Efficient Architectures through Application Clustering and
Architectural Heterogeneity

Lukasz Strozek
Harvard University

strozek@eecs.harvard.edu

ABSTRACT

Customizing architectures for particular applications is a
promising approach to yield highly energy-efficient designs
for embedded systems. This work explores the benefits of
architectural customization for a class of embedded archi-
tectures typically used in energy-constrained application do-
mains such as sensor node and multimedia processing. We
implement a process flow that analyzes runtime profiles of
applications and combines this information with a model
for our architectural design space providing a robust cus-
tomization engine built upon a fully automated method for
determining an efficient architecture (together with appro-
priate application transformations). By profiling embedded
benchmarks from a variety of sensor and multimedia appli-
cations, the paper shows the relative energy savings result-
ing from various architectural optimizations and identifies
the number of architectures that achieves near-optimal sav-
ings for a group of applications. This paper proposes the
use of heterogeneous chip-multiprocessors as a cost-effective
approach to capitalize on the potential energy savings pro-
vided by application customization while executing a range
of applications efficiently.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems

General Terms

Performance, Design

Keywords
Efficient Custom Architectures, Heterogeneous CMP

INTRODUCTION

Historically, computer architects have focused on design-
ing instruction sets and microarchitectures that perform well
across a broad space of user programs. These architectures

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASES’06, October 23-25, 2006, Seoul, Korea.

Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

190

David Brooks
Harvard University

dbrooks@eecs.harvard.edu

are necessary to drive high-volume manufacturing for the
general-purpose computing market and designers often focus
on benchmark suites such as SPEC [14] that are inspired by
a variety of existing applications.

Trying to perform well all the time, however, means cer-
tain trade-offs. For any architecture, there exist programs
for which the machine performance is sub-optimal, and, as
architectures become more and more complex, the chance
that some other, more specialized architecture outperforms
in power-performance efficiency increases. This is not a
problem if the architecture is intended to be multi-purpose:
if the objective is to execute arbitrary user applications
from many application domains. However, due to the in-
creased popularity of embedded devices such as sensor net-
works and portable media devices, the opposite trend be-
gins to emerge: machines are built with very specialized
applications in mind. In this case, embedded chip design-
ers should consider the potential of specialized architectures
for these high-volume markets, particularly in light of the
energy-efficiency demands of these domains.

For instance, consider most sensor network applications.
They are executed on small computers (“motes”) equipped
with certain sensors and are usually deployed with a specific
task in mind [9]: they function as a fire detection system that
is independent of the main building infrastructure [7], or
around volcanoes, measuring seismic activity [18]. When the
task to perform is well-defined and does not vary over time,
it might be advantageous to design specialized hardware for
a particular application.

It is well-known that custom hardware can be built to
perform a task with significant gains in efficiency. However,
designing custom ASICs or VLSI microcontrollers takes time
and human capital. For this reason most motes use an off-
the-shelf microcontroller (for instance, the TT MSP 430 [16])
which might perform sub-optimally for a given application,
but drastically reduces deployment costs and time spent de-
signing the hardware.

This paper proposes a solution that offers similar ben-
efits with a fraction of the cost: it finds an optimal ar-
chitecture (or a set of architectures comprising a hetero-
geneous multiprocessor) through an automated process. It
takes advantage of the fact that most architectures intended
for this application domain can be described by a handful
of parameters, and creates a generic model of a microcon-
troller. With minimal human input, the proposed system
determines the optimal architectures for a given applica-
tion, creates a hardware description language (HDL) model
for them, then synthesizes the model to output a chip lay-

out design ready to be fabricated. This paper focuses on the
analysis of microcontrollers of similar complexity and mar-
ket focus as the TT MSP430, MIPS R2000, or ARMT7: simple
instruction sets implemented on unpipelined or minimally
pipelined microarchitectures that are increasingly popular
for energy-constrained sensor and media workloads.

The overarching goal of the paper is threefold:

e First, this paper develops a process which takes a run-
time profile of an application, synthesizes families of ef-
ficient architectures, and performs efficient code trans-
formations to run on these architectures.

e [t then relaxes the single-application requirement and
partitions a set of all given applications into “clusters,”
that is, groups with similar efficient architectures. For
each cluster, the selected custom architecture is more
efficient than the off-the-shelf microcontroller.

e Finally, given a partition, it determines the optimal
number of architectures (comprising the cores in a
heterogeneous CMP) by trading off energy benefits
against hardware costs.

The rest of the paper is organized as follows: Section 2
presents the process from a functional point of view and de-
scribes (and justifies the validity of) the workflow. Section
3 introduces the architectural model and describes each of
the parameters. Section 4 presents the results and analyzes
them. Section 5 discusses previous work in automated ar-
chitecture generation, relevant to the objectives and results
of this paper, and proposes future work. Finally, Section 6
concludes the paper.

2. PROCESS FLOW

The generation of an efficient microprocessor for a partic-
ular application can be seen as a search problem. To reduce
the search space, we create a model encapsulating any mi-
croprocessor in just several parameters. Since such a model
limits the search space drastically (in our case, to some 3840
instances of different microprocessor designs), it should be
very expressive in order to emulate many diverse micropro-
cessor designs. In particular, our model includes parameters
such as register file size, various memory addressing modes,
the presence of complex instructions such as a divider or a
multiplier and immediate operands. To determine the op-
timal architecture, the process will therefore accept a user
program as input, and determine a set of parameters which
yield the most optimal architecture. Two factors will affect
the optimal decision:

e The profile of any candidate architecture, determined
independently of the user program provided. Since this
profile is generated off-line, and only once for every ar-
chitecture embraced by the model, we will simply look
up the pre-computed information about a particular
architecture in a database.

e The profile (and the trace information) of the user pro-
gram provided as input, converted to be compatible
with a particular architecture. Since different com-
puter architectures feature a different instruction set,
it is necessary to convert the user program to a pro-
gram with identical functionality, but written using a
particular instruction set.

Those two sources will present us with trade-offs: for exam-
ple, the hardware profiler may report that a simpler archi-
tecture results in a microprocessor that consumes less power

101

and has less area, but at the same time the software pro-
filer may report that on the same architecture, the resulting
program takes more cycles to execute. Therefore, the pro-
cess will find a Pareto optimal family of architectures. To
account for possible measurement errors, we will allow the
values of the metrics to vary by 5%.

The implementation of the model is a Verilog file which
contains the description of the data path. Since memory
has such an important impact on the performance of any
microcontroller, it cannot be ignored in this model. For
that purpose, a memory compiler included in the Faraday
standard cell toolkit [17] called Memaker is used to generate
memory models for the data memory, code memory and
the register file. Different architectures require memories
of different bit-widths and number of words. The memory
generated by Memaker is incorporated into the final design
of the microcontroller.

memory
generator
verilog
c
o0)
S 2.0 ’
= o Rt
: 5 S5 |
verilog 4 =1 13 H
analyzer —| Synopsys Encounter |—> | 8
c generator I et
met ricn‘ t - J
metrics

HW

e |
—_—
“ metrics

Figure 1: The offline part of the process flow
For each configuration ¢, the analyzer generates the Verilog
model, gathers the metrics (the worst-case delay of the circuit,
the chip area, and the static and dynamic power consumption)
from Synopsys Design Analyzer and SoC Encounter, and saves
them in a database.

CT lmetrics

HW

ori r4, r0, Ox metrics

ori 5, r0, Ox “T

o add 16, r4, r5

s Loop: ua
- add‘ r7, 7, 16 adapt-mips

o addi r4, r4, -0

bne loop, r4,

search

T
€1, C2
metrics

C2

add 17, 7, 15
halt

(for MIPS)

TR

SW

Figure 2: The online part of the process flow
Given a (for example) MIPS assembly file, the adapter first con-
verts it to a file compatible with the universal assembly. For each
configuration to test cz, the search module passes the file to the
translator, and then the software profiler. Given the metrics from
the hardware profiler and the software profiler, the search module
determines the family .%# of optimal architectures.

Consider the process flow shown in Figures 1 and 2, con-
sisting of two parts: off-line and on-line analysis. Off-line
analysis generates the architecture-specific data that can be
stored in the database (this data is independent of the appli-

cation being analyzed). First, given a particular set of model
parameters, a Verilog model is generated. This model is an-
alyzed by Synopsys Design Analyzer, which synthesizes it
and converts into a mapped design. The Synopsys tool also
combines this design with the three memory modules and re-
ports the chip area, the worst-case delay (clock frequency)
and power consumed. A correction needs to be made for
switching power. Memory usage statistics from the user pro-
gram are also passed into the power model for the memory
(obtained from Memaker). For synthesis, the 1.2V 130nm
UMC Faraday standard cells are used [17]. Once Design
Analyzer generates the mapped design, Cadence SoC En-
counter [3] performs cell placement and routes the design to
provide more accurate area and worst-case delay analysis.
The output of those two tools is combined and the resulting
data is stored in the database.

On-line analysis is the main component of the process.
The code for the user program is written originally in some
assembly language for some architecture. This architecture
must be one of the architectures embraced by the model
(hence, the architecture model should be as expressive as
possible to include many existing architectures), but the in-
struction set can be arbitrary. However, it should be rel-
atively easy to convert that input program to a program
that is written in the assembly defined in this paper (called
universal assembly) with instructions from the instruction
set defined in this paper. The universal assembly resem-
bles an intermediate language used by compilers, yet all the
instructions of the underlying instruction set can easily be
implemented in Verilog.

Once the program is adapted (converted to universal as-
sembly), it is then passed on to the search module. The
users supplies the search module with a few model param-
eters that must be held fixed. Those parameters, called
irreducible, will not vary and are usually common for the
original architecture and the optimal architecture.

Since the user program has been written for a particu-
lar architecture, it may not necessarily be supported by any
arbitrary architecture. If it is not supported, it needs to
be translated (reduced) into a program that is. This means
that certain instructions might need to be written as series
of instructions, or even entire procedure calls, if the target
architecture is too simple to support those instructions. It
is important to note that all translations are lossless, that
is, they convert the program into a program with identical
functionality. It may take more cycles to execute, but for an
outside observer, it does not differ in function from the origi-
nal program. The proposed architecture model ensures that
a lossless translation is always possible: that is, for any con-
figuration of the reducible parameters (all parameters which
do not have to be kept fixed), it is possible to translate the
program to one supported by a model generated with any
other configuration of those parameters. Moreover, convert-
ing a simple architecture into a more complex architecture
means that applications need to be further optimized. Usu-
ally, certain groups of instructions are collapsed, which sig-
nificantly increases program performance.

2.1 Discussion of Alternative Solutions

The process presented in this paper performs assembly-to-
assembly translation of user programs. While such transla-
tion results in programs which are correct (programs which
are identical in function to the original programs), it is un-

192

likely that the translation is optimal. In particular, if the
target architecture is known at compile time, the compiler
could use the extra information to make different optimiza-
tion decisions. For example, converting from an architecture
that supports indirect loads to an architecture that does not
allow them means that every indirect load must be rewrit-
ten in terms of two loads. If a compiler had been given an
architecture with no indirect loads, it might be possible to
make optimizations which would avoid them altogether in
some cases.

Hence, another approach that could be used to perform
the reductions is to use a retargetable compiler instead of an
assembly-to-assembly translator. This approach, however,
has certain limitations. First of all, while some compilers
have an ability to modify a target slightly (for instance, by
parameterizing the number of registers of the target archi-
tecture), we are not aware of any existing compiler that can
be reconfigured to target all of the architectures embraced
by our model. Specifically, for some parameters such as
the architecture type, different compilers are required al-
together, and for some parameter configurations, no com-
piler exists. Even if all compilers were available, they would
vary in performance and such variation would be impossible
to decouple from the simulation results. Finally, given the
unpipelined design space that we consider, many compiler
optimizations would not be necessary.

Rather than developing a retargetable optimizing com-
piler that can embrace all the architectures that we con-
sider, we adopt the assembly-to-assembly translation ap-
proach and borrow algorithms from the compiler world where
appropriate. Specifically, the register re-allocation algorithm
has been inspired by solutions seen in open-source compilers.
Finally, the results presented in this paper are conservative:
the paper finds more efficient architectures but makes no
claim about the absolute efficiency. It is possible that with
additional optimizations early in the compilation stage, a
more efficient architecture could be found, but the architec-
tures found by this process are nonetheless more efficient
than the original one.

Given the discussion above and the simplicity of our base
architecture, we feel that this approach is sufficient. Fur-
thermore, Section 4.5 shows that our results are relatively
insensitive to the choice of the baseline architecture and
compiler.

3. ARCHITECTURAL MODEL

The results presented in this paper rely heavily on the un-
derlying architecture model. In order for the process to find
optimal data path designs, this model must be as expressive
as possible, allowing for programs written for existing archi-
tectures (such as MIPS or TI MSP430) to be easily adapted.
It must have a balanced number of parameters and always
allow a lossless conversion between configurations.

The underlying architecture is RISC-like with emphasis
on register-register addressing. The architecture supports
reading from and writing to external memory, which signif-
icantly extends its functionality. However, since the model
includes fairly simple architectures, the Verilog implemen-
tation is not pipelined (so as to reflect the MSP430). In
most configurations, instructions take three cycles to exe-
cute. Some configurations have instructions which require a
greater number of cycles (for example, the stack architecture
might need to address the data memory up to four times).

3.1 Model Parameters

This section describes all the parameters of the data path
that determine the complexity of the subarchitectures that
we model. We consider seven parameters, each of which can
take one of several values. All parameters are divided into
two classes: reducible parameters and irreducible parame-
ters. A complete table of parameters, together with their
values and descriptions, is shown in Table 1. The bottom
two parameters are irreducible. One should note that the ir-
reducible parameters are fixed throughout the process — the
user decides at the beginning of the process what values to
set them to. The search only includes reducible parameters,
so that the total number of distinct architectures considered
is 480.

The model allows for three different ways to access data
memory: accumulator, stack, and load-store. In accumula-
tor mode, the register rl becomes a memory-mapped Ac-
cumulator. In stack mode, the register r1 becomes a stack
pointer — using it as a source register pops data off the stack;
using it as a destination register pushes data on the stack.
If the architecture is a load-store architecture, different ad-
dressing modes are available: offset, register-offset and indi-
rect.

When DATAPATH WIDTH is low, so is the size of any ad-
dress and so the programmer is restricted to very short pro-
grams that operate on small amounts of memory. To give
the programmer a chance to extend the program’s address-
ing space, EXTENDED _MODE has been introduced. Special in-
structions are introduced that allow a program to make long
jumps (with twice the number of address bits) and select
data banks (thus effectively increasing the range of address-
able memory).

One should note that all the parameters are orthogonal:
that is, any parameter can be changed independently of the
other ones, and any configuration will yield a valid architec-
ture.

3.2 Instruction Set Architecture and
Translations

The instruction set defined in this paper consists of the fol-
lowing classes of instructions: arithmetic instructions (fea-
turing, depending on COMPLEX _UNIT, just simple logical op-
erations, shifts, or even a multiplier and a divider), imme-
diate arithmetic instructions (provided that IMM_WIDTH is
nonzero), branches, jumps and loads and stores.

We now discuss some of the key parameter reduction tech-
niques. Since translations are lossless and complete, there
must exist a way to fully express the capabilities of one ISA
in terms of another. A special class of instructions is intro-
duced to facilitate those reductions. In particular,

e REGISTER_COUNT is reduced using a standard register
re-allocation algorithm featuring a linear scan algo-
rithm [13]. First, all registers are converted into unique
memory-holders (this step is the converse of register al-
location — registers are converted into variables). Then,
the variables are given their new allocations. Regis-
ters r0 through r4 are not touched (which allows for
jumps to variable addresses such as jr); r5 and ré are
reserved to handle spill — if a variable cannot be given
a register number in the range, it is put in the low ad-
dress in memory. When the register is used as source,
r5 is used as a temporary register to which the value
is loaded from memory.

193

e Converting between different architecture types is some-
what easier. Instructions sacc (set the accumulator
pointer) and ssp (set stack pointer) have been intro-
duced to easily convert between accumulator and stack
architecture and other architectures. sdp (set data
pointer) is introduced to convert offset architectures
to register-offset ones.

e Converting between different values of COMPLEX_UNIT
requires software emulation: to convert from COMPLEX_
SHIFT to a simpler architecture, a routine is included in
the code that performs the shift. Similarly, a multiplier
and a divider are included if necessary. Note that while
the software-emulated divide operation takes many more
cycles than a built-in divide, if the division happens
rarely, it might be advantageous to eliminate this mod-
ule from the architecture.

e Converting between THREE_SOURCES is trivial — an in-
struction which requires three source registers can be
written in terms of two other instructions.

e Converting between values of IMMEDIATE WIDTH needs
software emulation of the immediate operand. When
converted to half-size, any operation that requires an
immediate operand is rewritten using two immediate
loads and a shift. When converted to no immediates,
any immediate must be reconstructed with a sequence
of logical operations such as a shift and a nor. This is,
obviously, very costly if a large number of immediates
are used, but significantly reduces instruction size, and
thus the size of instruction memory.

e Finally, converting simpler architectures to more com-
plex architectures requires certain program optimiza-
tions. For instance, if a multiplier is added to the ar-
chitecture, what has previously been achieved with a
routine can now be replaced with a simple instruction.
The translator locates such instances and simplifies the
code by collapsing multiple instructions.

The opcodes for each instruction are selected so as to
minimize the length of the longest instruction. Hence, the
opcodes are variable-width, but the instructions are fixed-
width to simplify the PC logic. The bit-width of instruc-
tion memory depends most significantly on IMM_WIDTH and
DATAPATH WIDTH.

3.3 Existing Architectures Embraced by the
Model

In theory, any RISC-like architecture should be easily
portable to one of the subarchitectures described above.
In practice, different commercial architectures have features
specific to the particular architecture (such as the existence
of special instructions or registers, the handling of excep-
tions and system calls) which make it difficult to proceed
with the port. However, with minor changes, programs writ-
ten for MIPS and TI MSP 430 are supported by the model.

e MIPS R2000 programs can easily be converted into
programs that run on a subarchitecture with the fol-
lowing configuration: thirty-two registers, Register-
offset Load-Store architecture type, a shifter, multi-
plier and a divider included, three source registers in-
cluded, instructions with half-width immediate values
included, 32-bit data path with no extended address-
ing. Since the universal instruction set is inspired by
MIPS,; it is no surprise that MIPS programs can be

parameter name [values

description

REGISTER_COUNT 0 (eight)
sixteen)
thirty-two)

sixty-four)

The number of registers.

ARCHITECTURE_TYPE
ARCH_STACK)
ARCH_OFFSET)

ARCH_ACCUMULATOR)

ARCH_REG_OFFSET)
ARCH_INDIRECT)

How is memory accessed? If through
loads/stores (type > ARCH_OFFSET),
how is the address generated?

In such case, cumulative.

COMPLEX_UNIT COMPLEX_NONE)

COMPLEX_MUL)

COMPLEX_SHIFT)

Include complex arithmetic modules?
Cumulative: a particular value
includes all preceding modules.

THREE_SOURCES 10)

yes)

Include instructions with three
source registers (i.e. beqr, bgtr)?

TMMEDIATE WIDTH TMM_NONE)
IMM_HALF)

IMM_FULL)

Include instructions with
immediate values?

DATAPATH_WIDTH 2-bit)
8-bit)
16-bit)

32-bit)

The size of memory word
and the size of each register (in bits).

EXTENDED_ADDRESSING no

1
2 (
3 (
0(
1
2 (
3 (
4 (
0(
1
2 (
3 (COMPLEXDIV)
0
1(
0(
1
2 (
0(
1 (
2 (
3 (
0(
1 (yes)

Allow for long jumps and addressing
2N (2-DATAPATH,WIDTH) words?

Table 1: Model parameters and their values
ARCHITECTURE_TYPE, when greater than 1, and COMPLEX_UNIT are cumulative, which means that particular value of a parameter includes
the functionality of all the values less than it.

run by one of the subarchitectures. However, MIPS
programs are modified so that they do not use system
calls or rely on exceptions to work (except overflow
and Division by Zero)

Texas Instruments MSP 430, used widely in sensor net-
work applications, features a small instruction set with
a number of special features. Programs written for the
MSP 430 can be run by a subarchitecture with the fol-
lowing configuration: sixteen registers, Indirect Load-
store architecture type, no complex arithmetic circuits,
no three source registers, instructions with half-width
immediate values included, 16-bit data path with no
extended addressing. A program must be modified to
not rely on interrupt vectors, data from peripherals
(however, some functionality can be emulated) or sta-
tus register bits beyond Carry, Overflow and Zero

4. RESULTS AND ANALYSIS

The process described in this paper can be used to analyze
various applications and determine optimal architectures for
single programs, or entire classes of applications. In this
section, various benchmarks are used to validate the claim
of this paper.

First, for three popular benchmarks, a Pareto optimal
family of architectures is determined. Given this family, the
user can then apply a utility function to determine an opti-
mal architecture that satisfies a particular condition. Specif-
ically, this paper picks an ED? P utility metric and applies it
to the family, thus determining the architecture which max-
imizes this utility. This architecture is then compared to the
original architecture (MSP430) with respect to performance
and energy.

Since having a custom architecture for each application
is impractical, the set of all benchmarks is partitioned into
clusters, that is, groups with similar performance for a par-
ticular architecture (called the optimal cluster architecture).

194

The optimal cluster architecture is assigned so that it maxi-
mized the total utility (in terms of ED?P) of all applications
in the cluster.

Finally, the paper attempts to determine whether using
heterogeneous multi-cores is advantageous by looking at the
relationship between the number of optimal architectures
allowed for an entire class of benchmarks and the perfor-
mance benefits. The paper finds that for each class, a small
number of architectures offers benefits nearly as large as the
extreme, one-architecture-per-application solution.

4.1 Experimental Setup

The following experiments use benchmarks from four sources:

MiBench [8], a freely available embedded benchmark suite;
RAW [2], a suite for general purpose computing; standalone
applications and portions of the TinyOS kernel and user
program code [9]. Table 2 describes all the benchmarks
used. The benchmarks have been compiled for two architec-
tures (MIPS and MSP430) using the MIPS gcc-2.6.3 cross-
compiler, and the GCC toolchain MSPGCC, respectively.
Most of the results presented in this paper use the MSP430
as a reference architecture, though for validation purposes,
the benchmarks have also been compiled for MIPS. Three
application classes are identified: sensor network applica-
tions, multimedia applications and general purpose applica-
tions.

To determine a Pareto curve, we use the following metrics:
machine performance (measured in microseconds), i.e. the
time it takes a particular machine to execute a particular
benchmark (or part of a benchmark) and energy (or power)
consumed by the machine while executing the application.
The energy-delay-squared product (ED?P) is used as the
utility function throughout the experiment. This has the
advantage of providing a voltage-invariant view of machine
performance. Hence, in section 4.2, we determine the Pareto
optimal architectures by trading off performance and energy

[Application Class [Benchmark | Source

[Description

Sensor Network dijkstra MiBench Shortest Path algorithm
patricia MiBench Trees with sparse leaf nodes
rijndael MiBench 192-bit key Block cipher
TEA Standalone | Tiny Encryption Algorithm
TinyDB Standalone | A Query Engine Application
Surge Standalone | A multihop routing application
kinit TinyOS Kernel Initialization Routines
queue TinyOS Queue control mechanism
Multimedia jpeg MiBench JPEG encoder and decoder
lame MiBench MP3 encoder
mad MiBench High-quality MPEG audio decoder
tiffdither MiBench Dithers B&W image
tiffmedian MiBench Reduces Color Palette of Image
mp4enc Standalone | MP4 encryption algorithm
bicubic Standalone | Bicubic resize algorithm
pngdec Standalone | PNG decode algorithm
General Purpose FFT MiBench Integer Fast Fourier Transform
CRC32 MiBench Cyclic Redundancy Check
stringsearch | MiBench Case Insensitive Comparison Algorithm
newton Standalone | Newton’s Approximation of Roots
gsort Standalone | Quicksort algorithm
life RAW Conway’s Game of Life
matmult RAW Integer Matrix Multiply
jacobi RAW Jacobi Relaxation

Table 2: Benchmarks used
Four classes of applications are identified: sensor network, multimedia, general purpose. All benchmarks come from four sources:
MiBench, TinyOS, RAW and standalone applications.

(power) and applying the ED?P utility function to focus on
a particular architecture. Similarly, in sections 4.3 and 4.4
we use the ED? P metric to determine optimal architectures
for a group of applications.

4.2 Determining Pareto Optimal Architectures

We first consider the problem of determining the opti-
mal architecture for each benchmark. The savings we ob-
tain will yield an upper bound on how much savings can
be achieved through application-specific architectures. Fig-
ures 5 (a) through (c) guide us through the entire process for
three sample benchmarks, £ft, lame and rijndael. These
benchmarks have been compiled for the MSP430 and trans-
lated into every possible configuration. For each configura-
tion, the machine performance and power consumption are
plotted on a scatter diagram. Then, a Pareto optimal family
of architectures is determined with a 5% threshold (essen-
tially, if changing any metric by 5% puts an architecture on
the Pareto curve, this architecture is included in the result-
ing family). For reference, the architecture that corresponds
to MSP430 is emphasized on the diagram.

For simplicity, we use the the ED?P metric to constrain
ourselves to one optimal architecture as opposed to the en-
tire family of architectures. For that architecture, in each of
the three examples, we offer a decomposition of the total en-
ergy savings by considering each architectural optimization,
i.e. we determine how much energy is saved each time we
change a value of one parameter of the configuration, when
moving from MSP430 to the optimal architecture. For this
purpose, a list has been made of all configuration changes
necessary to convert the MSP430 into the optimal architec-
ture. For each change, the energy savings (averaged over all
possible paths from MSP430 to the optimal architecture)
are determined and reported. Low standard errors suggest
that the energy savings are nearly path-invariant, that is,
the savings are the same regardless of which path was taken
from MSP430 to the optimal architecture.

195

In general, we find that the application path length dom-
inates clock frequency in determining application perfor-
mance. While power dissipation can fluctuate by 20% - 30%
across the modeled architectures, application performance
tends to dominate the total energy savings.

The total energy and ED?P savings are evaluated for ev-
ery benchmark and plotted in Figure 3. We see that ap-
plication customization can result in impressive savings for
many of the benchmarks that we consider — for the ED?P
metric, often on the order of 75-85%.

Figure 4 presents the code size for the optimal architec-
tures. We reiterate that these results are derived with an op-
timization function purely driven by energy considerations.
While the energy cost of increased code size is modeled by
including estimates for a larger instruction memory, we did
not optimize our designs for chip area, although it would be
trivial to include this in our optimization framework. Be-
cause of this, code blowup can be relatively large for the
optimal architectures — the total running time is reduced
because commonly executed paths have been made shorter
at the expense of the less commonly used ones, which means
that the total code size has increased. Still, the range of
program memory requirements is typical of most MSP430
configurations. As an example, the marginal dollar cost of
moving from an MSP430 configuration with a 16KB pro-
gram memory to one with 32KB is under 10% [16].

In reality, most high-volume computing architectures will
need to execute more than one application. In such cases
architectures which may be optimal for one application will
be far from optimal for another. The next section considers
these situations.

4.3 Determining Architecture-Efficient
Application Clusters
It is impractical to assume that we have a custom archi-
tecture for each application we run. However, it might be
advantageous to identify clusters of applications which run

100%
80%
60%
40%1
20%
S IFJCMIEY DT HEY OLHIG 28 825
EEEMNPEE REESETEEROESEE =5
ZEEHBRRE SRS SEEL EXREE S ER
=i L= &’:E 3 A OVJGEJ =Rl
T s = .,_1&‘:5 bgo g
= 2
=
wn
Figure 3: Energy and ED?P savings relative to
MSP430.

For each benchmark, an optimal architecture is determined and
the energy (white bars) and ED?P (gray bars) savings are iden-
tified.

code size, kB

40 A
32 1

24 1

164,

8.

QS S C =0 O = [SENSIS] [\ O +=
EEET AR PEE Y ETEEE AR EEE£EE
EECELEEE ASEECSYT T omEELT B2
SEEETENT T ggggg £38 £.8
=R R A
T R = 5&5 E g

+ —

17

Figure 4: Code size relative to the MSP430.
For each benchmark, the initial code size (white bars) and the
code size for the optimal architecture (gray bars) are reported.

efficiently on a particular architecture. This is particularly
useful if the applications that a machine is executing share
their characteristics with mostly one of the clusters — in such
case, a custom architecture will perform better for every ap-
plication.

We first perform a similar analysis to one presented in
Section 4.2. On a performance-power graph, we plot each
architecture which maximizes the utility function (ED?P)
for a particular benchmark. Given the set of all benchmarks,
we want to partition them into “clusters” and assign an ar-
chitecture to each cluster. Assuming that all benchmarks
within a cluster will be executed on that assigned architec-
ture, we want to maximize the total utility across all bench-
marks. However, to penalize the creation of small clusters,
we adjust the maximization function by including a term
that increases with cluster size. In other words, our maxi-
mization function is of the form

ad |CGiT+B8Y 0 > U(Ai,By)
C;

C; Bi€C;

(1)

where C; is the i-th cluster, B;; is a benchmark included in
the i-th cluster, A; is the cluster architecture and U is the
utility function. 7, @ and (3 are determined empirically.
Figure 6(a) shows the optimal architecture for each bench-
mark, the partition of architectures into clusters, and the

196

optimal architecture for each cluster. In addition to it, Ta-
ble 3 details the configurations for each of the cluster archi-
tectures. Note that while this architecture is not optimal for
all the applications, it is the best compromise configuration
to execute all the applications in one cluster on the machine.

The configuration of the optimal architecture for each
of the clusters can tell us something about the applica-
tions belonging to the cluster. For instance, applications
which use implicit stack (e.g. portions of queue and surge),
should take advantage of a stack architecture — what takes
two instructions (performing a load, and decrementing the
pointer) can be compressed to one instruction. Moreover,
the architecture for cluster E uses 8 registers and an accumu-
lator — life, for example, does not use much parallelism and
does not require a large amount of local immediate memory.
Finally, stringsearch rarely requires immediate operands
(or, if it does, they are usually small numbers or powers
of two), and so it is best implemented with an architecture
with the IMM_NONE setting.

While figure 6(a) offers a convenient visualization of the
optimal architectures on the performance-power graph, we
would also like to compare the cluster architectures against
the original architecture (the MSP430) and see how simi-
lar or dissimilar they are. We define a weighted Euclidean
distance E(A1, A2) between two architectures as

E(A1, Az) = sz‘ (Ci(A1) — Ci(A2))? (2)

where C;(A) is the value of the i-th parameter in the config-
uration of architecture A. We can think of this distance as
a number of configuration optimizations necessary to move
between architecture A; and architecture Aa, weighted by
some constants w;.

The values of w; are the chip area savings determined
for each optimization (just as we computed the energy sav-
ings reported in section 4.2), averaged over all optimizations
of one parameter and over all applications within one clus-
ter. The motivation behind this is that some optimizations
require more hardware than others and when determining
the distance between architectures, those differences must
be taken into account. The weighed Euclidean distance can
therefore be thought of as the number of optimizations that
distinguish a particular architecture from the MSP430.

Plotting the architectures would require a five-dimensional
graph, so as a simplification, the architectures have been
plotted on a synthetic diagram such that the Euclidean (pla-
nar) distances between every pair architectures have been
(approximately) preserved. Figure 6(b) shows such a dia-
gram — it is important to note that the axes have no meaning
in such a diagram, only distances between the data points.

We see from the savings in Table 3 that the MSP430 is
not an optimal architecture for any of the clusters. How-
ever, figure 6(b) shows that each of the cluster architectures
is different, and that some architectures are more similar to
MSP430 (and one another) than others. For instance, archi-
tecture for cluster C' shares more similarities with MSP430
than architecture A. Similarly, architecture for cluster F is
different than most other architectures.

3700

3600

3500

3400

3300

3200

3100

3000

2900

3700

3600

3500

3400

3300

3200 A

3100

3000

2900

3700

3600

3500

3400

3300

3200

3100 1

3000

2900

The figures on the left show all the architectures plotted on the performance-power graph for (a) fft, (b) lame and (c) rijndael. In this
experiment, the running times of the benchmarks have not been normalized. Different colors for data points correspond to different
number of registers. The circled data points are the Pareto efficient family of architectures. Two outlined data points, connected with
an arrow are the original architecture (where the arrow begins) and the architecture that maximizes the utility function ED2?P (where

PLuw A: 16 — 8 registers
B: imm half — none
C'": indirect — reg-offset
D: reg+offset — offset
E. ud AE, uJ
1501
1004 E
,3“’. AE 20
M - .o B
2 o 50 s
: &> 110
)
T, ms T T T T
0 20 40 60 80 100 120 140 160 A B C D
Pl A: imm half — none
B: indirect — reg+offset
Iy C: reg+offset — offset
{ D: none — shift
3 ¥
v o, B, pJ AE, puJ
b 450 . "
L‘W 105 .
L . 3001 E
A
o dss & L. - 1120
&~ e %o - o9, -
3 ‘— -.:.l}- e AE -90
(t — 60
7. ms T T T T
0 100 200 300 400 500 600 700 A B C
Puw
A: indirect — reg—+offset
. .. B: none — shift
B o C': shift — mul
- ES &
[o &
R » o, P E uJ AE, uJ
‘ - 4504
o
. "
300
. E
o c A% ..
X ‘. AL 1501 AF
e = o W)
< e 60
e]
T, ms
0 100 200 300 400 500 600 700 A B C

Figure 5: Pareto efficient families of architectures.

the arrow ends). The figures on the right show savings broken down by particular optimizations.

197

[Cl. [Benchmarks [perf [E [ED?P]
A | rijdael, TEA, lame, mp4enc, tiffdither, tiffmedian, CRC32 14.5% [17.4% | 39.6%
B dijkstra, patricia, bicubic, jacobi, fft, newton, jpeg, pngdec, mad | 11.7% | 13.1% | 32.2%
C | TinyDB, stringsearch, gsort, matmult 17.2% | 19.3% | 44.7%
D | queue, surge 11.5% | 18.4% | 36.1%
E kinit, life 3.8% 13.2% | 27.8%

CL Optimal Architecture d(A) 1d(B) [d(C) | d(D) | d(E) | d(tz)
regs ARCH_ COMPLEX. src regs IMM_

A 16 OFFSET DIVIDE 2 HALF | — 2.28 4.16 5.52 5.95 5.77

B 32 OFFSET MUL 2 HALF | 2.28 — 2.44 4.16 5.16 4.49

C 32 REGOFS SHIFT 2 NONE | 4.16 244 | - 3.31 5.11 2.85

D 16 STACK NONE 2 NONE | 5.52 4.16 3.31 - 2.24 3.79

FE 8 ACC NONE 2 HALF | 5.95 5.16 5.11 2.24 — 5.02

Table 3: Optimal architectures for each benchmark class.
For each of the three benchmark classes, an optimal architecture is determined and reported, together with the performance benefits
and energy and ED?P savings. The savings are reported as a fraction of original architecture (MSP430). d() represents the weighted
Euclidean distance between two architectures. d(¢) is the distance between each architecture and the MSP430.

P7 ,uW .A
E
3500 + .
+ é+ x X
32501 B
o X x
3000 © °)
[SIIN 3]
AL D
27501 o °
T, ms
20 40 60 80

Figure 6: Benchmark clusters and optimal cluster
architectures.

(a) For each benchmark, an architecture which maximizes the
utility function is plotted on the performance-power graph.
Benchmarks are combined in clusters and an optimal architec-
ture for each cluster (also marked on the graph with a solid
dot) is selected. The optimal cluster architecture executes all
the benchmarks in sequence. Same-shape data points belong to
the same cluster. Architectures A through E correspond to clus-
ters A through E in Table 3. (b) A visualization of differences
between optimal cluster architecture and MSP430 — this is a syn-
thetic graph where the axes carry no particular meaning, but the
distances between all pairs of architectures are preserved. ti is the
reference architecture, the MSP430. The distance can be thought
of as the weighed number of optimization changes that need to be
made to the MSP430 in order to arrive at the given architecture.

4.4 Determining within-class Optimal
Architectures

We see that while clusters give us more flexibility (we no
longer require a separate architecture for each application
we run), they also offer slimmer energy savings. This mo-
tivates us to examine the relationship between the savings
and the number of heterogeneous cores provided in the mi-
croprocessor. In this context, we are exploring a class of het-
erogeneous chip multiprocessor designs [11]. Our approach
is distinct from traditional chip-multiprocessors which exe-
cute threads in parallel to increase performance. Instead, a
profiling infrastructure (similar to what we have used in this
study) would choose the energy-optimal core for a particular
application given those available in the microprocessor and
make necessary assembly modifications to run the applica-
tion on this core. While this application runs, all other dat-

198

apath cores would be put into a non-state preserving sleep
mode. We assume that the data and instruction memory are
shared across all heterogeneous cores; since, only one core
is active at any time this will not require significant design
complexity.

So far, we identified two extreme cases of architectures —
every benchmark has its own architecture, or there is one
architecture — in this case MSP430, and we showed how
the idea of clustering can yield a solution in between those
two cases. Still, the savings obtained through clustering
are significant enough to make the idea of a heterogeneous
system attractive. Now let us consider another constraint —
let us limit the multiprocessing to application classes.

Figure 7(a) shows the average ED?P savings when we
are allowed to optimally choose n architectures for the 8
benchmarks in each application class. When n = 1, we
must choose one architecture for all eight benchmarks — the
savings will naturally be lowest. When n = 8, the case re-
duces to that examined in Figure 3 and each application has
its own energy-optimal core. We see that after about 4 ar-
chitectures, any additional architectures present decreasing
marginal benefits. This inflection point might mean that,
when contrasted with the costs of extra processors, there is
an optimal number of processors that ought to be used.

The problem with heterogeneous CMPs, however, is that
extra cores require hardware. This cost can be evaluated
quantitatively. Assuming that the memory is shared across
all cores, we can determine the total (including memory)
chip area as a function of n. Figure 7(b) shows this rela-
tionship. Since the memory is shared, the area of the chip
increases only slightly for each additional core. With four or
five additional cores, the total chip area is only 50% greater
than the area of a one-core chip. Hence, the energy and
performance benefits likely outweigh the cost of 4-5 cores.

4.5 Determining Process Validity

Finally, an experiment is devised to justify using assembly-
to-assembly translations instead of compiler retargetting.
Since the process uses assembly-to-assembly translation as
a proxy for actual source translation, it is important to en-
sure that it introduces no bias in the determination of an
optimal architecture. It suffices to show that regardless of
which architecture the application is originally compiled for,
the resulting family of optimal architectures is the same (or

{ ED?P savings, % { A, mm?
60% 0.6
50% 0.5
40% 0.4
30% —=— all benchmarks [l 0.3-
| —-— general purpose [i
20% —=— multimedia B 0.2
10%- —— sensor networks [l 0.1
i n i n
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 7: Savings (in terms of FD?P) as a function of the number of processors we are allowed to include in

the machine and total chip area.

(a) The architectures are found using a similar maximization problem as one described in 4.3. Every data point denotes one additional
architecture. Note that for individual application classes, the savings are close to optimal after the number of architectures reaches 5,
and when the partition is unrestricted (“clustering” is a special case of this), 7 architectures and more achieve satisfactory savings. (b)
Assuming that the memory is shared, each additional core increases the area by a small amount.

10%:
891

6%

4%

2%
<
<3
&

Figure 8: The differences in Pareto families for two
different targets.

Each benchmark has been compiled for MIPS and again for
MSP430. The Pareto optimal families are determined for each
case. The height of the bar denotes the fraction of the entire set
of architectures that differed between the two cases (i.e. the mea-
sure 1 — |.%1 N Z2|/|F1]) — the ratio of the size of the symmetric
difference of the two sets to the average size of the sets.

jpeg 1

lame[]
mad

tiffdither

dijkstra[]
patricia
tiffmedian
FFT
CRC32
stringsearch
qgsort
life

rijndael []

mp4enc
bicubic|]
pngdec

newton

matmult
jacobi

nearly the same). By looking at the difference between fam-
ilies we also suggest that no systematic bias is introduced as
a result of the assembly-to-assembly translation.

In this experiment, the Pareto families are determined
twice, once for the benchmarks compiled for MIPS, and once
again, for the same benchmarks compiled for MSP430. Ide-
ally, we would expect the Pareto families to be identical in
both cases. Figure 8 summarizes by how much the two fam-
ilies differed, as a fraction of the size of the family. It is
clear that the families are nearly identical, with the largest
difference close to 8% of the entire set, and most families
differing by less than 4%.

S. RELATED WORK

The question of customizing the architectures to particu-
lar applications is not a new one, and existing solutions can
be divided into three categories: those leveraging FPGAs,

199

those proposing full-custom solutions and those generating
a specialized architecture from a model.

The latter is particularly relevant to this paper. For ex-
ample, [12] attempts to optimize the energy usage of sensor
network processors that all share the same ISA, but differ
in the data path width, the memory architecture (Harvard
versus Von Neumann) and the supported addressing modes.
Similarly, Thumb [1] makes attempts at application-specific
ISA by varying bit-width [10]; moreover [6] proposes an en-
tire technology platform where the instruction issue width
and the various arithmetic units have been parameterized.

Furthermore, [5] designs a system which uses an efficient
compiler to generate code for a customizable architecture
and shows a great variation in the running time and chip
area. While closest in its objective to this paper, [5] con-
strains itself primarily to image processing algorithms to
show the drawbacks to specialized hardware. Finally, [4] at-
tempts to customize instruction sets of mobile and embed-
ded applications using retargettable compilers: if the source
code of an application is known, it suffices to modify the
compiler to allow a variation in the target architectures.

The contributions of [12] and [6] are important, but com-
pared to those findings, this paper:

e Considers a wide range of applications, with workloads
varying from sensor network to multimedia and general
purpose ones

e Considers path length, found to be critical in the per-
formance analysis of the architectures

e Looks at a wider range of architectural issues such as
architecture type (Load-store versus Stack versus Ac-
cumulator) and the number of registers.

e Finds that heterogeneous CMPs can offer significant
energy and performance savings

Finally, [15] allows the programmer to extend the ISA
through custom instructions. Commonly executed instruc-
tions are grouped in clusters and new hybrid instructions
are added to the instruction set. This paper differs from
[15] by allowing for simplification of the baseline architec-
ture, as well as varying fundamental structures of the archi-
tecture (such as switching between stack and accumulator

architecture). Moreover, this paper finds compromise ar-
chitectures by clustering applications and quantifying the
energy-efficiency benefit of heterogeneous CMPs for these
embedded applications.

In terms of research on heterogeneous CMPs, previous
work primarily focused on very high performance designs
and primarily same-ISA heterogeneous CMPs [11]. This pa-
per shows that it is possible to apply principles of hetero-
geneity to embedded architectures with varying ISAs.

6. CONCLUSIONS AND FUTURE WORK

This paper achieves three goals. First, it presents a simple
and efficient way to provide energy and time savings by cus-
tomizing the architecture on which a particular application
should be run. By determining a Pareto optimal family of
architectures, the user has a choice of multiple architectures
which execute an application optimally. Automating this de-
sign process can reduce design effort drastically. The paper
shows that the energy savings, when compared with existing
microcontrollers such as MIPS or TI MSP 430, are substan-
tial. The relative energy savings, broken down into opti-
mization classes, can help designers better fine-tune their
custom designs.

The paper also shows that there exist clusters of applica-
tions which execute efficiently on similar architectures. It
often happens that the applications executed within a sen-
sor network belong to one cluster (for example, they are all
network routing algorithms). In such cases, replacing the
off-the-shelf microcontroller with a custom-made microcon-
troller can provide significant energy savings. The paper
attempts to explain those differences by analyzing the ap-
plications themselves. This high-level description can be
helpful to architecture designers in avoiding performance
pitfalls. Certain classes of applications tend to prefer par-
ticular classes of architectures.

Finally, if the application clusters cannot be determined
(if the applications are not known a priori), the paper finds
that even for diverse application classes it is possible to find
a small number of architectures which together achieve a
near-optimal (within 15% of the optimal) energy and per-
formance savings. Coupled with the fact that extra cores
cost little (compared with the original core and memory
subsystem), the results of this paper suggest that heteroge-
neous multiprocessors can be effectively used in embedded
systems.

The paper also shows evidence of a difference between
the workloads of sensor network applications, media appli-
cations and general purpose applications. As such, different
classes of applications require different microcontrollers in
order to fully utilize the potential of a microcontroller.

One area for improvement lies in the Verilog model im-
plementation. The model should be further optimized, and
pipelined. While it is currently possible to tell how many
clock cycles a pipelined design would take to execute a par-
ticular program, without actually pipelining it, nothing con-
clusive can be said about the optimal model. Specifically,
pipelining introduces overhead (due to the interlocks and
extra routing logic) which is difficult to estimate.

It is important to note that while the configurations found
in this paper are more efficient than the MSP430, the anal-
ysis presented here requires a priori knowledge of the ap-
plication workloads and different workloads might yield dif-
ferent architecture. As a general purpose microprocessor,

200

the MSP430 makes a good compromise solution. However,
significant energy and performance benefits can be gained
by exploiting the application variations through customized
microcontrollers and heterogeneous CMP systems.

Acknowledgments

This work is supported by NSF grants CCF-0048313 (CA-
REER), CNS-0330244, Intel, and IBM. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the NSF, Intel or IBM.

7. REFERENCES

[1] ARM Corporation. Thumb ISA
http://www.arm.com/products/CPUs/ARM7TDMI . html

(2] J. Babb et al. The RAW Benchmark Suite: Computation

Structures for General Purpose Computing. In Proceedings

of the IEEE Symposium on Field- Programmable Custom

Computing Machines, Apr 1997.

Cadence Inc. SoC Encounter. http://www.cadence.com/

products/digital_ic/soc_encounter/

N. Clark, W. Tang and S. Mahlke. Automatically
Generating Custom Instruction Set Extensions. First
Annual Workshop on Application-Specific Processors,
2002, pp. 94-101.

J. A. Fisher, P. Faraboschi and G. Desoli. Custom-fit
processors: Letting applications define architectures. In
Proceedings of Microarchitecture, Dec. 2—4, 1996, pp.
324-335.

J. A. Fisher, F. Homewood, G. Brown, G. Desoli and P.
Faraboschi. Lx: A Technology Platform for Customizable
VLIW Embedded Processing. In Proceedings of
International Symposium on Computer Architecture, 2000,
p- 203.

C.-L. Fok, G.-C. Roman and C. Lu. Mobile agent
middleware for sensor networks: an application case study.
In Proceedings of International Conference on Information
Processing in Sensor Networks, Apr 2005.

M. R. Guthaus et al. MiBench: A free, commercially
representative embedded benchmark suite. In Proceedings
of the Fourth IEEE Workshop Workload Characterization,
pp. 10-12, Dec 2001.

J. L. Hill. System architecture for wireless sensor networks.
PhD thesis, University of California, Berkeley, 2003.

A. Krishnaswamy, R. Gupta. Mixed-width instruction sets.
In Communications of the ACM, Vol. 46, No. 8, 2003.

R. Kumar et al. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power
Reduction. In 36th International Symposium on
Microarchitecture, MICRO-36, Dec 2003.

L. Nazhandali, B. Zhai, J. Olson, A. Reeves, M. Minuth,
R. Helfand, S. Pant, T. Austin and D. Blaauw. Energy
Optimization of Subthreshold-Voltage Sensor Network
Processors. In Proceedings of International Symposium on
Computer Architecture, 2005.

M. Poletto and V. Sarkar. Linear Scan Register Allocation.
In ACM Transactions on Programming Languages and
Systems, Vol. 21, No. 5, Sep 1999, pp. 895-913.

Standard Performance Evaluation Corporation. The
Integer SPEC95 Benchmarks. http://wwu.spec.org/
cpu95/CINT95/

Tensilica. Xtensa LX Processor.
http://www.tensilica.com/products/xtensa_LX.htm
Texas Instruments. 71 MSP/30 Product Brochure.
http://focus.ti.com/1lit/ml/slab034k/slab034k.pdf
UMC Faraday 0.13um Libraries.
http://freelibrary.faraday-tech.com/ips/
013library.html.

G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees and M.
Welsh. Monitoring volcanic eruptions with a wireless sensor

network. In Proceedings of European Workshop on Sensor
Networks, Jan 2005.

(3

[4

[5]

[6]

7]

(8]

9

[10]

(11]

(12]

(13]

14]

(15]
[16]

(17]

(18]

