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ABSTRACT

Computer architects are constantly faced with the need to improve
performance and increase the efficiency of computation in their de-
signs. To this end, it is increasingly common to see acyclic com-
putation accelerators appear in embedded processor designs. One
major problem with adding accelerators to a design is that it is dif-
ficult to generate high-quality code utilizing them. Hand-written
assembly code is typical, and if compiler support does exist, it is
implemented using only greedy algorithms. In this work, we inves-
tigate more thorough techniques for compiling to processors with
acyclic accelerators. Where as greedy solutions only explore one
possible solution, the techniques presented in this paper explore the
entire design space, when possible. Intelligent pruning methods
are employed to ensure compilation is both tractable and scalable.
Overall, our new compilation algorithms produce code that per-
forms on average 10%, and up to 32% better than standard greedy
methods. These algorithms also run in less than one second for
more than 98% of basic blocks tested.

Categories and Subject Descriptors

D.3.4 [Processors]: [Code Generators]; C.3 [Special-Purpose and
Application-Based Systems]: [Real-time and Embedded Systems]

General Terms

Algorithms, Experimentation, Performance

Keywords

Compilation, Embedded Processors

1. INTRODUCTION

Many portable devices must be capable of performing compu-
tationally demanding tasks, such as processing images, signals,
video, or packet streams. However, current embedded processors
are not capable of meeting the performance requirements within
their tight power and cost constraints. Traditionally, application-
specific integrated circuits (ASICs) are utilized to do the heavy
lifting in system-on-chip designs, where critical portions of appli-
cations are mapped directly to hardware implementations. These
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ASICs are nonprogrammable accelerators that can achieve extremely
efficient solutions through hardware customization. ASICs often
yield orders of magnitude wins over programmable solutions in
cost, performance, and energy.

Lack of programmability is the central drawback associated with
ASICs. The need to freeze a hardware implementation is a major
obstacle, as the software is often a moving target due to changing
standards, bug fixes, and the desire to incorporate more features. A
middle-ground solution is to employ smaller, but compilable hard-
ware accelerators, referred to as computation accelerators, within
the context of a programmable processor. Such ASIPs (applica-
tion specific instruction processors) utilize computation accelera-
tors that are tightly integrated into a processor pipeline. The com-
putation accelerators are essentially small ASICs that can atomi-
cally execute portions of an application’s dataflow graph, termed
computation subgraphs. The processor is augmented with a set
of new instructions or a dynamic mapping mechanism to invoke
the computation accelerators. Computation accelerators offer sev-
eral potential advantages, including reduced latency for subgraph
execution, increased execution bandwidth, improved utilization of
pipeline resources, and reduced burden on the register file for stor-
ing temporary values. And unlike ASIC solutions, computation ac-
celerators do not sacrifice the post-programmability of the system.

Many computation accelerator designs have been proposed by
researchers. The most widely used in industry is the multiply-
accumulate, or MAC, unit. Many DSPs have specialized hardware
for common computations in signal and image processing, such
as dot product, sum of absolute differences, and compare-select.
A number of generalized accelerator designs have also been pro-
posed, such as 3-1 ALUs [22, 25], closed-loop ALUs [27], or ALU
pipelines [5]. Larger accelerators can support bigger subgraphs
and thus enhance the performance advantages. Examples that ex-
emplify this approach include FPGA-style accelerators [14, 23,
26, 30], configurable compute accelerators [8], and programmable
carry function units [31]. An alternative strategy is to synthesize
specialized computation accelerators for a particular application [3,
4, 6,9, 13, 17]. These approaches analyze an application to iden-
tify important computation subgraphs to implement in hardware.
Hardware synthesis creates highly specialized accelerators to exe-
cute the selected subgraphs. Several commercial tool chains uti-
lize this approach, including Tensilica Xtensa, ARC Architect, and
ARM OptimoDE.

Compiler support to exploit computation accelerators has been
an overlooked challenge, and comprises the focus of this paper.
The compiler has two major tasks when targeting a computation
accelerator. First, it must identify candidate subgraphs in the target
application that are functionally executable on the accelerator. This
is essentially a subgraph isomorphism problem. The second task
is to select which candidate subgraphs to actually execute on the



computation accelerator. Candidates often overlap, thus the com-
piler must select a subset to maximize performance gain. This task
is essentially a graph covering problem.

Most prior solutions employ a greedy compiler approach for
both subgraph identification and selection [5, 16]. With this ap-
proach, a seed operation is selected and a subgraph compatible with
the accelerator is grown by iteratively including connected opera-
tions. As with all greedy approaches, this approach can achieve
sub-optimal solutions in both identification and selection. Fur-
ther, disjoint subgraphs cannot be identified. However, for small
accelerators, such as 3-1 ALUs, this approach is sufficient due to
the simple nature of compatible subgraphs. The greedy approach
breaks down for larger accelerators where correspondingly larger
subgraphs must be identified. As a result, others have proposed us-
ing exact methods for subgraph isomorphism and covering [20, 21,
24]. These methods grow exponentially in subgraph size, region
size (the unit of operations analyzed by the compiler), or both. As
aresult, exact methods can suffer from excessive compilation times
for moderate to large applications and hence may not be practically
deployable.

In this paper, we propose an approach for compiler subgraph
mapping that combines exact methods with a set of intelligent prun-
ing techniques. Pruning ensures the proposed algorithms are scal-
able in both application and accelerator size to provide practical
compilation times. The approach has three distinct phases. First,
potential subgraphs are identified using bounded enumeration. Sub-
graph isomorphism is then used to remove candidates that are not
compatible with the computation acceleration. Finally, unate cov-
ering is used to select subgraphs that will be executed on the accel-
erator.

This paper makes the following three contributions:

e It collects and describes state of the art algorithms for accel-
erator compilation.

e [t presents new algorithms for identifying and mapping sub-
graphs optimally with intelligent pruning mechanisms.

e It evaluates these new algorithms in terms of both perfor-
mance and compilation time across a variety of accelerator
designs, and compares the results to a traditional greedy ap-
proach.

2. PROBLEM STATEMENT AND RELATED
WORK

Compiling an application to make use of computation accelera-
tors boils down to two steps: enumerating portions of the applica-
tion’s dataflow graph (DFG) that can be executed on the accelerator,
and selecting which portions to accelerate.

Enumeration consists of generating a set of subgraphs from a
given DFG, and determining if they can run on an accelerator. Gen-
erating a set of subgraphs is difficult because the number of possi-
ble subgraphs grows exponentially with the size of the DFG. Deter-
mining if the subgraphs can run on an accelerator, i.e., determining
if they perform the same computation, is essentially equivalence
checking, which is NP-complete. The problem is further compli-
cated if the accelerators perform a superset of the desired compu-
tation (e.g., an accelerator for dot-products could also accelerate
multiply-accumulates in an application).

Selecting which subgraphs to accelerate is also difficult. Typi-
cally, the selection problem is formulated to push as much compu-
tation as possible onto the accelerators, while minimizing overlap
between subgraphs. That is, given a set of enumerated subgraphs,
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find the group that covers the largest portion of the DFG while min-
imizing the number of nodes appearing in multiple subgraphs. This
problem is also NP-complete and is quite similar to the well known
technology mapping problem in VLSI design. Clearly, mapping
applications to subgraphs is a challenging compilation problem.

To side step the problem, the vast majority of previous work re-
lies on hand coding or greedy heuristics. Work on automated ac-
celerator design typically does not discuss strategies for utilizing
the accelerators with compilers. Work by Hu [16] is typical of the
greedy solutions: a seed node is selected in the DFG and is grown
along dataflow edges. The compiler then replaces that subgraph
and repeats the process. Here, enumeration consists of finding a
seed and growing it, while selection is implicit (any subgraph enu-
merated is automatically selected). Other previous work [27] per-
forms more thorough enumeration, but still uses greedy selection.

More thorough, traditional code generation methods for tack-
ling subgraph mapping use a tree covering approach [1]. In this
approach, all computation subgraphs potentially supported by the
accelerator must be constructed a priori. During compilation, the
DFG is split into several trees. The trees are then covered by the
computation subgraphs using an algorithm that minimizes the num-
ber of computation subgraphs used. The purpose behind splitting
the DFG into trees first is that there are linear time algorithms to
optimally cover trees, making the process very quick.

The major problem with this method is that many DFGs and ac-
celerators are not trees. It is shown in [20] that tree covering meth-
ods can yield suboptimal results, particularly in the presence of ir-
regular computation commonly targeted by embedded systems. To
overcome this, [20] proposes splitting all instructions into “register-
transfer” primitives and recombining the primitives in an optimal
manner using integer programming. Work by Liao [21] attacked
the same problem and developed an optimal solution for DFG cov-
ering by augmenting a binate covering formulation. While both of
these solutions are optimal, they also have worst case exponential
runtime and do not report how long their algorithms take.

Another major problem with previously mentioned approaches
is that they also require permissible accelerator subgraphs to be
enumerated a priori. If an accelerator supports a wide range of
computations, such as an ALU pipeline, this can cause an explosion
in runtime.

Research in [24] describes a different way to look at the accel-
erator mapping problem. In this work, an application is initially
decomposed into an algebraic polynomial expression that is func-
tionally equivalent to the original application. Next, the polyno-
mial is manipulated symbolically in an attempt to use accelerators
as best as possible. For example, a polynomial could be expanded
using function identities (e.g., adding O to a value) to better fit an
accelerator. This enables the algorithm to utilize subgraphs where
the accelerator performs a superset of the desired computation. As
with previous solutions, though, this technique also has exponen-
tial worst-case runtime. Additionally, handling bitwise operations,
such as XOR, is difficult using polynomials. Rearranging applica-
tion to better fit a targeted accelerator, such as [24] proposes, is an
interesting area of future work, though.

In this work, we present compilation techniques to exploit acyclic
computation accelerators. These techniques produce higher quality
code than greedy heuristics, do not require a priori enumeration of
permissible accelerator subgraphs, and are scalable to large appli-
cations.

3. ACCELERATOR COMPILATION

In this section, we present two different approaches for compil-
ing to acyclic accelerators. The first approach, greedy enumeration



Input2  Input3 Inputd

YVY
[IIL

Input1

1<

=

Output1 Output2

A.

Figure 1: A. An acyclic accelerator from [8] targeted in examples. B. The first step in a greedy mapping algorithm on a basic block from g721encode. C. The

second step and D. final step in the greedy mapping algorithm.

- immediate selection, is the most commonly used approach today.
This method generates a set of subgraphs by greedily adding ver-
tices to a seed vertex from the DFG. Once the subgraphs are grown,
they are immediately replaced in the application, thus the name im-
mediate selection. The second approach, full enumeration - unate
covering selection, is our contribution. This approach generates
all possible dataflow subgraphs subject to certain constraints of the
targeted accelerator. The set of subgraphs is then pruned down us-
ing subgraph isomorphism, and finally unate covering selects the
subgraphs to execute on the accelerator.

3.1 Greedy Enumeration - Immediate
Selection

Greedy enumeration - immediate selection, or greedy algorithms
for short, is the standard method used to target acyclic accelerators,
e.g., in [5, 15]. The greedy algorithm consists of two phases: seed
selection and subgraph growth. Using a basic block as input, the
greedy algorithm selects an operation as a seed and tries to expand
that seed by iterating over dataflow edges. After growing one seed
as much as possible, the subgraph is replaced. Next, another seed
is selected, and the same steps will be repeated. The algorithm
finishes when no more seeds are available for growing.

The first step in the greedy algorithm, seed selection, can be per-
formed in several different ways. For example, operations closer
to the critical path can be chosen as seeds before less critical oper-
ations. Alternately, long latency operations can be selected before
shorter operations. In our experiments, changing seed selection
order made very little difference in the results of the greedy algo-
rithm, because the targeted accelerator was relatively large in re-
lation to the size of a typical basic block. The results presented in
this paper selected seeds in topological order, according to dataflow
edges.

After choosing a seed, a subgraph consisting only of that oper-
ation is formed. The algorithm then enters its second phase, sub-
graph growth, trying to expand this subgraph. Neighbors of the
seed operation are temporarily added to the subgraph one at the
time. If this temporary subgraph is executable on the accelerator,
then the new node permanently becomes part of the subgraph. If
the temporary subgraph is not executable, then the newly added
node will be removed. When it is no longer possible to add neigh-
bors to the subgraph, it is immediately replaced in the application,
and a new seed is selected from operations not already appearing
in a subgraph.

An example of the greedy algorithm is shown in Figure 1. Fig-
ure 1B is a DFG from the g721encode benchmark, used in exam-
ples throughout the paper. Figure 1A shows the acyclic accelerator
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targeted in all of the examples. This accelerator, similar to one pro-
posed in [8], has 4 inputs, 2 outputs, and 15 function units (FUs)
organized in 4 rows. The FUs in each row can communicate with
FUs in subsequent rows, meaning computations with dependence
heights of up to 4 are supported. These FUs support the complete
set of addition, subtraction, and bitwise operators on two inputs.
Figure 1B highlights the first subgraph enumerated using the
greedy method. Operation 1 is chosen as the first seed. The sub-
graph then greedily adds neighbor operations 3, 6, and 11. After
adding operation 11, 13 cannot be added since that would create a
subgraph with dependence height 5, which is not supported by the
accelerator. Operation 11’s neighbors, 10 and 8, can be added, re-
sulting in the final subgraph shown in Figure 1B. The process then
repeats with operation 2 as a seed node. This subgraph is grown
along dataflow edges to include operation 4 in Figure 1C. Growth
stops at operation 7, a multiply, which is not supported by the ac-
celerator. The final greedy mapping of the DFG is shown in Fig-
ure 1D. Assuming a single issue processor where each operation
and the accelerator take one cycle to execute, this mapping would
yield a speedup of 3:_—74 = 2.43, since there are 17 original opera-
tions, 3 unaccelerated operations, and 4 accelerated subgraphs.

3.2 Full Enumeration - Unate Covering
Selection

Greedy subgraph mappers have proven reasonably effective in
many previous works. Certain combinations of greedy algorithms
with more thorough strategies have also proven effective [27]. In
this section, we describe the full enumeration - unate covering se-
lection, or FEU, algorithm, which solves the mapping problem us-
ing exact formulations. This effectively avoids local minima that
inherently cause greedy algorithms to fail. When the exact formu-
lations are intractable, the FEU algorithm intelligently reduces the
search space to workable levels.

There are three main phases to the FEU algorithm: Enumera-
tion, Pruning, and Covering. Enumeration generates a set of all
subgraphs within a DFG subject to input/output constraints of the
targeted accelerator. Pruning takes the set of subgraphs and per-
forms additional checks based on functionality and interconnect to
determine if the subgraphs actually can be executed on the targeted
accelerator. Once unusable subgraphs are pruned, unate covering
is used to select the best set of subgraph instances to map onto the
accelerator.

Individually, each of these steps either grows exponentially with
the size of the input (enumeration) or is NP-Complete [11, 12]
(pruning and covering). This has lead most researchers to opt for
(typically) linear-time greedy solutions. In the remainder of this



section, we will demonstrate that with careful design, each of these
problems can be made tractable for most practical cases in accel-
erator compilation. Additionally, we demonstrate in Section 4 that
using more powerful algorithms yields noticeable performance im-
provements in code generated over the standard greedy approaches.

3.2.1 Full Enumeration

The first step of the FEU compilation algorithm, enumeration,
generates a set of dataflow subgraphs that can potentially be run
on a targeted accelerator. The primary reason for enumerating sub-
graphs and then later pruning them is that it is much faster than per-
forming both steps at once. Very fast techniques for finding high-
quality subgraphs for acceleration have been widely developed in
the past few years, e.g., [3, 4, 9], and this strategy allows us to take
advantage of them.

Tractable subgraph enumeration is clearly a difficult problem.
In the most general sense, each operation in a DFG could either
be included or excluded in a potential subgraph instance, yielding
2N potential candidates. Because of space restrictions, the large
body of previous work, and the relative complexity of proposed
techniques, we will only describe how to efficiently enumerate sub-
graphs at a high level.

Dataflow subgraph enumeration can be thought of as a binary
tree, where each level of the tree represents an operation (op for
short), and each branch in the tree represents whether or not to
include that op in a subgraph [3]. The leaves of the tree represent
all possible subgraphs for a DFG. There are many keys to make full
exploration of this tree tractable.

The most important technique is based on input/output restric-
tions of the accelerator. Using the DFG from Figure 1B as an ex-
ample, if a targeted accelerator only supported 2 inputs, then any
candidate subgraph including ops 1, 2, and 5 would be infeasible.
Enumeration can be bounded for each branch of the tree that in-
cludes all of those ops. Likewise, bounding for outputs greatly
reduces the search space. Care must be taken to avoid prematurely
bounding the search space, though. For example, a subgraph with
ops 6 and 10 would appear to have 2 outputs; however, if op 11 is
included, then subgraph 6, 10, 11 only has 1 output, perhaps mak-
ing it feasible.

Another important bounding technique is excluding candidates
with values that leave and then reenter the subgraph. Using Fig-
ure 1B as an example again, this filter would bound the search space
of any subgraph that included ops 1 and 6 but excluded op 3. Sub-
graph 1, 6 could not be run on an accelerator since the output of 1
is used to calculate an input to 6.

These techniques to bound growth of the search tree make sub-
graph enumeration practical for the vast majority of blocks within
applications; there are some instances where additional steps are
needed, though. In these instances, the DFG is heuristically par-
titioned into several sub-blocks, which are then enumerated. The
implication of partitioning is that no candidate subgraphs can cross
the boundary (i.e., a subgraph cannot have ops in multiple parti-
tions). Edges are heuristically weighted to guide the partitioner so
that is does not unnecessarily cut edges for important subgraphs.
For example, if the targeted accelerator did not support multipli-
cation, then all the edges to and from op 7 in Figure 1B would
be given weight 0, since the ops on either side of the edges could
never be in a feasible candidate. Edges bordering memory oper-
ations are also given weight 0 whenever the accelerator does not
support memory accesses. All other edges are given weights based
on characteristics such as whether or not they are on the critical
path. Heuristic partitioning does introduce potential suboptimality
into the FEU algorithm; however, previous work [9] demonstrated
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that this is an effective way to bound the enumeration space without
unnecessarily removing useful subgraph candidates.

3.2.2  Pruning Through Subgraph Isomorphism

Pruning is the next step after enumeration generates potential
subgraphs to execute on the accelerator. The purpose of pruning is
to ensure that candidates can actually be executed on the acceler-
ator. This takes into account functionality and connectivity issues
that were ignored during enumeration. Pruning occurs after enu-
meration because these checks are either not possible to perform
on partial candidates, or are too heavy weight to use during con-
struction of the enumeration search tree.

The method employed to determine that subgraphs can execute
on an accelerator is based on subgraph isomorphism. Loosely stated,
subgraph isomorphism determines whether or not a subset of the
nodes in a particular graph are equivalent to a separate graph. In
this case, a graph representing the hardware structure is constructed,
and we attempt to find a subset of hardware vertices that can create
a computation equivalent to the subgraph created in enumeration.
If we find such a subset, then the dataflow subgraph is capable of
being executed on the accelerator.

There are several pros and cons to pruning based on subgraph
isomorphism. One benefit is that, as with enumeration, a great deal
of related work (e.g., [19, 28]) has looked at developing heuristics
to efficiently solve subgraph isomorphism the problem. We lever-
age and improve upon these prior techniques in this work. An addi-
tional benefit is that previous work [29] has shown it is possible to
automatically generate hardware subgraphs from a microarchitec-
tural specification. This means that a compiler targeting accelera-
tors could potentially be retargeted by simply feeding it a hardware
description of the targeted accelerator(s).

The main weakness of isomorphism-based pruning is that it is
not a true equivalence check. That is, the algorithm only checks
that nodes used to represent computation form equivalent graphs,
not that they are equivalent computations. For instance, if a DFG
represented a multiplication by 10 as a left-shift by 3 bits, a left-
shift by 1 bit, and an addition of those two results, then this would
not match an accelerator with a multiplier. Additionally, isomor-
phism pruning will reject DFGs that could potentially map onto
accelerators by reexpressing the computation using distributivity,
associativity, or other operator properties. In order to recognize
that multiple graphs perform the same computation, pruning would
have to perform a full equivalence check, typically using BDDs [7]
or their relatives (ADDs, BMDs, etc.). This is far more computa-
tionally demanding than isomorphism for accelerators of practical
size, although an interesting avenue for future work.

The implications of this drawback are twofold. First, the com-
piler is at the mercy of the software writer to a certain extent. If
the algorithm is described in software differently than it is repre-
sented in the hardware graph, then the compiler will be unable to
accelerate it. Second, accelerator hardware structures that do not
map directly to a single node in the DFG are difficult to utilize. For
example, a lookup-table is capable of executing any number of con-
secutive bitwise operations from a dataflow graph. Because of this,
there is no equivalent (finite) hardware graph that can represent this
computational structure.

This drawback affects both full-enumeration-based and greedy-
based compilation algorithms, and leaves room for improvement.
However equivalence-based algorithms have proven intractable to
this point.

Subgraph Isomorphism Algorithm: The algorithm used to de-
termine isomorphism, Algorithm 1, is based on the backtracking
search strategy described in [19], which was itself adapted from [28].



Input: S’ = (V/,E"), T = (W, F)
foreach v; € V' do
foreach w; € W do
if v} is equivalent to w; then
if dependence_height(v’,) < dependence_height(w ;) then
M; = M; + wj
end
end
end

AU B W=

end
7 Call AssignVertex(M,z,1);

Procedure AssignVertex(M, x,vertex)
8 if vertex > |S’| then

9 if Subgraph outputs map then
10 | return ISOMORPHIC;
end
11 else
12 | return NOT ISOMORPHIC;
end
end
13 foreach m; € My crter do
14 edges-match = true;
15 for j = 1..vertex do
16 if €l e € E' and ew(v;),ma ¢ F then
17 | ‘edges.match = false ;
end
end
18 if edges-match then
19 et (V) g) = i
20 M' = M;
21 assignment-works = true;
22 for j = vertex + 1..|V’| do
23 MJ' = 1\4;- — my;
24 foreach mj, € M. j do
25 if ST € E' and €] o rron ) ¢ F then
’ !
26 | J\Ij:M]—mk;
end
27 else
28 ife, o € E"and k < i then
vertexVj
29 | J\IJ’. = MJ/ — mg;
end
end
end
30 if | M| == 0 then
31 | assignment-works = false;
end
end
32 if assignment_-works then
33 result = call AssignVertex(M’, x,vertex + 1);
34 if result == ISOMORPHIC then
35 return ISOMORPHIC;
end
end
end
end

36 return NOT ISOMORPHIC;
Algorithm 1: Subgraph isomorphism algorithm

The basic idea is to recursively assign one vertex from S’, the
dataflow subgraph, to a corresponding vertex in 7", the hardware
graph, and check to ensure that the corresponding edges exist in
both graphs whenever a new node is assigned. In order for this al-
gorithm to be computationally feasible, a number of steps are taken
to prune the search space.

Algorithm 1 takes the two graphs S’ = (V/)E’) and T =
(W, F) as input. In this formulation, V' represents operations in
the subgraph, F’ dataflow edges in the subgraph, W FUs in the ac-
celerator, and I’ wires connecting those FUs. Initially, a group of
sets, M, are calculated such that M; contains all vertices in W that
are of the same computation type as v;. Essentially, this step creates
a set of candidate nodes in T that each node in S’ can be mapped
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to. For example, if v1 was an ADD node, M; would contain all
hardware nodes with addition capabilities in W. This process cor-
responds to lines 2 - 6 of Algorithm 1. This information is passed
to the procedure AssignV ertex, along with the mapping function,
z(), and the vertex number to be mapped.

The AssignVertex() procedure iterates over the set of possible
nodes (line 13 in Algorithm 1) testing that every edge in E’ has
a corresponding edge in F' for the nodes that have already been
mapped (lines 15 - 17). Assuming that the edges match, x() is
updated and the sets of potential matches, M, is updated to reflect
the new information. This pruning of the search space is critical to
avoiding an exponential explosion of runtime.

Two techniques are used to remove nodes from M after a node
assignment. The first, lines 25 - 26, looks at all vertices in V'
not yet assigned and checks to see if there is an edge in £’ con-
nected to the node just assigned, Vi, ¢es. If such an edge exists,
any nodes in M that do not have a corresponding edge in F' con-
nected with z(v},¢y1eq ) can be removed from the search space. The
second pruning technique (lines 28 - 29) leverages the fact that we
are dealing with directed acyclic graphs. When creating 5" and T,
we impose the restriction that the vertices must be topologically
sorted within the sets V'’ and W. That is to say, V vertices i, j such
that ¢ > j,e;; ¢ E. In other words, there are no edges from ver-
tices with higher order numbers to vertices with lower order num-
bers. This restriction allows us to remove any vertex from M that
has a lower order number than the currently assigned order number,
since no such backward edge can exist in F. If at any point during
pruning, the size of the candidate set falls to zero (line 30), then it
is no longer necessary to examine this part of the search tree. These
simple pruning techniques turn an intractable problem into one that
is solved much faster than instruction scheduling in our compiler
infrastructure.

After pruning the search space, AssignVertex is recursively
called to assign the next vertex using the reduced search space, M.
This is continued until all nodes in S’ map to corresponding nodes
in T though the function z(), or it is proven that no such map-
ping exists. Once a mapping is found, it is still necessary to ensure
that the subgraph outputs map onto the targeted accelerator (line 9).
This is done using the Dijkstra’s algorithm to find the shortest path
between nodes producing the outputs and output ports. If this final
check passes, then the subgraph can indeed execute on the targeted
accelerator.

Improvements Over Previous Work: There are three main al-
gorithmic improvements over previous proposed subgraph isomor-
phism algorithms. First, as previously mentioned, vertex numbers
are assigned topologically to ensure that if an edge exists, then
the source number is less than the destination number. This dra-
matically reduces the sets of potential candidates, M, shown in
lines 28 and 29 of Algorithm 1. Topological sorting of vertices has
been previously proposed for a different style of isomorphism al-
gorithms [18], but only to generate an initial solution, not to prune
the search space.

A second improvement prunes the candidate sets by using de-
pendence height of the candidates (line 5 of Algorithm 1). De-
pendence height refers to the maximum sized chain of operations
that must precede a particular operation in a graph. For example,
in Figure 1B, node 10 has a dependence height of 1 since 8 must
precede it, and node 11 has a dependence height of 3 since the
chain 1-3-6 must precede it. When creating a set of candidates for
node 11 in the representative hardware graph, we know that skip-
ping any nodes with dependence height less than 3 will not affect
the solution. This optimization also relies on the acyclic nature of



Figure 2: A. Subgraph from Figure 1A to be tested for subgraph isomor-
phism, B. hardware accelerator being targeted

the graphs that we are matching, and has a dramatic impact on the
overall algorithm runtime'.

The last optimization developed relates to the order in which
nodes are assigned. Note that in AssignV ertex, pruning of M oc-
curs when edges do not match up in the current assign, z(). Thus,
it is important to make these comparisons as high in the search tree
as possible. This is accomplished by assigning vertices in order de-
termined by a depth first search (not shown in Algorithm 1). Unlike
the previous two optimizations, this technique is applicable for any
style graph, not just directed-acyclic graphs. These three optimiza-
tions contribute to make subgraph isomorphism a tractable way to
determine whether a dataflow subgraph can execute on a hardware
accelerator.

Subgraph Isomorphism Example: Algorithm 1 is complicated
and we will hopefully clarify it through the example in Figure 2.

Here, the dataflow subgraph in Figure 2A (from Figure 1B) is checked

for subgraph isomorphism on the accelerator graph in Figure 2B.
First, a set of candidates in Figure 2B is constructed for each vertex
in Figure 2A. This corresponds to M in the algorithm. Examining
vertex 3, we see that only hardware vertex C can execute logic op-
erations, so M3 = {C'}. Likewise, Mg = {F, G, H}, since any of
those hardware vertices could execute the subtraction. The candi-
date set of vertex 11, M11 = {G, H} demonstrates the dependence
height pruning; ' can not be in the solution space because there is
only one hardware vertex preceding it. The remaining two sets,
Mg = {A} and Myo = {D, E}, are as would be expected.

After the candidate sets are computed, a depth first search is per-
formed (irrelevant of edge directions) to determine the order in
which to assign vertices. In this example, the assignment order
will be 3, 6, 11, 10, and 8, although this ordering is irrelevant for
correctness. AssignVertex() is then called for node 3. The al-
gorithm iterates over the set of candidates, M3, and updates M for
neighbor vertices. In this case, since vertex 6 neighbors vertex 3,
Mse can remove candidates G and H from its set, since neither of
those vertices are neighbors of C. Next, AssignVertex() is re-
cursively called to map vertex 6. The algorithm maps vertex 6 to
F, since that is the only possibility in M. Lines 15-17 of Algo-
rithm 1 check to make sure that since there is an edge from vertices
3 to 6, that there is also an edge from C' to F. Vertex G is re-
moved from M1, since there is no edge from F' to G, and again
AssignVertex() is called for vertex 11. Vertex 11 is mapped to
H, and 10 is mapped to E similarly to the previous two nodes.
However, once 10 is mapped to E, then the candidate set Mg be-
comes empty, since there is no edge from A to E. This bounds the
recursion of AssignVertex() which then tries another assignment
for vertex 10, D. Using this mapping, vertex 8 can be assigned to

IAlthough some of the improvements over previous isomorphism algo-
rithms rely on the acyclic nature of the subgraphs targeted, they can eas-
ily be extended to cyclic graphs by treating the backward edges in cyclic
subgraphs separately from forward edges.
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Input: boolean matrix M, where M; ; = true if op i is in subgraph j
2 Output: A vector z, z; € {0,1}", where Mz = (1,1,1,...,
iy xy is minimized

1)T and

Sort columns of M in order of decreasing size
Call Cover(1, true, M, x);
5 Call Cover(1, false, M, x);

- W

Procedure Cover(subgraph, add-subgraph, M, x)

6 if add_subgraph then
7 it (Ma&8& (M subgraph» M2, subgraph s ---Mm subgraph)”) 7
(0,0,0...0)% then
// Subgraph overlaps with the partial solution.
8 return;
end
9 Tsubgraph = 13
10 if Mz == (1,1, 1,...1)T then
11 if Y7 | x; < fewest_subgraphs then
12 fewest_subgraphs = > 7| x;;
13 best_solution = x;
end
/I Found a complete cover.
14 return;
end
end
15 if subgraph + 1 > n then

// Did not find a complete cover after examining all subgraphs.
return;

16

end "
- (Ma);
ESST m—35 4 i
2wt X My subgraph
/] The current solution cannot possibly be the best.
return;

17 > fewest-subgraphs then

end
Call Cover(subgraph + 1, true, M, z);
Call Cover(subgraph + 1, false, M, x);

19
20

Algorithm 2: Unate covering selection algorithm

A, which will complete the mapping, and prove that there is a sub-
graph of Figure 2B that is isomorphic to Figure 2A.

3.2.3 Selection Using Unate Covering

Now that we have a set of subgraphs that can execute on the ac-
celerator, it is necessary to select which ones fo execute on the ac-
celerator. In standard greedy solutions, this step is implicit within
enumeration: each enumerated subgraph is automatically selected.
However, greedy selection can also be performed in conjunction
with full enumeration algorithms, e.g., in [27]. Greedy selection
algorithms, typically map the largest subgraph onto the application,
remove all overlapping subgraphs from the consideration, and then
repeat this process until no more candidates remain. The problem
with this technique is that it will provide suboptimal results when-
ever the largest subgraph is not part of the best solution.

Instead of a greedy heuristic, we propose solving the selection
problem by converting it to a unate covering. Informally speaking,
unate covering problems operate on a Boolean matrix, M, where
the rows represent vertices in a DFG, and the columns represent
subgraphs; if the value of M; ; is true, this means that operation ¢
occurs in subgraph j. Traditionally, the goal of unate covering is to
find a set of columns (or subgraphs) with minimal cost, such that
each operation is covered at least once. In this formulation, the cost
of a subgraph could be a variety of things, such as the number of
cycles needed to execute on a particular accelerator or the power
consumed by a subgraph. As with using subgraph-isomorphism
for the pruning algorithm, unate covering was chosen for selection
because there is much prior work [10, 12] that can be leveraged to
make this problem tractable.

Before discussing the details of our unate covering algorithm,
Algorithm 2, it is important to point out one difference between this
and standard unate covering formulations. Traditionally, unate cov-
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Figure 3: A. Example unate covering problem used to map subgraphs from the basic block in Figure 1. B. The mapping solution with full-enumeration and
greedy selection. C. Mapping solution with full-enumeration and unate covering selection.

ering allows an operation to appear in multiple subgraphs in the fi-
nal code. However, we have made the decision to disallow this pos-
sibility?. Allowing an operation to appear in multiple subgraphs es-
sentially replicates the computation and will unnecessarily increase
power consumption. The downside is that disallowing overlapping
subgraphs can hurt application performance in multi-issue proces-
sors, and actually makes the covering search space much larger.
Performance loss can occur because the first operation in a sub-
graph has to wait for all subgraph inputs to be ready before being
executed. The covering search space becomes larger, because many
techniques to prune the space, such as row and column dominance,
no longer work if overlap is not allowed. Despite the changes re-
sulting in a large search space, the runtimes of our unate covering
formulation are quite reasonable for practical inputs, and the result-
ing code will be more suitable for embedded systems.

Unate Covering Algorithm: The algorithm used to perform
unate covering based selection is shown in Algorithm 2. As pre-
viously mentioned, input to the algorithm is a m by n Boolean
matrix, where rows correspond to operations and columns to sub-
graphs. The output of this algorithm (line 2) is a vector, x, where
x5 = 1 means that subgraph 5 is in the optimal cover. The con-
straint Mz = (1,1,1, ..., l)T ensures that each operation is cov-
ered by exactly one subgraph. Note that the standard unate cover-
ing constraint, which allows overlap, is Mz > (1,1,1,...,1)”. To
ensure that a solution is feasible, each individual node is inserted
into M as a subgraph which covers only one operation. Once M
is constructed, the columns are sorted in decreasing order, and a
standard branch-and-bound algorithm, Cover(), is called.

Inside the function C'over(), one subgraph is considered for ad-
dition to the current cover, x. Line 7 in Algorithm 2 tests to see
if there is any overlap between the current cover and the candidate
subgraph. The Mz matrix multiplication creates a column vector
of the current set of ops that are covered, and M; subgraph is the set
of ops covered by subgraph. Assuming there is no overlap, line
9 adds subgraph to the current cover, and then the cover is tested
to see if all ops are covered (line 10). If a complete solution exists,
the total number of subgraphs is calculated, and if it is the fewest
yet seen, then this cover is recorded as being the best. Note that if

2Technically, this restriction turns the unate covering into a binate covering,
which is fundamentally more difficult than unate covering. However, this
formulation has two characteristics missing from generalized binate cover-
ing, which makes this formulation easier to solve: a solution is guaranteed
to exist, and adding subgraphs to the cover will never make the solution in-
feasible. The general formulation allowing operations to appear in multiple
subgraphs is a true unate cover.
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there were multiple accelerators in the targeted processor, the no-
tion of what constitutes the “best” solution (line 11), could easily
be expanded to include column weights based on which accelerator
a subgraph used.

If the C'over() function does not have a complete solution, then
two checks are performed to prune the search space before recurs-
ing down the search tree (lines 15 - 18). The first check, lines 15
and 16, simply bounds the search tree when it runs out of subgraphs
to examine: essentially when it hits leaves of the tree. The second
check bounds when the current solution cannot possibly be better
than the best known solution, by computing a lower bound on the
partial cover, =. The first portion of line 17, 3", x;, calculates
how many subgraphs are in the current cover. The second por-
tion of the equation calculates the number of ops that still need to
be covered and divides by the number of ops covered by the cur-
rent subgraph. Since the subgraphs are sorted by size, and they
are always added in order of decreasing size, the second portion of
the equation gives a lower bound on the number of additional sub-
graphs that must be added to complete a cover. The check in line
17 is the primary catalyst that makes this unate covering algorithm
practical for subgraph selection.

Improvement Over Previous Work: As with the isomorphism
algorithm, there are several techniques that make this unate cov-
ering algorithm faster than previous solutions. The first of these
is sorting the subgraphs in order of decreasing size (line 3 of Al-
gorithm 2). While this does not directly prune the search tree, it
does enable other pruning techniques, such as the check in line 17.
Another technique is to always branch toward adding a subgraph
first (lines 4 and 19). Since the subgraphs are sorted by size, and
the subgraphs are considered in consecutive order, always adding
ensures the first complete cover will be exactly the same as the
greedy solution. The greedy solution provides an excellent bound
to quickly prune bad portions of the search tree. Additionally, by
reaching the greedy solution first, if the algorithm runs for an un-
usually long time, it can always be stopped at without fear of a
solution worse than greedy.

Unate Covering Example: Figure 3A shows an example of the
boolean matrix, M, used in Algorithm 2. This matrix shows sev-
eral subgraphs that were enumerated from the basic block from
g721encode, shown in Figure 1B (many subgraphs were omitted
for space and clarity reasons). The subgraphs correspond to an ac-
celerator which has 4 inputs, 2 outputs, and can support any com-
putation with a dependence chain of 4 or less, also pictured in Fig-
ure 1. Notice how the subgraphs are sorted from largest at the left
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(covering 9 operations), to the smallest at the right (each operation
node as a subgraph).

Algorithm 2 begins the C'over() function by adding subgraph
A, the largest subgraph, to its current cover, . It will then recurse,
and attempt to add B to x. The check at line 7 of Algorithm 2 will
prevent this since the two subgraphs overlap, and this branch of
the search space will be pruned. Eventually, by moving across the
matrix in Figure 3, subgraphs D, then G, and then H will be added
to A to create a complete cover, shown in Figure 3B. This is the
full-enumeration / greedy-selection solution. Assuming a single-
issue processor, and the accelerator and each operation in Figure 1B
takes one cycle to execute, this solution will yield a speedup of
% = 2.83 for this block. The first 3 in the denominator accounts
for the right-shift, branch, and multiply that were not accelerated,
and the second 3 is for each of the 3 subgraphs that will be run on
the accelerator.

After the unate covering algorithm finds the greedy-selection so-
lution, it will continue to explore the search tree and eventually
discover the cover B, D, E, shown in Figure 3C. This solution uses
fewer subgraphs, and will be recorded as the best solution on line
13 of Algorithm 2. The speedup for this solution is % = 3.4
This compares quite favorably with the speedup obtained using
the greedy enumeration - immediate selection described in Sec-
tion 3.1, which is only % = 2.43. Clearly, full-enumeration with
unate-covering based selection can provide benefits beyond greedy
heuristics.

3.2.4 Algorithm Runtimes

There are clearly performance benefits over the standard greedy
algorithms if accelerators can be targeted using the NP-Complete
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formulations that we have proposed. The major concern is whether
the proposed algorithms are tractable. Figure 4 demonstrates that
they are.

Each point in these graphs represents the algorithm runtime of a
basic block from 1 of 23 MediaBench and MiBench applications.
The data was collected on a 3.06 GHz Pentium 4 machine with 1
GB of RAM. Applications were compiled to target an accelerator
with 4 inputs, 2 outputs, and a maximum dependence height of 4
(similar to the accelerator proposed in [8]). Each algorithm was
given a maximum time limit of 600 seconds per block, at which
point the algorithm was terminated and reported the best solution
seen up to that point. Note that only one basic block out of 23 appli-
cations reached the time limit for any of the proposed algorithms;
that was during subgraph enumeration.

To summarize the results for subgraph enumeration, more than
99.8% of basic blocks were fully enumerated in less than 1 sec-
ond, and more than 99.95% of the blocks were enumerated within
10 seconds. As mentioned previously, the worst case block timed
out at 600 seconds. This could be prevented by more aggressively
partitioning the block into smaller components. Overall, the enu-
meration algorithm runtime appeared to grow only linearly with the
size of the basic block, which makes this algorithm quite scalable.

Runtimes for the subgraph isomorphism algorithm were also very
reasonable. More than 99.7% of blocks had subgraph isomorphism
checked for all their enumerated subgraphs in less than 1 second.
The worst case runtime for any of the blocks was only 2.47 sec-
onds.

As with subgraph enumeration, runtime for unate covering grew
roughly linearly with the size of its input matrix, and the runtime
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Figure 5: Comparison of subgraph mapping algorithms

was very fast in the common case. More than 99.1% of blocks
ran unate covering selection in less than 1 second, while 99.8%
finished in less than 10 seconds. The worst case runtime for any
block was 60.25 seconds (this was the same block that timed out
during enumeration).

In terms of total runtime for all three phases (full enumeration,
isomorphism based pruning, and unate covering selection), more
than 98% of blocks took less than 1 second to run. 99.5% of basic
blocks took less than 10 seconds total. The worst case block out
of the 23 applications took 11.03 minutes. If the worst case block
proved too slow, the algorithms were designed so that the time-
out could be reduced and still guarantee a solution no worse than
greedy.

In the benchmarks examined, the majority of basic blocks were
so small that the proposed algorithmic improvements made very
little difference in the block’s compilation time. However, the im-
provements were key in making runtimes for degenerate blocks
tractable. Overall, the average benchmark compilation time was
43.8 minutes without the proposed algorithmic improvements. This
figure includes 3 benchmarks that were stopped after not finish-
ing in 6 hours. With the algorithmic improvements proposed in
this work, average compilation time was more than an order-of-
magnitude better at 3.6 minutes per benchmark (15.9 minutes worst
case).

These results show that if you are compiling to target an acyclic
accelerator statically, runtime is no reason to use a greedy heuristic.

4. EXPERIMENTS

In order to evaluate the proposed mapping algorithm, an experi-
mental framework was built using the Trimaran research compiler
and SimpleScalar ARM simulator. Trimaran was retargeted for the
ARM instruction set and subgraphs to be accelerated were delin-
eated in the binary. After compilation, the simulator recognized
the subgraphs and modeled them as if an accelerator was present.
SimpleScalar was configured to represent an ARM-926EJ [2], a
popular embedded core, with accelerators that took one cycle to
execute.

Twenty three benchmarks from MediaBench and MiBench were
used to evaluate the proposed mapping algorithms. Omitted bench-
marks were due to issues in the compiler infrastructure, not limi-
tations of the subgraph mapping algorithm. We tested three differ-
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ent algorithms: greedy enumeration - immediate selection (as de-
scribed in Section 3.1), full enumeration - unate covering selection,
or FEU (described in 3.2), and a hybrid technique full enumeration
- greedy selection, or FEG.

Algorithm Comparison: Figure 5 shows the speedups attained
when using the three proposed algorithms to target the 4 input / 2
output accelerator shown in Figure 1A. The figure illustrates that
the FEU algorithm consistently outperforms greedy on nearly ev-
ery benchmark. On average, 10% more speedup was achieved by
using the FEU algorithm instead of greedy heuristics. Sha showed
the largest difference between greedy and FEU, a 32% improve-
ment. The primary reason for this is that full enumeration identi-
fied a considerable number of disconnected subgraphs in the critical
loop, which the greedy algorithm was not capable of finding. Dijk-
stra_large showed the least improvement when moving from greedy
to FEU mapping. The important subgraphs in this benchmark only
consist of 2 back-to-back instructions, thus the subgraphs are easy
to identify regardless of enumeration algorithm. As would be ex-
pected, this shows that computation-bound applications with very
large basic blocks benefit more from the FEU algorithm than appli-
cations with small basic blocks.

One surprising result illustrated in Figure 5 is that most appli-
cations did not benefit from unate covering selection (comparing
FEG with FEU). On average, FEU performed only 1% better than
FEG. The main reason for this is that the critical computation in
most basic blocks was small enough that very few subgraphs were
needed in the cover. If more subgraphs are used to cover the DFG
(for example, when targeting a smaller accelerator), then greedy
selection is more likely to get stuck in a local minima and per-
form worse. However, when targeting the large accelerator from
Figure 1A, greedy selection is sufficient. In two instances, djpeg
and rijndael, unate covering selection actually caused slight perfor-
mance decreases. This is due to second-order effects, such as cache
alignment, that are not modeled by the unate covering formulation.

Sensitivity to Targeted Accelerator: Figure 6 shows how much
better FEU performs relative to greedy when varying the targeted
accelerator. Bars greater than one imply FEU performed better than
greedy and bars less than one imply greedy performed better than
FEU. The rightmost bar for each benchmark represents the 4 input /
2 output accelerator used throughout this paper. The 3 input/ 1 out-
put accelerator consists of two back-to-back FUs, and is modeled
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Figure 6: The speedup of Full-Enumeration/Unate Covering Selection over Greedy while varying the targeted accelerator

after the accelerator used in [16]. The 4 input / 1 output accelerator
has computation capabilities between the others, with 7 FUs and
maximum dependence height of 3.

There are several interesting trends illustrated by this figure. First
note that FEU outperforms greedy much more on the 4/2 configu-
ration than on the 4/1 or the 3/1. This is because accelerators with
only one output preclude disconnected subgraphs from being exe-
cuted. If no disconnected subgraphs are allowed, then greedy can
potentially find the same subgraphs as full enumeration. This defi-
nitely helps narrow the gap between the two algorithms. In general,
larger accelerators with multiple inputs and outputs place more im-
portance on high quality subgraph enumeration.

A second important trend in Figure 6 is that FEU outperforms
greedy more in 3/1 than in 4/1. The reason for this is that the small
number of FUs in 3/1 (only 2) made the number of subgraphs se-
lected in the final cover relatively high, compared with 4/1 which
has 7 FUs. Since more subgraphs are needed, more emphasis is
placed on the covering algorithm, and unate covering helped quite
a bit. The 4/1 accelerator used relatively few subgraphs, that were
all discoverable via greedy enumeration, therefore FEU provided
little benefit beyond the greedy algorithm. This shows that more
thorough strategies, used in FEU, are more important whenever the
search space is very large.

A last trend to note in Figure 6 is that in certain benchmarks, such
as md5, greedy actually performed better than FEU. This is due to
the partitioning used during full enumeration. Recall that in order
to make full enumeration tractable, some very large blocks some-
times have to be partitioned into smaller graphs. Occasionally, this
partitioning precludes full enumeration from finding important sub-
graphs which can be discovered by greedy methods. This problem
is pronounced in accelerators with only one output, since full enu-
meration cannot make up ground on greedy by using disconnected
subgraphs. Figure 6 motivates future work to develop faster enu-
meration algorithms and better partitioners to alleviate the problem
in md5.

Effect of Register Allocation: Figure 7 depicts the result of
applying the FEU mapping algorithm before and after register al-
location. This is an important result because many researchers
have proposed subgraph mapping in virtual machines or as a part
of binary-to-binary translation. The drawback of subgraph map-
ping after register allocation is that spill code essentially breaks
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dataflow edges by placing values in memory. This limits the size of
computation subgraphs that can be identified for acceleration. On
the other hand, register allocation does introduce some additional
computation (e.g., stack adjustments) that could potentially be ac-
celerated, which is not available when mapping before allocation.

On average, we found that performing subgraph mapping prior
to allocation produced results with 8% more speedup than post-
allocation mapping. In some benchmarks, like rawcaudio, the in-
nermost loop was so small that there was no spill code, and so
there was no difference in the results. In other benchmarks, such
as 3des, the amount of spill code was so large that virtually none
of the pre-allocation subgraphs were discoverable post-allocation.
Only one benchmark, epic, performed better from post-allocation
mapping. Figure 7 clearly shows that performing subgraph map-
ping pre-allocation in the compiler is much more effective than post
compilation techniques, such as binary translation.

5. CONCLUSION

In this work, we addressed the inefficiencies of traditional com-
piler algorithms used to identify candidate subgraphs for execution
on computation accelerators. Several new algorithms were devel-
oped to find better candidates for both small and large accelerators.
These algorithms comprised enumerating subgraphs in a dataflow
graph, using subgraph isomorphism to prune invalid subgraphs, and
using unate covering to select which valid subgraphs to execute on
the targeted accelerators. Simulation results demonstrate that our
proposed algorithms achieve, on average 10%, and as much as 32%
more speedup than traditional greedy solutions.

This work also quantified the effect of register allocation on sub-
graph identification. On average, performing subgraph mapping
prior to register allocation results in 8% more speedup. This result
implies that performing dynamic subgraph identification in hard-
ware or a virtual machine would reduce the effectiveness of map-
ping algorithms.
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