
Communication Strategies for Shared-Bus Embedded
Multiprocessors

Neal K. Bambha
US Army Research Lab

Adelphi, MD

nbambha@arl.army.mil

Shuvra S. Bhattacharyya
Dept. of Electrical and Computer Engineering

Institute for Advanced Computer Studies
University of Maryland, College Park

ssb@eng.umd.edu

ABSTRACT
This paper explores the problem of efficiently ordering inter-
processor communication operations in both statically and
dynamically-scheduled multiprocessors for iterative dataflow
graphs with probabilistic execution times. In most digital
signal processing applications, the throughput of the system
is significantly affected by communication costs. We explic-
itly model these costs within an effective graph-theoretic
analysis framework. We show that ordered transaction sched-
ules can significantly outperform both self-timed schedules
and dynamic schedules for moderate task execution time
variability. As the task execution time variability increases,
we show that first self-timed and then dynamic scheduling
policies are preferred. We perform an extensive experimen-
tal comparison on both real and simulated benchmarks to
gauge the effect of synchronization and communication over-
head costs on these crossover points.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiprocessors

General Terms
Algorithms, Performance, Theory

Keywords
Interprocessor communication, scheduling, dataflow

1. INTRODUCTION
Interprocessor communication (IPC) operations are re-

sponsible for significant execution time and power consump-
tion penalties in multiprocessor embedded systems. This
paper compares trade-offs for different IPC ordering strate-
gies in both statically-scheduled and dynamically-scheduled
multiprocessors for iterative dataflow specifications. We tar-
get lower-cost, shared memory embedded architectures in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

which IPC is assumed to take place through shared mem-
ory. Such simple communication mechanisms are common
in embedded systems due to their simplicity and low cost.

2. PREVIOUS WORK
High-level exploration of interprocessor communication in

multiprocessor architectures has received more attention as
the complexity and size of these architectures has increased.
Kogel [1] and Pasricha [2], for example, have recently pre-
sented tools for early exploration of bus-based on-chip com-
munication architectures. They show that such exploration
early in the design is essential for developing efficient imple-
mentations.

Lee and Ha [3] discuss four general scheduling strategies—
fully-static (FS), self-timed (ST), static-assignment (SA),
and fully-dynamic (FD)—for multiprocessors. Multiproces-
sor scheduling can be divided into three steps—assigning
actors to processors (processor assignment), ordering the
actors assigned to each processor (actor ordering), and de-
termining when each actor should commence execution. All
of these tasks can either be performed at run-time or at
compile time to give us different scheduling strategies.

In the FS strategy, all three scheduling steps are carried
out at compile time, including the determination of an exact
firing time for each actor. The FS strategy only works when
tight worst-case execution times are available, and forces
system performance to conform to the available worst-case
bounds. In the ST strategy, on the other hand, processor as-
signment and actor ordering are performed at compile time,
but run-time synchronization is used to determine actor fir-
ing times—an ST schedule executes by firing each actor in-
vocation A as soon as it can be determined via synchroniza-
tion that the actor invocations on which A is dependent have
all completed execution. In the SA strategy, the processor
assignment is performed at compile time, but the ordering
of actors on each processor is determined at run time. In
the FD strategy, all three steps (processor assignment, actor
ordering, and firing times) are determined at run time.

The ordered transaction (OT) method [4] falls between
the FS and ST strategies. It is similar to the ST method
but also adds the constraint that a linear ordering of the
communication actors be determined at compile time, and
enforced at run-time. The linear ordering imposed is called
the transaction order of the associated multiprocessor im-
plementation.

Sriram [5] shows that optimal transaction orders can be
derived in polynomial time if IPC costs are negligible; how-

21

ever, the performance of the self-timed schedule is an upper
bound on the performance of corresponding ordered trans-
action schedules under negligible IPC costs. Conversely,
Khandelia and Bhattacharyya [6] show that when IPC costs
are not negligible, the problem of determining an optimal
transaction order is NP-hard, but at the same time the per-
formance of a self-timed schedule can be exceeded signifi-
cantly by a carefully-constructed transaction order.

In this paper, we examine the performance of OT and ST
as a function of the variability of task execution times, and
compare them with the FD strategy.

3. EXPERIMENTS
We developed a software simulator of the execution of

self-timed and dynamic iterative schedules. The simulated
system is a shared-memory architecture, where synchroniza-
tions are performed by accessing the shared memory bus.

The synchronization cost for OT is much lower than the
synchronization costs for ST. In the OT strategy a shared
bus access takes no more than a single read or write cycle
on the processor, and the overall cost of communicating one
data sample is two or three instruction cycles [4].

Our simulator for ST operation implements both the Un-
bounded Buffer Synchronization (UBS) and the Bounded
Buffer Synchronization (BBS) protocols [4]. In the BBS
protocol, the protocol requires one local memory increment
operation (the local write pointer) and one write to shared
memory (store write pointer) occur after the source node of
the synchronization edge has executed.

We assume an architecture where all synchronization and
memory accesses occur in a single shared memory. We define
a parameter β to be the ratio of the synchronization time to
the IPC time. Since we are considering HSDF graphs with
one data token produced per IPC operation, we have β ≥ 2
for BBS (at least 2 memory accesses for synchronization for
every data memory access) and β ≥ 4 for UBS.

The simulator for FD assumes a centralized scheduler with
separate control signals to each processor. The scheduler
keeps track of ready tasks and ready processors. A task is
ready when all its predecessors in the application graph have
completed. A processor is ready if it is not executing a task
or IPC operation. Tasks are prioritized according to ready
time. The scheduler attempts to place the highest priority
task on the lowest number ready processor whenever a new
ready task is detected.

We implemented the heuristic transaction partial order
(TPO) algorithm [6] to determine the OT task ordering.
This heuristic simultaneously takes IPC costs and the seri-
alization effects of transaction ordering into account when
determining the transaction order.

3.1 Task Execution Times
For many DSP applications, it is possible to obtain ac-

curate statistics on task execution times. Probabilities for
events such as cache misses, pipeline stalls, and conditional
branches can be obtained by using sampling techniques or
simulation of the target architecture [7]. We utilize the task
execution model in [8], where each task vi in the task graph
G = (V,E) is associated with three possible execution times
e0, e1, or e2 with probabilities p0, p1, and p2 respectively.
Here, e0 is the task execution time given in the benchmark
specification, e1 = 2e0 and e2 = 4e0. We define a single pa-
rameter p for the degree of randomness of the task execution

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T

TOT

Task variability parameter p

tgff β = 1

ot
st???

????
??

????
????

?
??

??
?
?
??

??
??

?
??

??

??
?
??

??
?
???

?
????

?
fd

bbb
b
bbbbbbbbbbbbbbbbbbb

bbbbbbb
bb

bbb
bbb

bbb
bbbbb

bbbbb

b

Figure 1: OT, ST, and FD scheduling for an appli-
cation graph generated by TGFF.

times, where p0 = (1− p), p1 = p(1− p), and p2 = p2. Note
that for this probability distribution, p = 0.5 corresponds
to the highest degree of randomness. Under these assump-
tions, we note that the FS strategy is not practical for any
p > 0, no matter how small, since an FS architecture must
operate with e2 for all tasks in order to assure correctness.

3.2 Benchmarks
The benchmark application graphs used were fairly com-

plicated, ranging from between 9–764 nodes, and the num-
bers of processors involved ranged from 3 to 8. We exam-
ined a combination of real and synthetic benchmarks. For
the synthetic benchmarks, we used the TGFF [9] algorithm.

The examples fft1, fft2, and fft3 result from three rep-
resentative schedules for Fast Fourier Transforms based on
examples given in [10]; karp10 is a music synthesis applica-
tion based on the Karplus Strong algorithm in 10 voices; the
video coder is taken from [11], and cddat is a CD to digital
audio tape converter.

4. RESULTS
Experiments were carried out to compare the OT, ST,

and FD methods, and to measure the performance of the
TPO heuristic in finding transaction orders. For the OT
and ST methods, the benchmarks were scheduled using the
DLS algorithm [12].

We used the task execution model from Section 3.1, and
calculated the average iteration periods over 10000 itera-
tions.

We define a parameter α that quantifies the IPC overhead
in a given schedule. It is calculated from the ratio of the total
IPC time (synchronization plus data communication) to the
total execution time spent on computational tasks over all
processors. Thus, α is a function of p, the schedule, and the
relative speed of processor to memory. We note that VLSI is
trending toward higher relative processor-to-memory speeds
(higher α) as gate lengths decrease.

Figure 1 plots TOT, TST, and TFD versus the parameter
p that governs the degree of randomness of the task execu-

22

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (p)
TOT (p=0)

Probability p

irr α(p = 0) = 0.24

OT
ST β = 0

rr
rr

rr
rr

rr
rr

r
rr

r
rr

r
rr

rr
r
rr

rr
r
rr

rr
r
r
r
r
rr

rr

r
r
r
r
r

rr
r
rr

r

ST β = 2

???
????

???
???

??
???

???
???

??
??

???
???

???
??

???
??

??
?
???

?

?
ST β = 4

bb
bb

bb
bb

b
bb

b
bb

bb
b
bb

b
b
bb

b
b
bb

b
b
bb

b
b
b
b
b
b
b
b
b
b
b

b

Figure 2: Iteration periods TOT and TST for the irr
benchmark versus amount of randomness in task ex-
ecution times (parameter p).

tion times for a synthetic application benchmark generated
by TGFF. It can be seen that the dynamic scheduling ap-
proach performs significantly worse than OT and ST for
low task execution time randomness (low p), but that FD
is much less sensitive to p. The dynamic scheduling algo-
rithm is able to adapt (through different task orderings and
assignments) to changes in execution times, while the task
orderings and assignments are fixed for ST and OT. This
behavior of FD compared to OT and ST was observed with
all the benchmarks.

Figure 2 plots TOT and TST versus p for different values
of β, the ratio of synchronization-to-IPC overhead described
in Section 3. The calculations for β = 0 do not correspond
to any synchronization protocol in our architectural model,
but are given as a point of reference. Values of β < 2 would
be possible if a separate (faster) memory were allocated to
the synchronization variables.

The iteration period increases with p since the average ex-
ecution time increases with p. For many DSP applications
p < 0.1 is a reasonable assumption. For example, if e2 cor-
responds to a cache miss, e1 to a processor pipeline stall,
and e0 to the base execution time for a task, p = 0.1 corre-
sponds to a 1% cache miss probability, a 9% pipeline stall
probability, and a 90% probability for the base execution
time.

From Figure 2 we see that TST increases more slowly as
a function of p than does TOT. This is because the self-
timed schedule has more flexibility than the OT schedule
(the OT schedule imposes a pre-determined, global ordering
of all the IPC while the ST does not) and thus is better able
to adapt to changes in task execution times. This behavior
was observed with all the benchmarks. We also see that it
is possible for OT to outperform ST for β = 0, but only for
small p. Comparing Figure 2(a) and Figure 2 (b), we see
that the slopes of the curves decrease as α increases. This is
because the IPC operations are not random, and so as IPC
increases, a smaller fraction of the overall execution time
comes from random tasks.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 0.05 0.1 0.15 0.2 0.25

TST

TOT

α (IPC Overhead)

FFT1 β = 4

p = 0
p = 0.1

? ?

?
?

?

??
?

?
???

?

?
?
???

?
????

?

?
??

?????
??

?
?
????

??
?
?
???

p = 0.4

b

b

b

b
b

b

b

b
b
b

b

b

b
b

b

b

b b b

b
b

b

b

bb

b

b

b

b

b

b

bb
b
b

b
b
b
b

b
b

bb

b

b

b

b

Figure 3: Ratio of TST to TOT versus IPC overhead
for fft1 with β = 4.

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 0.05 0.1 0.15 0.2 0.25

TST

TOT

α (IPC Overhead)

FFT1 β = 2

p = 0
p = 0.1

? ?

?

?

?

?

?

?

?
?

?
?

?

??

?

?

?

?
?

?

?

?

?

??

???

??

??
?

?

?
?

?
?

?

?
?

??

?

?

?
p = 0.4

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b b

b

b
b

b

bb

b

b

b
bb

b

b

b

b

b

b

b

b

b
bb
bb

b

b

b

Figure 4: Ratio of TST to TOT versus IPC overhead
for fft1 with β = 2.

We also observe that the relative improvement of OT over
ST increases as α increases. Figures 3 and 4 plot the
ratio TST/TOT versus α for the irr and fft1 benchmarks.
For the irr benchmark, TST/TOT > 1 for all β ≥ 2 and
p ≤ 0.4. For the fft1 benchmark with β = 2 and p = 0.4,
TST/TOT > 0.96, and TST/TOT > 1 elsewhere. As discussed
above, p = 0.4 represents a high degree of uncertainty for
task execution times in DSP applications (with p = 0.5 rep-
resenting the highest possible degree of randomness in the
probability distribution).

Table 1 compares the performance (iteration period) of
the ST and the OT schedules.

In all cases, we observe that the OT strategy outperforms
the ST strategy for β ≥ 2. As noted before, β = 2 and β = 4
represent lower bounds for the BBS and UBS synchroniza-
tion protocols, respectively. The results for the (synthetic)
TGFF benchmark are an average over 50 different graphs
generated by the TGFF program [9].

23

p = 0 p = 0.1
Application (|V |, |E|) α β = 0 β = 2 β = 4 β = 0 β = 2 β = 4

tgff avg. (∗, ∗) 0.21 1.057 1.206 1.342 1.046 1.190 1.321
fft1 (28, 32) 0.04 0.970 1.024 1.097 0.997 1.064 1.088
fft1 (28, 32) 0.26 0.858 1.146 1.483 0.872 1.135 1.452
fft2 (28, 32) 0.02 0.995 1.035 1.083 1.042 1.058 1.118
fft3 (28, 32) 0.04 1.020 1.665 2.147 1.001 1.632 2.104

karp10 (21, 29) 0.19 0.896 1.372 1.895 0.896 1.273 1.687
video coder (9, 9) 0.735 1.014 1.117 1.441 0.933 1.028 1.326

cddat (760, 764) 0.375 1.081 1.271 1.640 1.006 1.182 1.525
irr (41, 69) 0.72 1.013 1.405 2.140 1.001 1.414 2.130
irr (41, 69) 0.24 0.956 1.246 1.645 0.934 1.082 1.470

laplace (16, 24) 0.4 0.857 1.692 2.406 0.847 1.603 2.248
laplace (16, 24) 0.14 1.025 1.316 1.608 0.979 1.186 1.376

Table 1: TST/TOT for ST and OT schedules.

5. CONCLUSIONS
We have demonstrated that the ordered transaction method—

which is superior to the self-timed method in its predictabil-
ity, and its total elimination of synchronization overhead—
can significantly outperform self-timed and fully dynamic
implementations for low task variability, even though the
ordered transaction implementation offers less run-time flex-
ibility due to a fixed ordering of communication operations.
When synchronization cost is taken into account, the or-
dered transaction method performs significantly better than
the self-timed and fully dynamic methods.

We have studied the relative behavior of OT, ST, and
FD implementations under a realistic model for task execu-
tion times. The OT strategy performs better relative to the
ST and FD strategies for lower p (degree of randomness in
task execution times), higher β (synchronization costs) , and
higher α (IPC overhead). The ranges in which OT favors ST
encompass the design space that we are targeting—namely,
low-cost shared bus embedded multiprocessor DSP systems.

We have also developed a detailed simulator to measure
the performance of the self-timed schedule under different
constraints.

The benefits of OT can be expected to increase with the
general trend in VLSI technology for increasing processor/memory
performance disparity. Some of this benefit may be off-
set, however, by another trend, which is for decreasing pre-
dictability in application behavior (and thus execution times)
due to the use of more and more sophisticated and adaptive
types of algorithms. The evolution of the MPEG standards
is an example of this. Further research on OT methods
to efficiently handle such lower degrees of predictability is
therefore an interesting and important direction for further
study.

6. REFERENCES
[1] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid,

H. Meyr, and S. Goossens, “A modular simulation framework
for architectural exploration of on-chip interconnection
networks,” in Proceedings of the CODES+ISSS. ACM,
October 2003, pp. 7–13.

[2] S. Pasricha, N. Dutt, and M. Ben-Rondhane, “Fast exploration
of bus-based on-chip communication architectures,” in
Proceedings of CODES+ISSS, Stockholm, Sweden, September
2004, pp. 242–247.

[3] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor
real-time DSP,” in Proceedings of Globecom, November 1989.

[4] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker Inc., 2000.

[5] S. Sriram and E. A. Lee, “Determining the order of processor
transactions in statically scheduled multiprocessors,” Journal
of VLSI Signal Processing, vol. 15, no. 3, pp. 207–220, March
1997.

[6] M. Khandelia and S. S. Bhattacharyya, “Contention-conscious
transaction ordering in embedded multiprocessors,” in
Proceedings of the International Conference on Application
Specific Systems, Architectures, and Processors, July 2000,
pp. 276–285.

[7] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and
J.-S. Liu, “Probabilistic performance guarantee for real-time
tasks with varying computation times,” in Proceedings of
Real-Time Technology and Applications Symposium, 1995,
pp. 164–173.

[8] S. Hua, G. Qu, and S. Bhattacharyya, “Energy reduction
technique for multimedia applications with tolerance to
deadline misses,” in Proceedings of the Design Automation
Conference, June 2003, pp. 131–136.

[9] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs
for free,” in CODES/CASHE ’98: Proceedings of the 6th
International Workshop on Hardware/Software Codesign.
Washington, DC: IEEE Computer Society, 1998, pp. 97–101.

[10] C. L. McCreary, A. A. Kahn, J. J. Thompson, and M. E.
McArdle, “A comparison of heuristics for scheduling DAGs on
multiprocessors,” in Proceedings of International Paralel
Processing Symposium, 1994.

[11] J. Teich and T. Blickle, “System-level synthesis using
evolutionary algorithms,” Journal of Design Automation for
Embedded Systems, vol. 3, no. 1, pp. 23–58, January 1998.

[12] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor
architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 2, pp. 75–87, February 1993.

24

