
Centralized End-to-End Flow Control in a Best-Effort
Network-on-Chip∗

P. Avasare1, V. Nollet1, J-Y. Mignolet1, D. Verkest1,2, H. Corporaal3
1IMEC V.Z.W., Kapeldreef 75, 3001 Leuven, Belgium

2Vrije Universiteit Brussel and Katholieke Universiteit Leuven, Belgium
3Technical University Eindhoven, The Netherlands

ABSTRACT
Run-time communication management in a Network-on-Chip
(NoC) is a challenging task. On one hand, the NoC needs to
satisfy the communication requirements (e.g. throughput)
of running applications competing for NoC resources. On
the other hand, the NoC resources should be managed effi-
ciently while keeping additional management functionalities
minimal. This paper details a NoC communication manage-
ment scheme based on a centralized, end-to-end flow con-
trol mechanism deployed in a best-effort NoC. This scheme
comes at a very low resource (i.e. limited hardware and run-
time overhead) cost. We show that by using a flow control
mechanism it is possible, even in a best-effort NoC, to pro-
vide sufficient communication guarantees with respect to the
application requirements. Finally, we illustrate the applica-
bility of our approach for real-life multimedia applications.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-based Systems]:
Real-time and embedded systems; D.4.4 [Operating Sys-
tems]: Communications Management

General Terms
Algorithms

Keywords
Network-on-chip, Run-Time Communication Management

1. INTRODUCTION
In order to meet the ever-increasing design complexity,

future platforms will require a mixture of (heterogeneous)
processing elements integrated on a single chip, also termed

∗Work partly funded by the European Commission (IST-
AMDREL project IST-2001-34379), by the Flemish Gov-
ernment (GBOU-RESUME project IWT-020174-RESUME)
and Xilinx Labs, Xilinx Inc. R&D Group.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

as a System-on-Chip (SoC). Interconnecting these process-
ing elements (further denoted as tiles) will require a flexible
structure like a Network-on-Chip (NoC) [1, 2].

There is a challenge in designing the right NoC com-
munication (also denoted as traffic) management schemes.
Meaning that one should provide enough Quality-of-Service
(QoS) guarantees with respect to the application require-
ments, while minimizing the hardware/software resources
needed to enforce these requirements. In a NoC, providing
such guarantees with respect to communication throughput,
latency and jitter (variation in message delay) boils down to
managing the (potential) congestion in the NoC router and
providing a flow control mechanism. Typically congestion
is controlled by having a bandwidth reservation mechanism
that ensures a deterministic throughput and latency and
that simultaneously minimizes the jitter [4]. However, such
a scheme requires more complex NoC routers in addition to
having a run-time bandwidth allocation mechanism.

Our best-effort routers do not contain any functionality
for providing hard guarantees for e.g. message latency. How-
ever, as long as the network is not operating near its sat-
uration point, it is possible to provide an upper bound for
e.g. message latency [3]. To avoid this network saturation,
we use a message injection rate control mechanism. The
potential of such an approach was mentioned by Duato [3].

A flow control mechanism should ensure that a message
producer task does not produce more messages than the
message consumer task can handle. There are several ap-
proaches for handling this issue e.g. dropping the messages
or using credit-based flow control [4]. In our approach, we
show that, it is possible to just (temporarily) store the mes-
sages causing network congestion onto the network itself.
The resulting potential network congestion is then solved
by using a message injection rate control mechanism oper-
ated by an algorithm within the central operating system
(OS). In short, the central OS monitors communication at
every tile-NoC interface. Based on this information and its
platform-global view, the OS can limit/shape the traffic a
tile is allowed to inject into the NoC. This way, the OS can
match the communication rate of the data producer with
that of the data consumer (i.e. flow control) in order to
handle network congestion.

The main contribution of this paper is the description and
evaluation of a centralized NoC traffic management algo-
rithm based on a message injection rate control mechanism.
Furthermore, we illustrate the applicability and the perfor-
mance of our approach using an emulated NoC with real-life
multimedia applications.

17

The rest of this paper is organized as follows. Section 2
describes the NoC emulation platform. Section 3 details the
simulation model we built for our NoC traffic management
experiments. Section 4 explains the developed heuristic al-
gorithm that enables efficient NoC traffic management with
the simulated experiments. Section 5 presents the results
of applying this algorithm on our NoC emulation platform.
Finally, Section 6 presents the conclusions.

2. NOC EMULATION PLATFORM
This section details the architecture and capabilities of

our NoC emulation platform. A more in-depth description
can be found in [5, 6].

Our emulated packet-switched multiprocessor NoC is im-
plemented as a 3x3 bidirectional mesh linking a StrongARM
SA-1110 processor (206 MHz), present inside an iPAQ, to
an FPGA containing the slave processing elements and the
NoC (33 MHz clock). Our packet-switched NoC actually
consists of two independent NoCs. The data NoC is respon-
sible for delivering data packets, while the control NoC is
used for transferring OS-control messages (Figure 1). This
separation is vital to our traffic management scheme since
the control NoC provides a way to control the traffic even
in case of data NoC congestion.

Data
Router

Input Stats
Collector

Write Buffer Input Buffer

Processing Element

Injection
Rate

Injection Rate
Controller

Output Stats
 Collector

Msg out

Msg
Blocked

PE

Data
NIC

Control
NIC

Data NoC

Control NoC

Control
Router

Data Router

Msg In

Figure 1: Data and control NIC functionality.

All processing elements are interfaced to the packet-switched
data NoC by means of a data Network Interface Component
(data NIC). The main role of the data NIC is to buffer in-
put and output messages and to provide a high-level inter-
face to the data router (Figure 1). The data NIC is also re-
sponsible for collecting the local processing element message
statistics (i.e. number of messages sent, received, blocked,
etc.). Especially the number of blocked messages is impor-
tant: these messages potentially disturb other data traffic
passing through the same NoC link. Each tile also contains
a control Network Interface Component (control NIC). The
control NIC is responsible for providing the central OS with
the information (e.g. statistics collected in the data NIC) to
base its management decisions on.

The data NIC also implements an injection rate control

mechanism, allowing the OS to control the amount of mes-
sages the attached processing element can inject into the
data NoC. The injection rate parameters are passed on to
the data NIC from the OS via the control NIC.

This means the OS can limit the time wherein a certain
tile is able to send messages onto the network. This time
is called the send window of a tile. By setting the low (L)
and high (H) values for a tile on a NoC, the OS is able to

0 T

a.

L H

0 T

b.

L MH

0 T

c.

L MH

Send window, sending messages allowed

M

Figure 2: The size and location of ’send window’ is
specified by a low value (L), a high value (H) and a
modulo value (M).

describe a single send window within the whole send spec-

trum (Figure 2a). However, by also using the modulo value
(M), this single send window can be spread over the whole
send spectrum (Figure 2b, 2c). This second technique, fur-
ther denoted as window-spreading technique, is not intended
to limit the amount of messages injected into the NoC, but
rather to shape the traffic to achieve maximum throughput.
Note that the send windows of different producers that share
a link are allowed to overlap [5].

In our previous experiments with the platform, we con-
trolled the injection rate manually for controlling congestion
on NoC [5]. We found that, by using the window spread-
ing technique, NoC traffic was more evenly spread over time
resulting in sufficient throughput (close to the best-effort
network) and considerably less jitter. Moreover, a proper
window setting could hide the latency of the receiver side
and completely suppress blocking on the network.

Finding these optimum window values manually for a set
of simultaneously running applications will be difficult, es-
pecially due to the inherent dynamism present in real-life
multimedia applications. Hence, it requires an adapted al-
gorithm that monitors the network conditions and that cal-
culates and sets the optimal send window values wherever
and whenever necessary.

3. TRAFFIC CONTROL EXPERIMENTS
Due to the long exploration turnaround cycle when di-

rectly working on our NoC emulation platform, developing
a traffic management scheme using the platform is not a vi-
able option. Hence, we developed a simple simulation model
of our platform for the algorithm exploration. This section
first describes the simulation model and further details the
traffic management exploration experiments.

3.1 Simulation Model

Computing Resource:
Producer

Computing Resource:
Consumer

Injection Rate
Controller

Statistics
Collection

Data NoC

Operating System
Control NoC

Routers Routers

Figure 3: NoC traffic management simulation model

The simulation model is built on top of the OMNET++
[7] network simulation environment. This model (Figure

18

3) contains four distinct blocks: (i) two producers and two
consumers that communicate over the NoC, (ii) a control
NIC and a data NIC for every producer and consumer to
enable statistics collection and injection rate control, (iii) a
set of data NoC routers with round-robin scheduling and,
(iv) a central OS to steer the traffic management.

The producer generates data messages which pass through
the data NIC before arriving in the data network. The al-
lowed rate of injection for these messages is controlled by the
data NIC which gets the injection parameters from the cen-
tralized OS through the control NIC. The windowing mech-
anism (Figure 2) is used for achieving this communication
control. The data NoC takes in these messages from the pro-
ducers in a round-robin fashion and forwards them to their
respective consumers. The OS meanwhile periodically col-
lects the message traffic statistics at the different consumer
control NICs in order to take traffic management decisions.
Note that in reality (i.e. on the emulation platform) the link
between a producer and a consumer can span multiple NoC
hops. However, since the traffic management works on an
end-to-end basis (i.e. retrieving information at the consumer
side, while controlling injected traffic at the producer side),
multiple hops can be abstracted as a single link (Figure 3).

3.2 Experiments With The Simulation Model
This section details validation and experimentation with

our simulation model.
First, the simulation model was validated using the ob-

servations (in terms of throughput and blocking) gathered
from the experiments performed on the emulation platform
[5]. In addition, many simulation model parameters were
picked up from the same experiments e.g. for achieving in-
jection rate control mechanism (Figure 2), the whole send
spectrum is divided into window-slots, each 100 µs wide.
The OS sampling rate for gathering the NoC communica-
tion statistics was chosen as 50 ms (more than a period of
a frame for a typical multimedia application running at 25
frames per second). As a QoS requirement, the user specifies
the required communication bandwidth between a producer-
consumer pair for the simulated user application.

The model is used to study two important aspects of
NoC communication. First is to study effects of blocking
on throughput and jitter on the NoC and the second aspect
is about dealing with such a blocking, in order to achieve
the user-specified QoS throughput and minimize jitter.

For studying the first aspect, we model one communicat-
ing producer-consumer pair. This model is then extended
with another producer-consumer pair to estimate the effects
on throughput due to sharing common NoC resources. In
the second aspect of dealing with this blocking, we use the
injection rate control mechanism to control blocking.

For the experiments, the producer is modeled in two modes.
In the first mode, the producer generates messages accord-
ing to a (statistical) normal distribution, while in the second
mode the producer generates periodic bursts. The first mode
represents a general case of a producer, whereas the second
mode resembles the communication of multimedia related
applications. For example, a Motion-JPEG decoder at 25
frames per second will generate a burst of data messages at
every frame i.e. at every 40 ms.

The initial experiments brought forward two important
observations. First, blocking on the network indeed dras-
tically affects throughput and introduces non-deterministic

jitter. Second, if the NoC traffic is kept at the level just be-
low where blocking starts, the network resources are utilized
at their maximum (i.e. throughput is maximum). This point
where the blocking starts depends on various factors such
as the difference between consumer-producer input-output
rates, input-output buffer sizes in consumer-producer, mes-
sage buffer spaces in routers and the routing algorithm.
Hence, we developed a run-time heuristic algorithm that
uses the injection rate control mechanism to minimize the
amount of blocking while retaining a maximum throughput.

4. TRAFFIC CONTROL ALGORITHM
Consider one producer-consumer pair. The algorithm, de-

tailed in Algorithm 1, starts out with initial window values
(line 1). These initial values are based on the user-specified
throughput requirement and the measured throughput of
other communicating tasks sharing a known NoC bandwidth
over a common link.

Algorithm 1 Finding send window values for a tile

1: NewWin = StartWin;
2: loop
3: SetWindow(NewWin); // set only if values change
4: CurrWin = NewWin;
5: WaitPeriodAndGetStats(CurrStats);
6: if CurrStats.Blocking > THRESHOLD then
7: if FoundOptimumWinV alues = true then
8: FoundOptimumWinValues = false;
9: NewWin = StartWin;

10: Reset(BestWin, BlockingWin);
11: else {Yet to find optimum send window values}
12: NewWin = Reduce(CurrWin);
13: BlockingWin = CurrWin;
14: end if
15: else if CurrStats.Thruput < REQUIRED then
16: NewWin = Increase(CurrWin, BlockingWin);
17: end if
18: if WinStable(CurrWin,NewWin) = true then
19: if CurrStats > BestStats then
20: BestWin = CurrWin; BestStats = CurrStats;
21: end if
22: if CanSpreadWin(CurrWin) = true then
23: NewWin = Spread(CurrWin);
24: else {Exhausted window spreading}
25: NewWin = BestWin;
26: FoundOptimumWinValues = true;
27: end if
28: end if
29: end loop

Periodically, the OS collects traffic information (line 5).
The OS checks if the reported amount of blocked messages
exceeds a certain threshold value (line 6). If so, the algo-
rithm will have to (re)calculate the optimal window values.
This mainly involves reducing the size of the send window
of the producer until blocking drops below the threshold.

If the amount of blocking does not exceed the threshold
value but the throughput is lower than required, then the
send window size will be increased as long as the new window
size remains smaller than the blocking window size (line 16).
As soon as the window values stabilize (i.e. converge, line
18), the algorithm will spread the send window using the

19

window modulo (M) value. For each modulo value, the send
window low (L) and high values (H) at which NoC blocking
starts are determined. After maximally spreading the send
window over the send spectrum (line 22), the window values
that deliver the best communication in terms of throughput
and blocking are chosen (line 25).

The efficiency of this algorithm is measured in terms of
two key factors: the first regarding the amount of blocking,
throughput and jitter on the NoC and the second regarding
the amount of run-time resources that the algorithm will use
for computing the injection rate control window values.

In our simulations, it takes around 16 iterations for the
algorithm to find the optimum send window values for both
producers sharing a NoC link. By setting the producer’s
window values obtained from the algorithm, the total through-
put is very close to the one achieved with the best effort
service. At the same time our traffic management scheme
completely eliminates NoC blocking in contrast to a pure
best-effort service, except when (re)calculating the send win-
dow values. Furthermore, when the blocking on the NoC is
completely eliminated, jitter becomes minimal.

The occasional exceptional blocking is either caused by
additional traffic on the NoC generated by other producer(s)
or due to a change in burst characteristics of a producer.
Typically this will happen when user starts a new applica-
tion or changes requirements of current application. At such
times, temporary QoS violations could be accepted by user.

5. ALGORITHM APPLICATION
In order to test viability of the above algorithm in real-life

applications, we inserted the algorithm inside our NoC plat-
form OS running on a StrongARM (206 MHz) based hand-
held device. We measured on our NoC emulation platform
(running at 33 MHz clock-speed) that at every sampling
time, the OS takes 60µs to gather communication statistics
from a tile. From these message statistics and the current
send window values, the algorithm calculates, at every sam-
pling iteration, new send window values in 65µs on an aver-
age, with a minimum of 12µs and a maximum of 120µs. In
case the algorithm calculates different new window values
than the current ones, the OS needs to modify the injection
rate at the producer tile. This operation for setting window
values on a tile takes 57µs on our platform. Totally, incor-
porating such a traffic management inside our NoC platform
OS takes on an average 182µs per tile at every sampling i.e.
every 50ms in our case.

Master ISP
SA-1110

Video decoder communication

Synthetic appl. communication

2

IDCT
8

GEN
7

54

HUF
10

I/F
3

SNK
 6

Figure 4: Emulation platform running MJPEG

Figure 4 shows our case study application running the
MJPEG video decoder [5]. It is composed of four tasks
running concurrently. Two of these tasks, the sender and
the receiver, run on StrongARM (connected through tile 3).
Two other tasks are hardware blocks: a task that performs

the Huffman decoding and dequantization (HUF task on tile
1) and a task that performs a 2D-IDCT and a YUV to RGB
conversion (IDCT task on tile 8). Additionally, we have
message generator (GEN task on tile 7) and message sink
(SNK task on tile 6) tasks that are synthetic applications
generating and consuming messages at a constant rate. First
the MJPEG application is run on the NoC and then GEN
and SNK tasks are inserted on tiles 7 and 6 such that both
applications will share the link between tiles 7 and 6.

Initially, after inserting GEN and SNK tasks, the NoC is
run without any traffic management. The MJPEG decoder
throughput reduces significantly due to heavy blocking on
the shared link (between tiles 6 and 7). At this point, we
switched on our algorithm inside the OS. We found that
the additional CPU load overhead inside the OS due to the
algorithm insertion is negligible (less than 1%). Further, the
algorithm converges to optimum window values such that
the required throughput for MJPEG application is achieved
by reducing injection rate of the GEN task. Compared to the
simulated results where the algorithm converges within 800
ms (16 iterations), on our NoC platform the algorithm takes
on average one second (19-21 iterations) to find optimum
window values for IDCT and GEN tasks sharing a link.

The main reasons for this significant difference between
the simulation time and the actual measured time is the
bursty nature of MJPEG communication. For such bursty
traffic, the user-specified throughput requirement proves to
be insufficient to calculate a good starting set of window val-
ues within the algorithm. Calculating these initial window
values needs to take into account the burst characteristics
such as periodicity, width and magnitude.

6. CONCLUSIONS
This paper details a centralized algorithm for handling

communication management in a Network-on-Chip. In essence
it is a centralized, low-cost end-to-end flow control algorithm
based on an injection rate control mechanism. Its goal is to
maximize communication throughput (with respect to the
user’s specification), while minimizing jitter. The presented
mechanism provides a weak form of QoS, but its main ad-
vantage is that it comes at a low cost (i.e. low hardware
complexity, low run-time overhead), while it proves to be
good enough for the NoC platforms targeting multimedia
applications. In our case study with one shared link on a
3x3 tile NoC, less than 1% of the StrongARM execution time
was required to implement the management algorithm.

7. REFERENCES
[1] L. Benini, G. DeMicheli, ”Networks on Chips: A new SOC

paradigm?”, IEEE Computer magazine, January 2002.
[2] W. J. Dally, B. Towles, ”Route packets, not wires: on-chip

interconnection networks”, DAC 2001, p684-689.
[3] Jose Duato, S. Yalamanchili, L. Ni, ”Interconnection

Networks”, Morgan Kaufmann Pub., 2002, p428-431.
[4] A. Rădulescu, K. Goossens, ”Communication Services for

Networks on Chip”, Book chapter in ”Domain-Specific
Processors : Systems, Architectures, Modeling, and
Simulation”, Marcel Dekker Pub., 2003.

[5] V. Nollet, et al., ”Operating System controlled
Network-on-Chip”, DAC 2004, p256-259.

[6] T. Marescaux, et al, ”Runtime Support for Heterogeneous
Multitasking on Reconfigurable SoCs”, Integration the
VLSI journal (Elsevier), Vol 38, Oct. 2004, p107-130.

[7] OMNET++: a discrete event simulator system,
http://www.omnetpp.org

20

