
Distributing Synchronous Programs Using Bounded
Queues ∗

Marco Zennaro
C3UV - Center for Collaborative Control of

Unmanned Vehicles+

University of California at Berkeley

zennaro@path.berkeley.edu

Raja Sengupta
C3UV - Center for Collaborative Control of

Unmanned Vehicles+

University of California at Berkeley

raja@path.berkeley.edu

ABSTRACT
This paper is about the modular compilation and distribu-
tion of a sub-class of Simulink programs [9] across networks
using bounded FIFO queues. The problem is first addressed
mathematically. Then, based on these formal results, a soft-
ware library for the modular compilation and distribution of
Simulink programs is given. The performance of the library
is given. The value of synchronous programming for the
next generation of traffic control is discussed. The adoption
of these tools seems to be the natural candidate to address
the needs of traffic engineers. As a case study we present an
implementation in Simulink of a controller for coordinated
traffic signals in an asymmetric peak hour traffic scenario
and we evaluate its computational performance in a distrib-
uted environment.

Categories and Subject Descriptors: F.3.2 [Logics and
meanings of programs]: Semantics of Programming languages

General Terms: Algorithms, Performance, Design, Lan-
guages, Theory

Keywords: Distributed synchronous programs, GALS, glob-
ally asynchronous locally synchronous architecture, Simulink.

1. INTRODUCTION
The synchronous paradigm was introduced in order to

simplify the programming of reactive systems, hiding from
the user the complexity of interleaving and its associated non
determinism [1],[2],[3],[4]. The compiler takes care of trans-
lating the synchronous system into sequential code while
preserving its semantic [4]. Synchronous programming lan-
guages like ESTEREL [5]-[6], LUSTRE [7], SIGNAL [8], or
Simulink [9] are modular and compositional. This is essen-
tial for the programming of large control systems.

Communication networks enable systems to be distrib-
uted, enhancing both concurrency and non-determinism, due

∗The work was supported by Office of Naval Research
(AINS), grant N00014-03-C-0187 and SPO 016671-004

+CCIT - 2105 Bancroft Way, Suite 300 Berkeley, CA 94720-3830
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

to the asynchronous nature of the communication medium.
In the synchronous philosophy, the resulting complexity should
be hidden from the user and automatically taken care of by
the compiler. This is now an active field of research. [10]-
[11] propose algorithms to distribute synchronous programs,
starting with a single synchronous program and splitting it
into synchronous subsystems intercommunicating through
an asynchronous medium creating what is called a Globally
Asynchronous Locally Synchronous (GALS) system [12].

This approach preserves the synchronous semantics but
does not maintain or exploit the modular structure in the
original synchronous program. Consequently, modification
to one module of the synchronous program may require re-
compilation and re-distribution of the entire system.

We try to achieve the same objectives while retaining any
modular structure in the synchronous program in its asyn-
chronous, semantic preserving, equivalent. Our aim is a
distribution method in which any modification to a module
of the synchronous program will only require recompilation
of the altered module.

[12] proves such a mapping to GALS, preserving modu-
larity, exists for a particular class of synchronous systems.
However, no algorithm computing on a finite representation
of synchronous systems is given. In [13] we proposed such
an algorithm based on CSP style randezvous [14]. In this
paper we present an enhanced approach for the distribution.

Our approach is most similar to [15] and [16]. In [15] a
blocking scheme is used to distribute discrete event systems.
In the discrete event system setting particular attention has
to be paid to avoid deadlock and livelock, while we prove this
is not necessary for the class of problem we address. In [16]
microcircuit components are composed together under the
assumption that they are stallable, and the communication
between components is modeled using fix sized FIFO queues.

Synchronous programs are here modelled using a finitary
version of the Synchronous Transition System [17], modi-
fied to resemble Simulink. The asynchronous formalism is
similar to the I/O automata of [18]. Synchronous and asyn-
chronous composition operators are then defined. The syn-
chronous composition operator is Simulink-like. The asyn-
chronous composition operator is similar to the one used in
Kahn Process Networks [19], [20], [21], but we assume the
communication queues to have bounded size so that it can
be implemented over reliable FIFO channels.

An implementation algorithm to map synchronous pro-
grams to asynchronous ones is then given and it is proven
that the implementation map preserves the synchronous se-
mantics in the sense of [12]. The main result is that the

325

implementation is a monomorphism with respect to the syn-
chronous and asynchronous compositions. The monomor-
phism is our argument that a local change can be handled
locally and that a subsystem can be re-used in different sys-
tems.

The theoretical results are then transformed into soft-
ware. The architecture of the BSDP library and its per-
formances are presented. The results in this paper apply
only to Simulink programs without causal loops (see sec-
tion 2) used with discrete fixed-rate solver. In [22] Simulink
program are distributed over TTA networks. The BSDP li-
brary can be used on any kind of network: our compilation
targets execution in a network of sequential machines com-
municating over any reliable FIFO channels with bounded
memory. This execution model fits the GALS architecture.
The class of Simulink programs we consider lie within the
endochronous programs [12].

Our compilation process does no global scheduling com-
putation. Thus if a block is changed, only the block itself
needs to be re-compiled. On the other hand, our methods
only preserve the synchronous semantic in the sense of the
logical order of computation. It does not try to meet any
real-time deadlines (as done, for example, in [23]).

The paper is organized as follows. Section 2 introduces
a formalism for synchronous systems and section 3 one for
asynchronous systems. Section 4 formulates the research
problem mathematically. Section 5 presents the map from
synchronous to asynchronous systems, compares it with the
one used by Simulink, and proves the map preserves the
synchronous semantic. Section 6 presents the main theorem
supporting the distribution of Simulink programs. Section
7 presents the BSDP library architecture while 8 presents
its performances. Section 9 presents a coordinated traffic
control system developed using the tools introduced in this
paper.

2. SYNCHRONOUS SYSTEMS
Several synchronous system formalisms exists in the lit-

erature. The basic idea behind all of them is of a system
evolving through discrete steps. At every step all the vari-
ables are updated and they do not change values until the
next step is taken.

2.1 STS and FSTS
The Synchronous Transition System formalism, was intro-

duced by Manna and Pnueli in [17]. STS describes a system
as a tuple of typed state variables and transitions. Its be-
haviour is described through traces, i.e. an infinite sequence
of states where a state is a valuation of all the variables of
the system.

In this paper the Finitary STS (FSTS) formalism is used.
The FSTS is chosen to relate to Simulink. A system is de-
scribed in term of input and output ports, and internal state
variables. The evolution of the system is captured by a set of
functions used to compute the output and update the state.

Definition 1. A Finitary Synchronous Transition Sys-
tem (FSTS) is a tuple (S, I,O, σ0, ψO, ψS ,≺) where:

2.a. S is the finite set of state variables of the system;

2.b. I is the finite set of input ports of the system. I and
S are required to be disjoint.

2.c. O is the finite set of output ports of the system. O and
S are required to be disjoint. O and I are not necessar-
illy disjoint (this is needed for feedback as illustrated
in the second example in section 2.2).

2.d. σ0(S) is the initial valuation of the state variables.
σ0(s) denotes the initial value of the variable s ∈ S.

2.e. ΨO is a set of computable functions indexed by the
output ports, used to compute the system outputs.
ψo denotes the function indexed by the output port o.

2.f. ΨS is a set of computable functions indexed by the
state variables, used to compute the next system state.
ψs denotes the function indexed by the state variable
s.

2.g. ≺ is an acyclic partial order over I ∪ O expressing
the causality relation between input and output ports.
Assume for example that the output oi is the sum of
the two imputs i1 and i2. Then oi depends upon i1
and i2, written i1 ≺ oi and i2 ≺ oi. If P is a set of
ports then ∀p ∈ P . p ≺ p′ is written as P ≺ p′.
The concepts ≺ and Ip are linked: ≺ is defined as
follows:

(α, β) ∈≺⇔ (∃ψp ∈ ΨO . α ∈ Ip ∧ β = p) (1)

In the following sections P = S ∪O∪ I and Ψ = ΨO ∪ΨS

and suscripts are used when more than one FSTS are used
(e.g. Ψs1

O refers to the set of output port functions of the
FSTS s1).

A Simulink block can be described by its I/O ports, state
variables and the function used to update them. Later we
capture Simulink using FSTS to make it work in a distrib-
uted computing environment. Some examples are given in
the next section (2.2).

2.2 FSTS examples
Consider the simple Simulink system in figure (1.a). It

is composed of a single gain block. It reads from the input
port i1 and outputs its value multiplied by two on the port
o1.

Figure 1: Two examples of Simulink systems

This system can be described as an FSTS (S,I,O,σ0(S),ΨO,
ΨS ,≺) where S = ∅, I = {i1}, O = {o1}, σ0(S) = ∅, ΨS =

∅, ΨO = {ψo1

def
= 2 ∗ i1}, ≺ = {(i1, o1)}.

Notice that for the example in figure (1.a) I ∩ O = ∅. In
the example in figure (1.b), I ∩ O 6= ∅. It is a block that

326

accepts two inputs i1 and i2 and has two outputs o1 and o2.
o1 and o2 are twice i1 and i2 respectively.

As a result o2 is four times i1. This system can be de-
scribed as the FSTS (S, I,O, σ0(S),ΨO,ΨS ,≺), where S =
∅, I = {i1, o1}, O = {o1, o2}, σ0(S) = ∅, ΨS = ∅, ΨO =

{ψo1

def
= 2 ∗ i1, ψo2

def
= 2 ∗ o1}, ≺ = {(i1, o1), (o1, o2)}.

2.3 FSTS semantics
The semantic is given in terms of traces. Given a set of

variables V , σ(V) denotes a valuation of them and Λ(V) the
set of possible value assumed by the variables in V.

As for STS systems a trace is defined as follows:

Definition 2. A trace is an infinite sequence of valuations
of S ∪ I ∪ O. The ith vector of valuations in a trace t is
denoted ti, where ti ∈ Λ(S ∪ I ∪O).

t|P denotes the projection of the trace t over the set of
ports and/or variables P .

Definition 3. Tuple satisfaction: given a trace t, the tuple
ti satisfies the system s, denoted s |= ti, if the following
holds:

s |= ti ⇔ (i = 0 ⇒ ∀s ∈ S . t0|s = σ0(s)) ∧
∀p ∈ O . ti|p = ψp(ti|(Ip ∪ Sp)) ∧
∀s ∈ S . ti+1|s = ψs(ti|(Is ∪ Sp))

Where the semantic of function application is assumed to
have no side effect.

Definition 4. Trace satisfaction: An FSTS system s ad-
mits a trace t (or equivalently the trace t satisfies the system
s), written s |= t, as follows:

s |= t⇔ ∀i ∈N s |= ti

where N denotes the set of natural numbers including 0.

If ≺ is acyclic each ti and a valuation of the inputs at
time i+1 dictates an unique ti+1. On the contrary, if ≺ has
a cycle, there may be zero or multiple possibilities for ti+1.
Some authors have assumed out cycles [11], while others
have looked for a fixed-point solution [24]. In this paper
we follow the first approach. Thus every FSTS is input
deterministic, i.e. given an input there is only one possible
behaviour.

2.4 Compatible FSTS composition
In this section a composition operator for FSTS is defined.

Once again, this is choosen to include Simulink. A complex
system is composed of subsystems with interconnected in-
puts and outputs ports. Not all systems can be composed.

Definition 5. Two FSTS systems s1=(Ss1 ,Is1 ,Os1 , σs1
0 (Ss1),

Ψs1
O ,Ψs1

S ,≺s1) and s2=(Ss2 , Is2 , Os2 , σs2
0 (Ss2),Ψs2

O ,Ψ
s2
S ,≺

s2

) are compatible if and only if:

6.a. Os1 ∩Os2 = ∅, 6.d. Ss2 ∩ (Os1 ∪ Is1) = ∅,

6.b. Ss1 ∩ Ss2 = ∅, 6.e. Is1 ∩ Is2 = ∅,

6.c. Ss1 ∩ (Os2 ∪ Is2) = ∅, 6.f. ≺a ∪ ≺b is acyclic.

The first condition ensures the two subsystems do not
race to write the same output (this would introduce non-
determinism). The second, third and fourth conditions en-
sure that state variables are local and not shared between
components. The fifth condition ensures that every input is
received by a unique subsystem and that one output cannot

be read by more than one inputs (this is not a limitation
as it can be seen in the fourth example in 2.2). The last
condition ensures the composed system does not have cyclic
causal dependencies between variables.

Definition 6. The composition s1 ×FSTS s2 = (S,I,O,
σ0(S), ΨO,ΨS ,≺) of two compatible FSTS is defined as fol-
lows:

7.a. I = (Is1 ∪ Is2), 7.e. ΨO = Ψs1
O ∪Ψs2

O ,

7.b. PO = (Os1 ∪Os2), 7.f. ΨS = Ψs1
S ∪Ψs2

S ,

7.c. PS = (Ss1 ∪ Ss2), 7.g. ≺= (≺a ∪ ≺b).

7.d. σ0(S) = (σs1
O (Ss1) ∪ σs2

O (Ss2)),

In the following sections ×FSTS is denoted with × when
it will not cause confusion.

Notice that s1 × s2 is an FSTS because the compatibil-
ity hypothesis ensures there are no circular dependences
between ports preserving input determinism. As defined,
×FSTS is a partial function over the FSTS set, i.e. it is
defined only for compatible FSTS.

Some examples are given in the next section (2.5).
Next we state two simple propositions. The propositions

merely assert our FSTS formalism has the usual properties
of other formalisms for synchronous systems in the litera-
ture. A rigorous proof of them can be found in [25].

Proposition 2.1. (FSTS, ×FSTS) is a commutative monoid,
with the identity element being the empty FSTS.

Proposition 2.2. Given two FSTS s1 and s2,

s1 ×FSTS s2 |= t⇔ s1 |= t|P s1 ∧ s2 |= t|P s2

2.5 FSTS composition examples
Consider the Simulink system in figure (2.a). The system

is composed of two blocks similar to the one described in
section 2.2. Both multiply the input but they do so by
different factors;

The composed system is described as: I = {p1, p2}, O
= {p2, p3}, S = ∅, σ0(S) = ∅, ΨS = ∅, ΨO = {ψp2

def
=

2 ∗ p1, ψp3

def
= (3 ∗ p2)}, ≺ = {(p1, p2), (p2, p3)} .

The composed system has the expected semantic. It mul-
tiplies the input by 6.

It may apear that the compatibility conditions as defined
in (5.a) are too restrictive, ruling out systems where the
output of a block is feeded to more than one subsystem.
This is not the case as illustrated by the example in figure
(2.b).

The system has three subsystems. Two of them are the
gain blocks described in the previous examples. The third
one is the duplicate block that is formally described as: I
= {i1}, O = {oa, ob}, S = ∅, σ0(S) = ∅, ΨS = ∅, ΨO =

{ψoa

def
= i1, ψob

def
= i1}, ≺ = {(i1, oa), (i1, ob)}.

The composition of the three block is described with the
following FSTS: I = {i1, oa, ob}, O = {oa, ob, o1, o2}, S = ∅,
σ0(S) = ∅, ΨS = ∅, ΨO = {ψoa

def
= i1, ψob

def
= i1, ψo1

def
=

3∗oa, ψo2

def
= 3∗ob}, ≺ = {(i1, oa), (i1, ob), (oa, o1), (ob, o2)}.

3. ASYNCHRONOUS SYSTEMS
There are many asynchronous system formalisms in the

literature. One of them is the asynchronous version of STS,

327

Figure 2: Simulink systems composed of multiple
blocks

called the Asynchronous Transition System (ATS) model,
introduced by Benvenieste in [3]. In ATS an asynchronous
system is a couple (Pa, Ba) where Pa is the set of I/O ports
and Ba the set of the possible behaviors. A behavior is an
infinite sequence of valuations and a valuation is a couple
(port number, value). The simplicity of the model makes
it easy to handle it mathematically, but we seek a finitary
formalism to be output of an algorithm.

Instead we use automata augmented with queue variables.
We call them Reactive Automata (RA). A reactive automa-
ton is a labeled finite automaton communicating through
shared queues. It is a discrete version of the IO-automata de-
scribed in [18] augmented with communication ports. V de-
notes the set of variables, P the set of ports and for any port
p in P, β(p) is the bound (maximum capacity) of the queue p.
Formally an RA is a tuple (L, l0, V, σ0(V), PI , PO, T) where

• L is a finite set of locations of the automaton;

• l0 is the initial location, l0 ∈ L;

• V is a finite set of variables read and written only by
the RA;

• σ0(V) is the initial value of the state variables;

• PI is a finite set of communication ports, considered
as environmental queues read by this RA;

• PO is a finite set of communication ports, considered
as environmental queues, written by this RA;

• T is a finite set of labeled transitions of the form
(li, lf , (c, A)) where li, lf ∈ L, c is a boolean condition
over the values of the elements in V . A is defined by
the following grammar:
A→?p(v) where p ∈ PI and v ∈ V
A→!p(v) where p ∈ PO and v ∈ V
A→ v := f(V1) where v ∈ V , V1 ⊆ V, f ∈F(V1) is the
set of functions with the standard syntax of a term in

first order logic (see [26]), where the symbols occour-
ing are either function symbols or variable symbols in
V1.

In the following sections P denotes the set PI ∪ PO.
An example of an RA is given in figure (3) and is fomalized

as the following RA:

({W,P, S},W, {v1, v2}, {0, 0}, {input}, {output},
{(W,P, True, ?input(v1), (P, S, True, v2 :=

v1 + 1), (S,W, True, !output(v2)})

Figure 3: A simple reactive automaton

3.1 RA semantic
The semantic of an RA is in terms of runs and traces.

Definition 7. A run of a Reactive Automaton is an infi-
nite sequence of (location, variables valuation, transition,
ports valuation) tuples.

The actions are reads (denoted ?p(v)), writes (denoted
!p(v)), computations (denoted v := f(V)), and the silent
action (denoted ε). The silent action is introduced to denote
the reception or transmission of data in an input or output
queue due to an action of the environment. A transition
with an input action removes the element at the head of an
input port and writes it to an internal state variable, while a
transition with an output action adds the value of a variable
to the tail of an output port.

Definition 8. A reactive automaton trace is a tuple, where
each element of the tuple is an infinite sequence of valuations
for a particular variable of the reactive automaton. The ith

valuation of a variable v in a trace t is denoted by (t|v)i.

The following is a representation of the initial part of a
run of the RA in figure (3) for the input port valuation {1}
and the output port valuation ∅:

(W, (0, 0), True →?Input(v1), (< 1 >, ∅)),
(P, (1, 0), True → v2 := v1+1; , (∅, ∅)),

(S, (1, 2), True →!Output(v2), (∅, ∅)), (W, (1, 2),−, (∅, < 2 >
)), ...

where W, P and S are the wait for input, Process Input and
Send Output location respectivelly and the second element is
a valuation of v1 and v2, and the third element is a valuation
for the two ports Input and Output.

Thus mathematically a run is a sequence of tuples like
the one above. The ith tuple in a run r is denoted by ri

and its element are extracted using projection, for example
ri|location denotes the location element of the tuple ri.

328

Given a run, the associated trace can be computed by
examining the update action on every variable of the RA,
i.e. the ith element of the sequence associated with the state
variable v is given by the ith update on that variable. A
variable v can be updated in two possible ways: because
of a read action ?p(v), or because of a computation action
v := f(V). Given a RA run r =< r0, r1, r2, ... >, (t|v) is
computed extracting a sequence < rk0 , rk1 , ... from r such
that for all ki rki |action is an update action for v and for all
j 6= ki rj |action is not an update action for v. An update
action for v is an input action on the form ?p(v) for any
port p or an update action on the form v := f(V), for any
function f .

For the previous run, the associated trace is < (0, 1, ...),
(0, 2, ...) > where the first and the second sequences are the
successive valuations of v1 and v2 respectively.

Definition 9. Tuple satisfaction: Given a reactive au-
tomaton run r, we say that the tuple ri satisfies a RA w,
denoted w |= ri iff the following holds:

(i = 0 ⇒ (r0|loc = l0 ∧r0|V = σ0(V) ∧∀p ∈ P0 r0|p = ∅)) ∧
(ri|action = ε⇒ ∀v ∈ V . ri|v = ri+1|v ∧

∀p ∈ PO . (ri|p = ri+1|p ∨ ri+1|p = tail(ri|p)) ∧
∀p ∈ PI . (ri|p = tail(ri+1|p))∨(ri|p = ri+1|p)) ∨

(∃(s, s′, (c, a)) ∈ T ⇒ ri|location = s ∧ ri+1|location = s′ ∧
c |= ri|(V ∪P) ∧ ri+1|(V ∪P) = act(a, ri|(V ∪P)))

Observe that the values of a port may change value
without any input or output by the component, by its envi-
ronment, simulating the reception of a message through that
port, through an ε-transition. At the same time, by the def-
inition of act in the next paragraph, input actions on empty
input ports and output actions on full output ports are not
defined. Hence input and output actions are blocking.

Assume for now that PI ∪PO = {p1, .., pm} and that V =
{v1, .., vn}. Then the function act is defined as follows:
act(a, σ(p1), .., σ(pm), σ(v1), .., σ(vn)) =

8>>>>>>>>>>><
>>>>>>>>>>>:

(σ(p1), .., σ(pm),
σ(v1), .., σ(vj−1), σ(f)(σ(vi1), .., σ(vik)), σ(vj+1), .., σ(vn))

if a = “vj := f(vi1 , .., vik)”
(σ(p1), .., σ(pj−1), push(σ(vi), σ(pj)), σ(pj+1), .., σ(pm),
σ(v1), .., σ(vn))

if a = “!pj(vi)” ∧ ¬full(σ(pj))
(σ(p1), .., σ(pj−1), tail(σ(pj)), σ(pj+1), .., σ(pm),
σ(v1), .., σ(vi−1), head(σ(pj)), σ(vi+1), .., σ(vn))

if a = “?pj(vi)” ∧ ¬empty(σ(pj))

where σ(.) denotes the variable and port valuation. The
function full, empty, head, tail and push are the standard
operations over bounded size queues. Assume the seman-
tic of function application to be the same used in the case
of FSTS. In particular, a function evaluation has no side
effects.

Definition 10. Run satisfaction: A run r satisfies a reac-
tive automaton w, denoted w |= r iff:

∀i ∈ N w |= ri

Definition 11. Trace satisfaction: A trace t satisfies a RA
w, denoted w |= t iff there is a run r such that w |= r and t
is associated to r.

We now define a composition operator ×RA for reactive
automata.

Definition 12. Given two reactive automata (L1, l10, V
1,

σ1
0(V 1), P 1

I ,P 1
O, T 1) and (L2, l20, V

2, σ2
0(V 2), P 2

I , P 2
O T 2)

they are compatible if the following condition hold:

V 1 ∩ V 2 = ∅ ∧ P 1
O ∩ P 2

O = ∅ ∧ P 1
I ∩ P 2

I = ∅.

The first conjunct requires the variables of each RA to be
local. The last two say that two distinct automata cannot
write the same port or read the same port.

Definition 13. Reactive automaton composition: Given
two compatible reactive automata w1 = (L1, l10, V

1, σ1
0(V 1),

P 1
I ,P 1

O, T 1) and w2 = (L2, l20, V
2, σ2

0(V 2), P 2
I , P 2

O T 2) Their
composition w1 ×RA w2 is defined as the automaton (L, l0,
V , σ0(V), P , T) where:

1. L =
l1∈L1,l2∈L2S

{{(w1, l1), (w2, l2)}}

2. l0 = {(w1, l
1
0), (w2, l

2
0)}

3. V = V 1 ∪ V 2

4. σ0(V) = σ0(V)1 ∪ σ0(V)2

5. PI = (P 1
I ∪ P 2

I)

6. PO = (P 1
O ∪ P 2

O)

7. T = {(s, d, c, a)|((s|L1, d|L1, c, a) ∈ T 1)∧(s|L2 = d|L2))∨
((s|L2, d|L2, c, a) ∈ T 2) ∧ (s|L1 = d|L1))}
This is an interleaving of the executions of the two
original automata.

Lemma 3.1. (RA, ×RA) is a commutative monoid, with
the identity element being the empty RA.

A proof of the lemma is given in [25].Q
w∈W w denotes an n-ary composition of RA’s. Lemma

(3.1) shows this is well-defined as the usual extension of the
binary operator ×RA.

Definition 14. Given a run w of the automaton
Q

w∈W w,
the projection of the product to one of the factors w ∈ W
is formally defined as follows:
∀i ∈N . (r|w)i|location = l ∧ (w, l) ∈ (ri|location) ∧
∀v ∈ V w . (r|w)i|v = (ri|v) ∧
(ri|transition) ∈ w ⇒ (r|w)i|transition = (ri|transition) ∧
(ri|transition) /∈ w ⇒ (r|w)i|transition = ε ∧
∀p ∈ (Pw

O ∪ Pw
I) . (r|w)i|p = (ri|p)

Every tuple ri of the run of the product is projected to the
variables and locations of w and the tuple with transition
not belonging to w|T are replaced with a silent transition.

Lemma 3.2. Given two compatible reactive automata w1

and w2 and given a run r of their composition, the following
holds:

(w1 × w2 |= r) ⇒ (w1 |= r|w1 ∧ w2 |= r|w2)

A proof of the lemma is given in [25].
RA can be easily compiled to run on a sequential ma-

chine. A product of reactive automata could be compiled in
a few ways. The composition can be carried out generating
a third automaton, or the two original automata can be run
in parallel as long as the following hyphothesis (embedded
in our definition of satisfaction) holds:

Hyphothesis 3.3. The communication queues are FIFO
queues, the values are not lost and their order is maintained.

329

In the second approach the composition can be imple-
mented within a single machine between processes using
monitors and semaphors (see [27]), as well as with 3-way
handshakes protocols over a network (see [28]). This means
we can compose RAs located at different sites across net-
works. In section 7 we will explore an approach that takes
full advantage of the distribution of the code (maximising
pipeline gain).

4. PROBLEM STATEMENT
Given the definition of FSTS and RA in the previous sec-

tions, we can now formally define our problem. Figure 3
illustrates the research program. First we need to find a
way to associate RA and FSTS traces, that is to say we
need a trace map χ :TRA →TFSTS where TRA and TSTS

are the set of traces of STS and RA respectively. In [12] the
following definition of χ is given:

Definition 15. t′ = χ(t) ⇔ ∀i ∈ N ∀v ∈ V . (t|v)i = t′i|v
We need to find a way to implement FSTS as RA while

preserving the synchronous semantic, that is to say we need
to find an implementation map φ :FSTS→RA such that the
following holds:

∀w ∈ RA ∀s ∈ FSTS . w = φ(s) ⇒ (r |= t⇔ s |= χ(t)) (2)

If this holds then φmaps a synchronous system into an asyn-
chronous system while preserving the synchronous semantic.
It has been proved in [12] that for the set of endochronous
programs such a φ exists. In section 5 we define a φ for the
class of FSTS.

So far we have just obtained what a Simulink compiler
does, or what is done in [4]. Given such maps we can now
formulate our problem (like [12]) as follows: we seek a com-
position operator ×RA such that, for any two FSTS s1 and
s2 and RA w1 and w2, the following holds:

w1 = φ(s1) ∧ w2 = φ(s2) ⇒
(w1 ×RA w2 |= t⇔ s1 ×STS s2 |= χ(t))

(3)

If this holds and if the composition operator ×RA can be
implemented across a network then this constitutes a way
to distribute the synchronous system s1 ×STS s2 across a
network while preserving its synchronous semantic. It has
been proved in [12] that when the pair (s1, s2) is isochro-
nous than such an operator exists. In section 6 we prove
that property (3) holds if the two synchronous system are
compatible (as defined in section 2). Thus we claim φ is a
monomorphism between (FSTS, ×FSTS) and (RA, ×RA).

Figure 4: A graphical representation of property (3)

5. IMPLEMENTATION OF FSTS SYSTEMS
In this section φ, a mapping of FSTSs into RAs is given.

It is then proven that the φ satisfies(2).
φ is defined by the following algorithm:

Algorithm Φ
Inputs: an FSTS s=(S, I,O, σ0(S), ψO, ψS ,≺)
Outputs: An RA r =(L, l0, V, σ

′
0(V), PI , PO, T) that imple-

ments the input system
1 PI := {pj |j ∈ I\O}
2 PO := {pj |j ∈ O\I}
3 V = I ∪O ∪ S
4 ∀i ∈ (I ∪O) . σ′0(i)| = 0
5 ∀j ∈ S . σ′0(j) = σ0(j)
6 l0 := lroot

7 (N,E) := CG(≺ |(I ∪O), (I ∪O), root, leaf)
8 For all n ∈ N add ln in L
9 For all (n, n′, j) ∈ E do
10 if j ∈ (I\O) then do
11 add (ln, ln′ , (true, ?pj(j))) to T
12 od
13 if j ∈ (O\I) then do
14 add ln,j in L
15 add (ln, ln,j , (true, j := ψj(V |Pj))) to T
16 add (ln,j , ln′ , (true, !pj(j))) to T
17 od
18 if j ∈ (O ∩ I) then do
19 add (ln, ln′ , (true, j := ψj(V |Pj))) to T
20 od
21 od
23 Let < be any linearization of ≺ |S
24 (N,E) := CG(<), (S), leaf, root)

25 For all n ∈ N add ln in L
26 For all (n, n′, j) ∈ E do
27 add (ln, ln′ , (true, j := ψj(V |Pj)) to T
28 od

Algorithm CG (Compute Graph)
Input: (≺, P, root, leaf) where ≺ is a partial order over a
set P , the set P , and two labels root, leaf
Output: A graph (Nodes, Edges)
1 Nodes := {root, leaf}
2 Edges := ∅
3 % max-int is a global variable that holds the highest

% integer used to label a node
counter := max− int+ 1

4 ∀ linearization w = (w1, w2, ..., wm) of ≺ in P do

5 pointer = root

6 For all i ∈ [1,m] do
7 if (pointer, n, wi) ∈ Edges do pointer = n
8 else do

9 add ncounter to Nodes
10 add (pointer, ncounter, wi) to Edges
11 pointer := ncounter

12 counter + +
13 od
14 od
15 od
16 Replace the sinks in Nodes and Edges with leaf

The algorithm is guaranted to terminate for every FSTS.
All the for loops terminate in finitely many steps because
the set of variables and ports of an FSTS is finite. If ≺ is

330

not acyclic then the algorithm cannot be applied because ≺
would not be linearizable.

The first theorem stated below asserts algorithm φ con-
structs an RA implementing of an FSTS while preserving
its semantics in the sense of χ.

Theorem 5.1. Algorithm φ satisfies property (2), i.e.

∀w ∈ RA ∀s ∈ FSTS . w = φ(s) ⇒ (r |= t⇔ s |= χ(t))

A proof of the theorem can be found in [25].
A Simulink program goes through the following phases:

it starts in the initialization phase computing sample times
and parameters, determining the block execution order and
allocating memory. Then the loop phase starts, where the
following steps are repeated: read the input (input step),
compute the output and propagate it (output step) and up-
date the state (state step). Last in the termination phase
the memory is released.

In Simulink programs without causal loops, the order of
computation produced in the initialization step is computed
through a linearization of the causality relation between in-
puts and outputs.

The algorithm used by Simulink (Real-Time workshop)
for the simulation (implementation) of a system is hence
different from the one given in the previous section. For
single rate systems with no causal loops the main difference
is that an FSTS is not mapped into a RA able to receive
its inputs in all the possible orders, but only in a particular
order. The subroutine CG is no longer necessary and line
7 is replaced with a routine that constructs a single path
graph. Alternativelly we can just pass to the CG routine a
linearization of ≺ instead of ≺. In the next sections φsim

denotes the algorithm with this modifications.
All the claims and proof of the previous section will hold

for φsim as well. However in the next sections it is showed
that φ can be distributed with fewer assumption than φsim.

6. DISTRIBUTION OF FSTS SYSTEMS
We have seen in the previous section that there is a map

φ between FSTS and RA satisfying property (2). We have
claimed in section 3 that ×RA can be implemented across
comunicating machines. Hence, we argue that we can dis-
tribute a Simulink-like synchronous system across a network
with the following theorem (a proof for it is given in [25]).

Theorem 6.1. The compostion operator ×RA satisfies prop-
erty (3), i.e. for any two compatible FSTS s = (Ss, Is, Os,

Is
O, Ψs

O, Ψs
S, ≺s) and s′ = (Ss′

, Is′
, Os′

, Is′
O , Ψs′

O , Ψs′
S ,

≺s′
) the following holds:

∀t ∈ Γ . φ(s)×RA φ(s′) |= t⇔ s×STS s
′ |= χ(t)

As noted in section 5 the implementation algorithm used
by Matlab Simulink / RealTime Workshop differs from φ
proposed for FSTS in the sense that it fixes the order in
which the input are received and the outputs are computed
and propagated to the other subsystems.

Theorem 6.1 do not extend in the general case for φsim. It
suffices to consider the FSTS in figure (5) (taken from [12]).

It is easy to see that s0 cannot be compiled through φsim

without deadlocking if composed with s1 or s2. If it is com-
piled to accept i1 before i2 then it will block if composed
with s2. If compiled to accept i2 before i1 it will dead-
lock when composed with s1. In reality a Simulink systems

Figure 5: Three FSTS systems

reads all the inputs before computing any of the outputs.
This means that s0 will deadlock with both s1 and s2.

This shows that as long as the Matlab Simulink interpreter
/ Realtime Workshop compiler is used, synchronous systems
cannot be distributed in the general case. However it can
be done in the following particular case:

Theorem 6.2. Given an FSTS s′ =
Q

s∈S s, if ≺s′
pro-

jected to the ports of each subsystem s is a total order (i.e.
the external outputs depends on all the external inputs), then
for any two compatible FSTS s = (Ss, Is, Os, Is

O,Ψ
s
O,Ψ

s
S ,≺s)

and s′ = (Ss′
, Is′

, Os′
, Is′

O ,Ψ
s′
O ,Ψ

s′
S ,≺s′

) the following holds:

∀t ∈ Γ . φsim(s)×RA φsim(s′) |= t⇔ s×STS s
′ |= χ(t)

Proof: Since ≺s′
projected over the subsystems is a total

order the output of CG is a single path graph with root
lroot and sink lleaf . As a result φ and φsim produce the
same output. The theorem follows.

7. BDSP ARCHITECTURE
In this section the software architecture for the distrib-

ution of Simulink programs (see figure (6)) is described.
We call this architecture Berkeley Distributed Simulink Pro-
gram (BDSP) library.

An initial version of the BDSP library has been imple-
mented using a simple rendezvous scheme. The first version
was developed as a proof of concept, a second version, utilis-
ing bounded queues as described in this section is currently
under development.

The current implementation relies on the Simulink inter-
preter. Because of it the systems are distributed as follows:
first the original Simulink model is decomposed into atomic
blocks. Then all the broken connections are replaced with
external − linkboxes (i.e. S-function boxes we provide).
These boxes hide the complexity of the distribution to the
user.

Input and Output external-link boxes structure: the struc-
ture of an Input external-link box and of an Output external-
link box are the same but for the ports. While the input box
has a single input and no outputs the output box should have
one output and no inputs. The boxes have three parame-
ters: the IP/port pair for the sender, the IP/port pair for
the receiver and a name that is going to be used to resolve
for the first two parameters. The box uses two TCP sock-
ets to communicate with the queue manager. One socket is
used to receive messages from the queue manager and the
second is used to send messages to it.

Queue Manager structure: the structure of the queue
manager is shown in the right side of figure (6). It con-
sists of many queues, one for every input or output port of
the block. It has a couple of TCP sockets to comunicate
with the S-function boxes on the machine and a list of UDP

331

sockets to communicate with the the other queue managers.
Every queue is associated with two flags (the datarequested
and queuefull) and a counter.

External-link box to queue manager interface: The life
cycle of an external-link box is the same of any Simulink
box (described in section 5). In the initialization phase the
box sends a packet to the queue manager to reserve a queue
and pass the IP/port address to the other end of the pipe.
If it is an input block it requests its input from the queue
manager in the Input Read phase. If the queue is empty it
blocks until something is available. The flag datarequested
is switched on if the queue is empty. If it is not empty the
data is removed from the queue and sent to the box. If it is
an output block, in the Ouput Phase the output is sent to
the Queue manager. If the queue is not full an ack is sent
back to the output box. The box is blocked until the ack is
received. If the queue is full and the box is trying to send,
the flag Full is switched on. When the queue is empty and
the flag Full is on an ack is sent to the Output box.

Queue manager to queue manager interface: the commu-
nication protocol between queue managers needs to be re-
liable and to preserve message order. A possible candidate
is TCP, or a UDP with a acknowledgment-timeout protocol
implemented on top. When an output queue is not empty
the queue manager will try to send the message as soon as
possible. It removes the message from the queue only when
the ack is received. When it receives a message it will put it
on the right queue. If the queue is full it will drop the packet
(the message will not be lost, just retransmitted later).

Figure 6: BDSP architecture

8. PERFORMANCE ANALYSIS
Code distribution may lead to a system speed-up through

concurrency, but it has also a cost overhead associated with
the rendezvous communication protocol. In this section this
overhead is estimated for the first implementation of the
BDSP library as described in section 7.

Figure 7: The model used to estimate the overhead

We decompose the system in figure (7) into three subsys-
tems running on two separate Pentium 4 850 Mhz, 512 Mb
ram machines. The source and the sink gain are located on
the same machine, while the middle gain is run on a second
one. A timestamp is recorded by the external-link boxes at
the beginning and at the end of each time step. Since the
source and sink gain are on the same machine, i.e. they are
running according to the same clock, the time stamps can be
compared to get a conservative estimate of the overhead due
to the rendezvous protocol. The measured overhead is con-
servative because it includes the middle gain computation
time and the two Simulink processes on the first processor
are competing on the first computer. The computers are
connected through a shared 802.11b wireless ethernet.

Figure 8: A conservative estimate of the distribution
overhead

The results are plotted in figure (8). The overhead average
is smaller that 0.2 seconds and the standard deviation is
close to 30 ms. This result is promising considering that
we are currently using the Simulink interpreter and not the
Real-time workshop compiler.

9. TRAFFIC SIGNAL CONTROL APPLICA-
TION

We are working to introduce synchronous programming
techniques into traffic signal control. As they are growing
rapidly in complexity we see an excellent opportunity for
synchronous programming tools as a way to greatly simplify
software development for these large-scale systems.

332

In order to maximize the flow and minimize the average
waiting time, the cycle length (defined as the time needed to
go through all the phases) and the interval splitting (defined
as the ratio of the green time for the two directions), need
to be properly set.

The early traffic signal controllers were non-programmable
devices. However, with time these devices have reached a
high level of sophistication. An example of such a device
is the 2070 controller, used widely in California, which sup-
ports pre-timed, semi-actuated and fully actuated operation
rules and supports a wide set of sensors. These devices sup-
port many pre-defined rules that can be adjusted on the field
or remotely (in the case of the 2070 the remote setting proto-
col is fixed by the National Transportation Communications
for ITS protocol set of standards).

At the same time, signal control systems are growing spa-
tially. The first dynamically adjustable lights were driven
by traffic measurement sensors located next to them. They
were isolated. Next it became possible to coordinate all
the lights along an arterial to have the lights turn green
in succession. Modern systems like [29] seek to coordinate
entire downtown urban grids. The entire grid is operated
on a common cycle time adjusted on the timescale of tens
of minutes as demand changes. Controllers like 2070 are
only partially programmable and the programming inter-
faces are low-level. Furthermore, embedded computing and
the wireless revolution are being brought together by the US
governments Vehicle Infrastructure Initiative (VII) [30]. It
is envisaged that every roadside cabinet will have a general
purpose computer with wired or wireless backhaul. A large-
signal control system could be developed in high-level tools
like Simulink and compiled to suit the hardware architecture
at hand. The entire system may compute in a traffic man-
agement center with low-level commands going out to the
field, or be distributed to compute entirely in field cabinets.

As a first step we have used SIMULINK to model a ma-
jor arterial road intersected by 4 minor low traffic streets.
Consider a peak hour asymmetric scenario, where almost all
the traffic flow is in one direction on the major street. The
flow is maximized by coordinating the traffic lights to cre-
ate green waves: a car that just got the right-of-way at the
first intersection will get a green at all the intersections (see
[31] and [32]). This is done by synchronizing the controllers,
fixing the cycle length across controllers, and offsetting the
begining of each cycle by a statically determined d∗v, where
d is the distance between the two intersections and v is the
target traffic speed.

If the intersection has inductive loops the vehicle speed
can be directly estimated. This value can be passed through
a simple filter to make the system resistant to insignificant
minor speed fluctuations, while adjusting to significant and
permanent changes (due for example to congestion, road
construction or minor accident).

This actuated scheme is implemented by the Simulink
model in figure (9). The average speed in response to the
traffic light has been computed using traffic flow theory as
described in [35]. The sensor input is passed through a sim-
ple filter to make the system resistant to insignificant minor
speed fluctuations, while adjusting to significant and per-
manent changes.

We have run a simulation of the system where an accident
occurs between the first and the second intersection during
the 100th cycles and is cleared out during the 180th, and a

Figure 9: Traffic Controller Simulink Model

minor one happens between the third and the fourth inter-
section during the 150th cycle and it is cleared out during
the 200th.

The offsets computed by the last three intersection (the
offset for the first one is always 0) computed using the model
in figure (9) are plotted in figure (10).

Figure 10: The offset as computed by the model
described in figure (9)

This model can be compiled and run centrally at the traf-
fic management center, making the traffic signal operating,
quoting [33], “exactly the way the designer thinks it should
be controlled”. Moreover, as shown in sections 6, the model
can be compiled into distributed code, with the same behav-
iour, that can be run by the controllers without any need of
external coordination.

The test to evaluate the performances of the system has
been carried over the same hardware used in the previous
section. In this case the performances have been measured
as the total computation time needed to carry a step (i.e.
from the end of the previous cycle to the end of the compu-
tation of all the offsets). The computation time is on average
0.3 s (the standard deviation is 6 ms). We expect this re-
sult to improve when moving from Simulink interpretation
to direct execution of the code as generated by Real-Time
workshop. Even interpreting the code though, the system
largely met the time constraints of the application as de-
scribed in [33].

10. CONCLUSION
The problem of distributing large scale synchronous sys-

tems across a network has been addressed. We defined a syn-
chronous and asynchronous composition operator. The syn-
chronous composition operator is Simulink-like. The asyn-
chronous composition operator is similar to the one used in
Kahn process networks. We presented an algorithm to im-

333

plement a synchronous program into an asynchronous one
and we proved the implementation map preserves the syn-
chronous semantics in the sense of [12]. The main result was
that the implementation is a monomorphism with respect
to the synchronous and asynchronous compositions. The
monomorphism is our argument that a local change can be
handled locally and that a subsystem can be re-used in dif-
ferent systems. We have presented a software architecture
consistent with our mathematics and studied its performan-
mces. We have motivated the development of synchronous
programming tools for traffic signal control.

11. REFERENCES
[1] E. A. Lee, Concurrent Models of Computation for

Embedded Software, Technical Memorandum
UCB/ERL M05/2, University of California, Berkeley,
2005

[2] E. A. Lee and Stephen Neuendorffer, Concurrent
Models of Computation for Embedded Software,
Technical Memorandum UCB/ERL M04/26,
University of California, Berkeley, 2004.

[3] G. Berry, A. Benvenieste, The synchronous approach
to reactive and real-time systems, Proceedings of the
IEEE, 79(9):1270-1282, September 1991

[4] C. Andre’, F. Boulanger, A. Girault, Software
implemenentation of synchronous programs, IEEE
International Conference on Application of
concurrency to System Design, June 2001

[5] G. Berry, The Foundations of Esterel, Proof,
Language and Interaction: Essays in Honour of Robin
Milner, G. Plotkin, C. Stirling and M. Tofte, editors,
MIT Press, 1998.

[6] G. Berry, The Constructive Semantics of Pure Esterel,
July 2, 1999

[7] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud,
The synchronous dataflow programming language
Lustre, Proceedings of the IEEE, vol. 79, nr. 9.
September 1991.

[8] B. Houssais The synchronous programming language
SIGNAL, a tutorial, IRISA, April 2002

[9] Learning Simulink 5, MathWorks edition, 2002

[10] P. Caspi and A. Girault and D. Pilaud, Automatic
Distribution of Reactive Systems for Asynchronous
Networks of Processors, IEEE Trans. on Software
Engineering, Vol 25-3, page 416-427, 1999

[11] A. Girault, C. Menier, Automatic production of
Globally Asynchronous Locally Synchronous Systems,
ACM EMSOFT 2002

[12] A. Benvenieste, B. Caillaud, P. Le Guernic,
Compositionality in dataflow synchronous languages:
specification and distributed code generation,
Information and Computation, vol.163, no.1, 25 Nov.
2000, pp.125-71. Publisher: Academic Press, USA.

[13] M. Zennaro, R. Sengupta Distributing Synchronous
Systems with Modular Structure, IEEE 2004 44th
Conference on Decision and Control, December 2004

[14] C.A.R. Hoare, Communicating sequential processes,
Prentice Hall, 2003

[15] Jayadev Misra, Distributed discrete-event simulation,
ACM Computing Surveys (CSUR), Volume 18 Issue 1
March 1986

[16] L. P. Carloni, K. L. McMillan, A. L.
Sangiovanni-Vincentelli, Theory of Latency-Insensitive
Design, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems., 20(9):18,
September 2001.

[17] Manna, Pnueli, The temporal logic of reactive and
concurrent systems, Springer-Verlag 1992

[18] N. Lynch, R. Segala, F. W. Vaandrager Hybrid I/O
automata, Hybrid System III, LNCS 1066,
Springer-Verlag, 1996, p.496-510

[19] G. Kahn, The Semantics of a Simple Language for
Parallel Programming, Proceedings of the IFIP
Congress74. North Holland Publishing Company.

[20] G. Khan and D.B.MacQueen, Coroutines and
networks of parallel processes, Information Processing,
North-Holand Publishing Co. 1977

[21] E. A. Lee, T. M. Parks, Dataflow process networks,
Proceedings of the IEEE, 1987

[22] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S.
Tripakis, from Simulink to Scade/Lustre to TTA: a
layered approach for distributed embedded applications,
ACM LCTES 2003

[23] J. Romberg, A. Bauer, Loose Synchronization of
Event-Triggered Networks for Distribution of
Synchronous Programs, ACM EMSOFT 2004

[24] S. Edwards, The specification and execution of
Heterogeneous Synchronous Reactive Systems, PhD
thesis, University of California at Berkeley, 1997

[25] Zennaro, Sengupta, Distributing Synchronous
Programs Using Bounded Queues, a coordinated traffic
signal application, University of California at Berkeley,
Intelligent Transportation Studies,
UCB-ITS-RR-2005-4, May 2005

[26] H.B. Enderton, A Mathematical Introduction to Logic,
Academic Press; 2 edition (December, 2000)

[27] J. L. Hennessy, D.A. Patterson, D. Goldberg,
Computer Architecture: A quantitative approach 3rd

edition, Morgan Kaefmann, 2002

[28] A. S. Tanenbaum, M. van Steen, Distributed Systems,
Principles and Paradigms, Prentice Hall 2002

[29] http://www.scoot-utc.com

[30] http://www.its.dot.gov/initiatives/initiative9.htm

[31] J. H. Kell, Coordination of fixed-time traffic signal, J.
H. K. and Associates Internal report, 1973

[32] M. Boydstun, Coordinated Traffic Signal Systems,
National Institute for Advanced Transportation
Technology, Traffic Signal Summer Workshop, 2004

[33] D. Gitelson, Traffic Signal Computers, California
Division of Highways Internal report, 1972

[34] M. Zennaro, J. Misener A State Map Architecture for
Safe Intelligent Intersections, ITS America 2003 13th
annual meeting, May 2003

[35] C. F. Daganzo, Fundamentals of transportation and
traffic operation, Pergamon Edition, 1997

[36] Simulink Help Manual: Writing S-functions,
MathWorks edition, 2002

[37] G. C. Sih, E. A. Lee, A compile-time scheduling
heuristic for interconnection-constrained heterogeneous
processor architectures,IEEE Transactions on Parallel
and Distributed Systems, vol.4, no.2, Feb. 1993,
pp.175-87. USA.

334

