3.1 Thread Management
In order to minimize the length of durations of out-of-

order simulation for a thread, its pipeline state must be com-
pared with its predecessor as frequently as possible. On the
other hand, too frequent comparison should incur a large
overhead and degrade the total performance. Therefore,
we compare the states periodically with a predefined small
interval NI of executed instruction counts, rather than at
every instruction or cycle.

Before explaining the thread management with intervals,
we define how we count executed instructions more specif-
ically. SimpleScalar’s out-of-order simulator sim-outorder

is categorized into functional-first type ones in which the ar-
chitectural state is updated when an instruction is decoded
(or dispatched) instead of its retirement. Since we need to
compare pipeline states of two threads when their architec-
tural states are equivalent, we count instruction executions
at decoding to detect the end of an interval. Furthermore,
since the functional-first technique makes it possible to ex-
amine the correctness of branch/jump target prediction at
decoding, we count instructions on true paths so that the
pipeline back-end does not have any instructions on false
paths at the end of an interval.

Figure 4 shows the first two intervals, I1 and I2, of four
instructions rather than eight in real implementation. In
the first interval I1, four threads, T0 to T3, are created and
simulated in ascending order. That is, we first simulate T0

and suspend it just after four instructions have passed the
decoding stage4, saving its clock cycle t01, the contents of
architectural registers and pipeline state P 0(t01) for the next
interval.

Then, we rollback the architectural state to the beginning
of I1 by setting architectural registers to their initial values.
As for the rollback of memory state, we have a stack into

4Since multiple instructions, up to four in our experiment,
may be decoded in one cycle, the real suspension condition
is that four or more instructions have passed the stage. Thus
when we resume an overruning thread, a short instruction-
level simulation to regain its architectural state is preceded.
This microscopic issue is omitted in the following explana-
tion for the sake of simplicity.
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Table 1: Pipeline Components of SimpleScalar

queues depth
instruction fetch queue 4
register update unit 16
load/store queue 8
ILP width
instruction fetch 4
decode 4
commit 4
func. units parameters (*1)
int ALU 4× (1/1)
fp ALU 4× (1/2)
int mult/div 1× (mult = 1/3; div = 19/20)
fp mult/div 1× (mult = 1/4; div = 12/12)
memory ports 2× (1/c)
(*1) n× (t/l): n = number of units; t = throughput;

l = latency
Memory port latency c is determined by cache.

which each store operation executed in T0 pushes its address
and the value before update. Thus on the suspension of T0,
the stack is traversed from its top to bottom restoring saved
values to regain the memory state at the beginning of I1.

Before the simulation of T1, we perform an instruction-
level fast-forwarding simulation of the first instruction i1 to
have the architectural state at its completion. Then the out-
of-order simulation takes place and T1 is suspended at its cy-
cle t11. On the suspension, T1’s pipeline P 1(t11) is compared
with P 0(t01). More specifically, we compare the contents of
SimpleScalar’s components shown in Table 1 in which their
default configuration parameters are also shown. The com-
parison is fairly simple but we have to pay some attention to
absolute timing values in the components. That is, a pair of
timings at which some event will occur, e.g. the completion
of an instruction, has to be compared after converting each
of them into the value relative to own cycle count of each
thread, t01 for T0 and t11 for T1.

If the comparison results that both pipelines are equiva-
lent, the thread T1 sleeps until a CLM substate is touched
to break the coherency with T0 as discussed later. A sleep-
ing thread is called being dominated by the thread coherent
with it. In the figure, T1 is dominated by T0. Then the
simulation and suspension are repeated for T2 and T3. In
the figure, T2 also sleeps and thus is dominated by T0. On
the other hand, T3 is kept active because its pipeline P 3(t31)
has some difference from P 0(t01).

Now we finished the interval I1 in which NI(NI +1)/2 in-
structions are simulated in out-of-order manner while NI(NI

− 1)/2 are fast-forwarded. Note that these amounts and
number of operations for rollback are constant. Then we
proceed to the second interval I2 in which new four threads,
T4 to T7, are created. Before simulating them, we resume
the simulations of active threads T0 and T3. Since T0 domi-
nates T1 and T2, we have to take care the possibility that T0

touches a CLM substate different from those of T1 and T2.
The method to check this coherence breaking is discussed in
Section 3.2. The figure shows the case in which T2 is acti-
vated by the difference and its simulation is resumed from
the beginning of I2. For this resumption, the pipeline state
P 2(t21) is replicated from P 0(t01) and timing values in it is
adjusted by t21 (see footnote5)

Then we simulate T3, T4, . . . , T7 and suspend them to
finish the interval I2. In the figure, T0, T2 and T6 are active
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Figure 5: Accesses to CLM substates

at the end of I2 while others are sleeping and are dominated
by active ones. ).

3.2 CLM substate management
Each thread may have its own CLM substates different

from those of its predecessors. When a thread Tj is sleeping,
its dominator Tk (k < j) is responsible to examine if an
access to a CLM substate Cj

l,m for Tj gives a result different

from that of Ck
l,m for Tk to break their coherency and thus

to activate Tj .
For this examination, each CLM substate is represented

in a linked list of nodes each of which corresponds to the
substate value of a thread’s own. For example, Figure 5(a)
shows a small CLM named CX of two substates CX,1 and
CX,2 accessed in an interval I in this order. Threads T0 to T5

may have their own substates whose values are represented
as x/y where x is the current value while y is the value at the
end of the last interval that threads passed. Threads except
for T3 have their own substate of CX,1, and threads T0, T3

and T5 have those of CX,2. Thus for T3, the value of CX,1

is γ/γ for its predecessor T2. The thread T0 has finished I
and is active (represented by black circles), threads T1 and
T5 are also active but have not yet started I (represented by
white circle), and other threads are sleeping and dominated
by T1.

Now we start the simulation for T1 in the interval I. First
it performs an access to CX,1 which hits if the substate
value is δ. First T1 examines its own substate and finds
it results miss. Thus the current value of the substate is
changed to δ but its old value remains unchanged. Then
T1 traverses all substate values, γ/γ and δ/δ, for threads
dominated by it. Although the value γ/γ for T2 (and T3)
is different from β/β for T1, the access results affected to
pipeline, b1

x = µx(νx(P 1), C1
x) and b2

x = µx(νx(P 1), C2
x),

may be equivalent as we assume in this explanation. Thus
the substate for T2 is changed to δ/γ but T2 (and T3) is
not activated. The substate δ/δ for T4, however, has a dif-
ferent story because the hitting access to it should give a
result different from the missing access to β/β. Therefore,
we now find that the coherence of T1 and T4 is broken, and
T4 becomes the candidate of activation as indicated by a tri-

5In this scenario, replicating of P 0(t01) for P 2(t21) is unnec-
essary because T2 has just slept and thus P 2(t21) is valid. In
general, however, since an activated thread may have slept
during many intervals, the pipeline at its bedtime should be
obsolete on its uprising.
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Table 2: CLM of SimpleScalar

caches /TLBs parameters (*1)
L1 cache separated / unified / none

i = 32× 1× 512, d = 32× 4× 128
L2 cache separated / unified / none

64× 4× 1024
TLB separated / unified / none

i = 4096× 4× 16, d = 4096× 4× 32

predictors parameters (*2)
BTB 4× 512
ret addr stack 8× 1
dir predictor not-taken / taken / perfect /

bimodal / gselect / gshare / combined
2× 2048

(*1) b× w × s: b = block / page size in byte;
w = associativity; s = # of sets (substates)

(*2) x× s: x = associativity / stack depth / counter width;
s = # of entries (substates)

angle shown in Figure 5(b) which also shows the changes of
substates.

Then T1 accesses CX,2 referring to its predecessor’s sub-
state ζ/ζ. Since the access hits to ζ, the substate remains
unchanged6. Then it examines η/η for T3 to find that coher-
ence is broken again. Thus T3 becomes the new activation
candidate as shown in Figure 5(c).

Finally, when we finish T1’s simulation of the interval I,
each accessed substate is traversed again. First, those of
CX,1 are traversed to perform the following; T1’s substate
δ/β is changed to δ/δ because δ is now old value for the
next interval I + 1; T2’s substate δ/γ is removed because it
is now equivalent to T1’s; T2 itself is also removed because its
microarchitectural state including CLM state is now equiva-
lent to T1’s; T3’s substate γ/γ is newly created and inserted
copying T2’s old value γ, because T3 must start from the
beginning of I; and finally δ/δ for T4 remains unchanged
because it has not been modified7. Then we traverse sub-
state values of CX,2 but no operations are performed because
they have not been modified. Now T3 is ready to be simu-
lated from the beginning of I with its own substate values
γ/γ and η/η.

As explained above, a thread simulation in an interval
needs to traverse substate values for all threads dominated
by the thread. Although the number of sleeping threads is
hardly bounded to a constant, it is strongly expected that
the number of traversed substate values are bounded to a
constant in practical workloads. For example, let us assume
a substate of 2-way set-associative cache is accessed with
addresses α and β in this order and their tag parts are dif-
ferent from each other. For all threads which started before
this access sequence, the substate should have β→α where
→ represents recently-used precedence. For other threads
invoked after the access with α, the value will be β→⊥ or
⊥→⊥ where ⊥ means an invalid block. Therefore, by the
substate comparison and removal at the end of each inter-
val, the number of substate values should be kept to three
or less effectively.

6If the access makes the substate changed to, say κ, a new
node κ/ζ would be inserted just below ζ/ζ for T0 so that T1

has its own substate.
7If it has been modified, we restore its old value into the
current value to make it δ/δ.

Table 2 shows all kinds of CLM which SimpleScalar sup-
ports and thus we implemented as well. Underlined config-
urations are SimpleScalar’s defaults and are chosen for our
experiment discussed in Section 4.

3.3 Worst Case Values of 2-Bit Counter Based
Predictors

Caches, TLBs, BTBs and return address stacks have ap-
parent worst case values to which their substates should be
set on interrupt. That is, all of their substates may be set to
an invalid value8 to maximize the number of misses in the
execution following an interrupt. Branch direction predic-
tors with 2-bit counter tables, however, do not have such an
apparent value because each of four possible values has some
significance for the branches referring to it. More complicat-
edly, the value to cause prediction miss at the first branch
after an interruption may not be worst. For example, a
sequence of branches NTT(NT)∗, where N and T mean not-
taken and taken, is suffered the maximum number of misses
when the counter referred by them has 1 at initial but this
value predicts the direction of the first non-taken branch
correctly.

Thus we have to determine the worst case values of coun-
ters for each interruption point so that they maximize num-
ber of mispredictions. Since determining them with perfect
accuracy needs a huge amount of exhaustive search with
out-of-order simulation in 4×B search space for prediction
table of B entries, we adopt an approximation obtained by
an analysis of in-order instruction level simulation result.
That is, in advance of WCID analysis, we perform a fast
instruction level simulation to obtain a trace of conditional
branches b1, . . . , bn. Then for each branch bk, we analyti-
cally obtain the worst case value of the counter it refers to
as follows.

Let c(k) be the counter which bk refers to, p(k) be the in-
dex of the branch which also refers to c(k) and just preceding
bk, and mγ

c (k) be the number of misses which branches in
the set {bl | k < l ≤ n, c(l) = c} suffer if c has the value
γ (0 ≤ γ ≤ 3) at the completion of bk. From these defi-
nitions, we have the following recurrence for m0

c(k)(k
′), for

example, for all k′ such that p(k) ≤ k′ < k providing we
know m0

c(k)(k) and m1
c(k)(k).

m0
c(k)(k

′) =


m1

c(k)(k) + 1 if bk is a taken branch

m0
c(k)(k) if bk is a not-taken branch

That is, if c(k) is set to 0 somewhere between bp(k) and bk,
and bk is a taken branch, bk is mispredicted and c(k) be-
comes 1 to result that the total number of misprediction
is m1

c(k)(k) + 1. If bk is a not-taken one, its action is cor-
rectly predicted and c(k) remains unchanged. Since similar
recurrences are obtained for γ ≥ 1, and mγ

c (n) = 0 for any
c and γ by definition, it is easy to calculate mγ

c (k) for all
c, γ and k (0 ≤ k ≤ n) providing p(k) = 0 for the first
branch referring to c(k). Thus, it is also easy to find w(k)

s.t. m
w(k)

c(k) (k) = maxγ{mγ
c(k)(k)} which must be set to c(k)

on an interruption that occurs after bk and before bl such
that k = p(l). Note that this analysis simply requires O(N)
fast instruction level simulation and also O(N) branch trace

8BTB and return address stack cannot be invalidated usu-
ally, but can have some key and/or target address which
must cause prediction miss. For example, an address out-
side workload’s text area may be used for this purpose.
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Figure 6: Maintenance of Thread Cycles using Binary Tree

analysis. In our implementation, values of w(k) are stored
in a file which our WCID analyzer reads to set a CLM sub-
state for a bimodal predictor[12] for the thread Tj such that
ij = bk.

Predictors using global history to generate 2-bit counter
table index, namely gselect[10] and gshare[6], make the story
a little bit complicated because we have to find not only
worst case values but also worst case indices. That is, an
interruption makes the global history of g bits uncertain and
thus the counter table indices for the following g branches
uncertain. Although a perfect analysis is possible by a search
of a huge space, we adopt a more efficient method which re-
sults a little bit more mispredictions than the exhaustive
search. For a predictor with g-bit history, we assume g
branches after an interruption always miss to predict their
directions and make no change to the counter table. The
table is set to the worst case pattern obtained from an anal-
ysis similar to that for bimodal predictors, after g branches
complete using the the history fixed by the branches. This
method could be a little bit too pessimistic because the ta-
ble pattern might be infeasible due to ignoring updates of
leading g branches, but this small pessimism should be com-
pensated by the efficiency of the analysis.

Finally, a combined predictor[6], which has a meta predic-
tor to choose the predictions from a bimodal table and a
gselect or gshare table, is implemented with a fairly simple
analysis based on the methods described above. Although it
is required to calculate 22+2+2 = 64 possible values of mγ

c (k)
for three counters referred by a branch, the time complex-
ity of the analysis is still O(N) and the constant factor is
acceptably small.

3.4 Maintenance of Cycle Counts of Sleeping
Threads

We have to not only simulate threads but also count cy-
cles of thread executions to find WCID. Counting cycles of
an active thread is of course obvious, but doing it for sleep-
ing threads has a problem. The counting operation itself is
fairly easy because we know the cycle when a thread went to
sleep and the cycles spent by its dominator. However, since
the number of sleeping threads might not be bounded by a
constant but could be proportional to N , it could make the
time complexity of our analysis O(N2) if we simply add the
cycles spent by a dominator to the cycles of threads domi-
nated by it each time the dominator finishes its simulation
for an interval.

Thus we devised an O(log N) algorithm for the cycle main-
tenance of sleeping threads using a simple binary tree. As
shown in Figure 6(a), cycle counts of threads, except for T0,

are kept in a binary tree whose nodes correspond to threads
in a differential manner. Let nj be the node for the thread
Tj whose cycle count is denoted as tj , and p(j) be the thread
index of the parent node of nj . For example, p(5) is 6, p(6)
is 4, and so on. The root node, n16 in the figure, has the
absolute value of the cycle t16 for the corresponding thread
T16. A non-root node nj , however, has the difference of cy-
cles between its own and its parent’s, namely tj−tp(j). Thus
the absolute cycle of Tj is calculated by adding the values
of its own and its ancestors up to the root paying O(log N)
cost. For example, t6 is obtained by adding the values of n6,
n4, n8 and n16 to result −14 + 15 + 15 + 42 = 58.

Now suppose T6 dominates threads T7 to T19 and it fin-
ishes the simulation of an interval spending 7 cycles. Thus
δ = 7 must be added to t6, t7, . . . , t19. This addition is
performed by the following operations to the nodes on the
upward paths, bold branches in the Figure 6(b), from the
left child of n6, namely n5, and n19 that has no children,
up to their common ancestor, namely n16. In the following
explanation, we denote the series of nodes corresponding to
the threads in problem as S, being 〈n6, n7, . . . , n19〉 in our
example. We also assume that the root has a virtual parent
(super-root), n32 in our example.

(1) If nj ∈ S but np(j) /∈ S, increment nj ’s value by δ to

make it (tj + δ)− tp(j). In our example, n6, n16 (with
super-root assumption) and n18 satisfiy this condition
and thus δ = 7 is added to their values.

(2) If nj /∈ S but np(j) ∈ S, decrement nj ’s value by δ to

make it tj − (tp(j) + δ). In our example, n4, n5 and
n24 satisfy this condition and thus δ = 7 is subtracted
from their values.

(3) Otherwise, i.e. if nj ∈ S ↔ np(j) ∈ S holds, keep nj ’s
value unchanged because the difference between the
values of nj and np(j) is not affected by the increment.
In our example, n8 (n8, n16 ∈ S), n19 (n19, n18 ∈ S)
and n20 (n20, n24 /∈ S) satisfy this condtion.

The correctness of the algorithm shown above, i.e. the as-
surance that it keeps the invaliant that each node nj has
tj − tp(j), is proved by a few deductions from the property
of binary trees showing that nk ∈ S ↔ np(k) holds for all nk

excluded from the upward path to the common ancestor (see
[8] for a formal proof). It is clear that the algorithm takes
O(log N) time. Since we maintain the cycle tree at each
end of a thread simulation for an interval, the total cost of
the maintanance is O(N log N) providing that the number
of active threads at an interval is bounded by a constant.
The caluculation of the absolute cycle count is performed
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Figure 7: Average and Worst Case Interruption Delays
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Figure 8: Maximum Delay Caused by Interruptions
in Each 64K Instruction Duration of “compress”

when a thread is activated paying O(log N) cost, and thus
the total cost for the calculation is O(N log N) again with
the same hypothesis. Thus with the cycle maintenance al-
gorithm described above, the time complexity of our WCID
analysis is expected to be O(N log N) if our differential sim-
ulation successfully bounds the number of active threads in
an interval to a constant.

Note that growing the tree upward adding new root and
its right subtree is easy because the threads corresponding to
added nodes are newly created and thus their absolute cycle
counts are zero. For example, when T32 is newly created, we
simply add n32 as the new root and n33 to n63 as its right
subtree setting node values to zero. Since t16 − tp(16) =
t16 − t32 = t16 − 0 = t16, the value of n16 may remain
unchanged.

4. EXPERIMENT

4.1 Environment and Workload
We implemented our WCID analyzer using SimpleScalar-

3.0 as its base. The program is written in C as SimpleScalar
is and is compiled by gcc 2.95.3 to run on an x86-based PC
with Linux kernel 2.4.22. The performance is mesured using
a 3 GHz Pentium-4 based PC with 1GB memory. The target
microarchitecture is SimpleScalar’s default whose configura-
tion parameters were shown in Table 1 and 2 in the previous
section.

The workloads are all 16 programs in SPEC CPU95, com-
piled targeting SimpleScalar’s PISA instruction set, with
“test” data set. The workloads, except for ijpeg, are not for
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Figure 9: Overall Execution Time, Simulated Inter-
vals and Traversed CLM Substates

realtime systems but their wide range of behavioral spec-
trum will be helpful to examine the applicabilty of our anal-
ysis method. Although our analysis is expected to be rea-
sonablly efficient, completely executing them would take too
long time. In fact it would be longer than three weeks
because the analysis speed is at most 8 times as slow as
SimpleScalars sim-outorder with our setting of the inter-
val length NI to 8, and sim-outorder takes about 2.5 days
on our experimental environment. Thus we extracted five
million instructions of the midst durations of their execu-
tions, except for two small workloads, m88ksim and com-
press, whose 3.8 and 3.5 million instructions are completely
simulated.

4.2 WCID Analysis Result
As the first result, WCID of each program is shown in Fig-

ure 7 in (a) absolute cycles and (b) ratio to the whole execu-
tion cycles. These graphs also show average interruption de-
lays by white portions of bars. As easily expected, absolute
and relative WCID vary in a wide range, from 1,411 (applu)
to 80,292 cycle (gcc) and from 0.03 % (applu) to 2.98 % (com-
press), reflecting the characteristics of workloads.

Although it is hard to evaluate whether the WCID val-
ues are significant or not, the remarkable result of compress
exhibits the importance of detailed anaylsis. That is, its av-
erage delay is at the same level as other programs while its
worst-case delay is significantly larger than others in terms
of the ratio to its whole cycles. Thus, if we estimated the
worst-case value from its medial and/or representative be-
havior, we could heavily underestimate the value resulting

9
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Figure 10: Execution Time and Active Thread Ratio in Each Interval

too optimistic estimation. In fact, as shown in Figure 8 in
which the maximum delay caused by interruptions in each
duration of 65,536 instructions are illustrated, its interrup-
tion delay strongly depends on the interruption timing and
thus it should be difficult to estimate the worst-case dealy
by a run-through investigation.

4.3 Simulation Time and Related Peformance
Numbers

Since the most important expected feature of our WCID
analyzer is its efficiency achieved by the differential simula-
tion, measuring the performance numbers of its execution
time is essential. First we show basic overall numbers in
Figure 9 in which wall-clock execution times (white bars)
are illustrated together with two important indicators which
determine efficiency; average number of intervals in which a
thread is simulated actively (black bars); and average num-
ber of CLM substates which are traversed in an access (gray
bars).

The numbers are quite satisfatory. First, the execution
times ranged from 608 second (swim) to 1814 second (hy-
dro2d) are short enough for practical use which cannot be
achieved by the straightforward O(N2) method. For exam-

ple, sim-outorder which runs on our environment with 0.5
to 0.7MIPS should take up to about 300 days to analyze
one workload executing 12.5× 1012 instructions. Even if we
did the analysis with a real machine of 1 GIPS, it would take
25,000 second or about 7 hours for 25× 1012 instructions.

The number of intervals, varying in the range from 1.55
(swim) to 2.28 (li), is also good because it means each thread
only executes about 16 instructions on average, 8 in the in-
terval of its creation and another 8 in some other interval
mainly because of the activation by its dominator. The num-
ber of CLM substate traversal varies in the range from 1.05
(hydro2d) to 2.14 (compress). This means that almost only
one additional access is required at most to a dominator to
check the coherency of its dominating threads.

Althogh the overall numbers are good, this result does
not assure that our algorithm works O(N) simulation time
and O(N log N) cycle maintenance time. Thus we measured
three performance numbers discussed above for each of up
to 625,000 intervals to observe differential behavior. The
results are shown in Figure 10(a) to (f) and Figure 11. The
execution times shown in (a) almost stably lie in the range
from 1ms to 3 ms but occasionally raise up to form the peaks
of m88ksim, li and wave5 and a plateau of hydro2d. These
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Figure 12: Number of Sleeping Threads in Each In-
terval

peaks and plateau, however, look reflecting the compuation
phase shifts, because these unusual slowdowns disappear af-
ter one million instructions are executed.

This hypothesis that a program phase shift makes our an-
alyzer slower only transiently is supported by the ratio of
the number of active threads to created shown in (b) to (f),
and substate traversals shown in Figure 11. Figure 10(b)
illustrates the active thread ratio of workloads other than
four which show peaks/plateaus, from which fairly stable
behaviors are observed. As for hydro2d shown in (c), two
plateaus are observed and the first one reflects that of exe-
cution time in (a). However, although other three shown in
(d) to (f) exhibit periodical phase shifts, they hardly explain
the peaks of execution time in (a). On the other hand, the
number of substate traversals shown in Figure 11 matches
and thus clearly explains the peaks in Figure 10(a). A pos-
sibly bad news that Figure 11 tells us is that the number in
compress looks steadily growing, but this may simply show
the first portion of a long but trasient phase shift.

Finally, we measured the number of sleeping threads in
each interval, which is shown in Figure 12. The figure clearly
shows that the number is propotional to N at least in three
workloads li, perl and tomcatv. This means that the analysis
would take O(N2) time if we had executed threads whose
machine states disagree with others or had maintained the
cycle counts of sleeping threads in a straightforward manner
propotional to the number of them.

From those results shown in Figure 10 and 12, we may con-
clude that our analyzer efficiently works in O(N(K+log N))
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Figure 13: Speedup of 8-node Parallel Execution

time where K is a significantly large constant hiding the ef-
fect of O(log N) factor, owing to our differential simulation
and cycle count maintenance using binary tree.

4.4 Parallel Performance
Since there is loose dependency among threads, it is fairly

easy to parallelize our analyzer in a block decomposition
manner to asign a series of threads to a processing node.
That is, if we have m nodes p1, . . . , pm, we decompose
N threads into m sets S1, . . . , Sm each of which has Nk

threads, namely Sk = {Tj |n(k − 1) < j ≤ n(k)} where

n(k) =
Pk

1 Nk. A node pk first performs the fast-forward
simulation of n(k − 1) instructions, then does the differen-
tial simulation for threads in Sk creating them, and con-
tinues it without thread creation until N instructions are
executed. Since fast-forwarding is much faster than out-
of-order differential simulation, the execution time of pk is
modeled as Nk/a + (N − n(k))/b where a and b represent
simulation speed with and without thread creation, if we
may ignore the O(log N) factor of our algorithm. Then bal-
ancing the loads of nodes is achieved by determining Nk to
satisfy N1/a + (N − n(1))/b = · · · = Nm/a + (N − n(m))/b
which is solved as Nk = rm−kNm where r = 1 − a/b and
Nm = N(1− r)/(1− rm).

By a few test runs of compress, we found b = 20a approx-
imately and evaluated all benchmarks with this value using
an eight-node cluster of PCs equivalent to that shown in
Section 4.1. The resulting parallel speedup shown in Fig-
ure 13 is quite satisfactory, except for hydro2d and m88ksim
due to their peaks/plateaus of execution time discussed in
the previous section. For other workloads, we achieved high
speedup ranged from 6.33 (gcc) to 9.02 (perl). The reason
of super-linear speedups of four workloads is the shrinkage
of working set to result higher cache hit ratio.

5. RELATED WORK
Although most of traditional researches of WCET[11] aim

at static analysis of program to find, for example, input data
set to maximize its execution time, we can find several pro-
posals using (cycle accurate) simulators to obtain a tight
bound of WCET. For example, Engblom and Ermedahl
proposed a combination of Implicit Path Enumeration Tech-
nique (IPET) and a trace driven microarchitecture simulator
for a detailed analysis including instruction pipeline behav-
ior across basic blocks[4]. Another example is found in the

11



work of Burns et al.[3] which models instruction execution
timing using a Petri-Net based simulation for superscalar
processors.

On the other hand, our target WCID (or WCPD: Worst-
Case Preemption Delay) problem had been attacked from
the view point of the schedulability of interrupted/preempted
processes (e.g. [2]). Then Lee et al.[5] pointed out the im-
portance of the effect on caches, and proposed an analytical
method to bound cache miss penalty due to interruptions.
This approach was extended in two directions; to incorpo-
rate the cache pollution by preemptors[9, 13]; and to analysis
more accurately using memory access trace obtained from
the simulation or instrumented execution of a workload[7].

Although each of those work above has its own good fea-
ture, e.g. applicable without running[3, 4], taking into ac-
count multiple interruptions and/or preemptors[5, 7, 9, 13],
they commonly have the problem on accuracy. That is, sim-
ulation based modeling inherently has a limitation to ana-
lyze real behavior of microarchitectural components, while
cache-related delay analysis may underestimate the delay
because it usually assumes some constant miss penalties.

Our analyzer, on the other hand, only has two sources
of inaccuracy; microarchitectural model of SimpleScalar it-
self; and our assumption of interruption effect on CLMs,
completely flushing, which causes some overestimation. Al-
though the later inaccuracy is harder than the former to
remove or reduce because of a huge space of possible pol-
lution patterns, idea in previous work could be applicable
to shrink the search space of worst-case pollution. Another
limitation of our work is that so far only one interrupt may
be inserted into the workload execution. Since a complete
cycle count log of threads is easily obtained9, a simple O(N2)
dynamic programming based algorithm may be used to find
WCID with multiple interruptions as suggested in [7]. The
time complexity, however, must be significantly reduced in
our future work because N2 is larger than 1013 even with
our relatively small workloads discussed in Section 4.

6. CONCLUSIONS
This paper describes an accurate and efficient algorithm

to analyze WCID for one interrupt occurred in a workload
using a cycle accurate simulator. The accuracy is assured
because our analyzer performs simulation equivalent to that
inserting interruption into all possible timings. The effi-
ciency is achieved by our differential simulation technique
by which a thread simulation takes place only in short du-
rations in which its behavior is different from other thread.
We also devised an efficient O(log N) algorithm to increment
the cycle counts of sleeping threads using a binary tree of N
threads.

Our performance evaluation with SPEC CPU95 bench-
marks proves the effectiveness of our differential simulation
resulting fairly short execution time, 30 minutes or less, to
analyze workloads of 5 million instructions which would cost
up to 300 days without the technique. It is also confirmed
that our algorithm works in O(N(K +log N)) time assuring
applicability to a wide range of applications. Moreover, a
simple parallelization made our analyzer faster achieving up
to 9.02-fold speedup on 8-node PC cluster.

9In fact, our analyzer outputs the cycle count each time an
instruction retires in the execution of all active threads in
addition to that of T0.

Our most important future work is to devise an efficient
algorithm to find WCID with multiple interruptions. We
also plan to attack the problem of selective pollution by
preemptors.
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