
A Unified HW/SW Interface Model to Remove
Discontinuities between HW and SW Design

Aimen Bouchhima, Xi Chen, Frédéric Pétrot, Wander O. Cesário, Ahmed A. Jerraya
TIMA Laboratory

46 Avenue Félix Viallet
38031 Grenoble CEDEX, France

+33 476 57 43 01
Aimen.Bouchhima@imag.fr

ABSTRACT
One major challenge in System-on-Chip (SoC) design is the
definition and design of interfaces between hardware and
software. Traditional ASIC designer and software designer model
HW/SW interface twice. Using two separate models introduces a
discontinuity between hardware and software. This paper
introduces a unified HW/SW component model to describe
different parts of HW/SW interface at different abstraction levels.
The benefits of using the proposed model are two fold: first, it
provides a single model to present system design from abstract
specification to mixed HW/SW implementation and second, it
enables full system simulation at different abstraction level during
refinement flow.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features
B.4.2 [Input/Output and Data Communications]: Input/Output
Devices

General Terms
Algorithms, Design, Standardization, Languages

Keywords
Hardware/Software Interfaces, Hardware dependent Software,
Embedded Systems

1. INTRODUCTION
90% of new ASICs already include a CPU in 130nm technology.
Multimedia platforms (e.g. Nomadik and Nexperia) are already
multi-processor system on chip (SoC) using different kinds of
programmable processors (e.g. DSPs and microcontrollers) [1].
Heterogenfeous cores are exploited to meet the tight performance
and cost constraints. This trend of building heterogeneous multi-
processor SoC will be even accelerated. SoCs will be composed
of multiple, possibly highly parallel processors for applications

such as mobile terminals, set top boxes, game processors, video
processors, and network processors.
A major challenge to effectively design such systems is to master
their inherent complexity within an ever shrinking time-to market
window while meeting stringent resource constraints (cost, power,
area etc).
Face to this challenge, classic SoC design flows seem to reach
their limits. Such flows rely on a sequential hardware/software
design approach where complete hardware architecture should
first be developed before software could be programmed on top of
it. This implies several limitations, which could be summarized in
the three following points:
(1) An inherently long design cycle especially if redesign loops

have to be performed before reaching acceptable design.
(2) Because software is developed --at a low abstraction level-- in

a hardware dependent way, sharing such software across
several designs is considerably limited.

(3) Since hardware/software integration is performed late in the
design flow, the exploration of architectural trade-offs turns to
be a very tedious and time consuming process. Actually this
late integration denotes a gap in the design of such
hardware/software systems. This is mainly due to the absence
of a unified model that continuously capture hardware and
software at different abstraction levels during the design flow.

Based on these observations, an “ideal” design flow that targets
multiprocessor SoC should allow:
(1) Concurrent HW/SW design to shorten the design cycle.
(2) Software component reuse to master software complexity and

reduce development cost and effort.
(3) HW/SW integration at multiple abstraction levels to allow

effective exploration of HW/SW architecture trade-offs.
The solution for the two first requirements clearly goes through
relaxing the tight dependency between hardware and software
design. Such practice is already a rule of thumb in general
purpose computer design where hardware and software seem as to
belong to completely different worlds. In fact, in order to design
their applications, software programmers usually rely on thick
abstraction layers that make hardware appear as a perfect
machine. On the other hand, hardware may be independently
developed as long as it complies with a set of fixed, software-
defined conventions.
This software-centric design approach, completely decouple
hardware and software development in favour of productivity and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009...$5.00.

159

extensive component reuse. These are clearly not the unique
issues in embedded context, where satisfying the resource
constraints and meeting application performance are equally
important. Applying the computer design approach to the SoC
domain -without considering SoC specificities - will result in
lower-quality, over sized (expensive) and non-competitive
designs.
Recently, the platform based design (PBD) paradigm emerged as
the solution that basically allows to adapt the general purpose
computer design approach to the SoC context [2] [3]. This is
achieved mainly through the concept of application domains or
classes. An application domain is a set of applications that share
similar characteristics. For each application domain, corresponds
a system platform that may be considered as a generic architecture
family or template. A physical architecture is then viewed as a
particular instance of this platform, targeting a specific application
inside the application domain.
The joint generalization/differentiation concept (platform/
instance) allows a trade-off between design reuse and productivity
on one hand, and efficiency on the other hand. Reuse is achieved
via the common features shared between applications belonging to
the same domain, while efficiency is ensured by customizing the
architecture instance to the particular application needs.
Although they succeed to meet the two first requirements (design
concurrency and component reuse), to the best of our knowledge,
conventional platform based design flows still have not proposed
any solution to the discontinuity problem between hardware and
software design. We believe that bridging such design gap is a key
issue in order to make full benefit of concurrent hardware
software design flow and to further reduce design costs and
efforts.
Bridging the design gap means considering hardware/software
design at several abstraction levels, starting from abstract
hardware/software specification and arriving to detailed low level
implementation. The validation of the entire system at each
abstraction level is a key enabler for both efficient architecture
exploration and early error/bug detection/correction. For instance,
evaluating the effect of one particular RTOS scheduling policy
while taking into account the on-chip network routing algorithm
is an example of typical design decision that should be performed
as early as possible. Similarly, choosing to delegate a given
operating system functionality to a dedicated hardware component
is better done at early design stage, i.e. before a detailed
implementation of either architectures is necessary. The late
evaluation/validation of such architectural decisions – that is,
once a particular architecture instance is completely developed - is
a tedious and time consuming practice and may results into
complete redesign cycles and/or lower-quality designs.
In this paper, a unified HW/SW interface component model is
advocated to remove the discontinuity between hardware and
software sides. The proposed model allows capturing the
hardware software interface at different abstractions level during
the whole design flow and provides an executable environment to
perform global design space exploration. The component based
concept is used to promote design reuse at each abstraction level
within the context of a concurrent HW/SW design flow. We show
how this could effectively address the reuse of embedded software
components in a platform based context without incurring the
excessive overhead of thick software abstraction layers.

The rest of the paper is organized as follows: section 2 discusses
some in-depth issues related to the concept of hardware dependent
software in SoC design. The proposed design flow is introduced
in section 3. Section 4, describes the proposed unified HW/SW
model and shows an application of this concept to model a
complete HW/SW system.

2. HARDWARE-DEPENDENT SOFTWARE
IN SOC DESIGN
The increasing complexity of multiprocessor SoC has put many
constraints on the way embedded software is being developed. In
fact, unlike general purpose platforms with regular and
homogeneous architectures, multiprocessor SoCs rather exhibit
heterogeneous and irregular architectures [1]. As a matter of fact,
programming such devices generally turns out to be a low level
programming, where a deep knowledge of the underlying
hardware architecture, in its smallest details, is required in order
to achieve the desired performance. Of course, from a software
perspective, such a strong dependency on the the underlying
hardware architecture has many disadvantages. First, it implies a
long and sequential design cycle as software designers are forced
to wait until complete hardware architecture is made available.
This gets even worse if modifications to this initial architecture
are to be made, generally leading to a redesign cycle of a major
part of the developed software. Second, this makes the validation
and debug of the developed software a tedious and error-prone
process due to its intricate dependency upon subtle hardware
features. Last, and not least, the reuse of software components is
considerably limited as different software IPs must be adapted to
different target architectures.
At the heart of the problem, lays this low level programming
abstraction that serves as basis for embedded software
development. What we mean by low level programming
abstraction is not necessarily the use of assembly languages
(although this still represents a significant part in current
embedded software designs). It is rather the way application
programmers are exposed to the bare hardware when designing
their systems. This may include, for instance, some low level C
code that manipulates few bits in a particular register of a memory
mapped I/O device.
The Hardware dependent software (or HdS) concept is introduced
to exactly tackle the disadvantages of such low level programming
practice. The exact meaning of HdS depends on the context where
it is used.
In general purpose computer domain, HdS is already a well
known concept. Examples include windows NT Hardware
Abstraction Layer (HAL), Linux Universal Device interface
(UDI), Simple DirectMedia Layer (SDL) etc. This generally
represents a thick software layer that completely hides the
underlying hardware through a fixed standard application
programmer interface (API). Furthermore, since it generally
already implements many design decisions (policies), such
abstraction layer used to be tightly coupled to the operating
system.
In platform based design, each application domain may have it
own HdS API, reflecting the specificities of each domain
(platform). The HdS layer includes those “low level” software
functionalities whose implementations depend directly upon the
underlying hardware architecture instance. This may include for

160

instance device drivers, boot code, DSP-specific algorithms, and
possibly parts of the operating system (interrupt management,
context related operations etc). Inside the same domain, software
designers could rely on the fixed HdS API to develop their
applications, possibly reusing pre-designed elements at the
operating system or/and higher levels. This basically structures
embedded software into two main layers (Figure 1.a): one is
hardware dependent (HdS), the other is hardware independent
(HiS). Such fixed partitioning of software within platform based
design is likely to be a major source of inefficiency and may
therefore seriously limit the effectiveness of the approach,
especially in most demanding applications.

HW Platform instance

Fixed HdS API

OS

Software Platform
(drivers, boot, OS , ..)

HdS

HiS Middelware

Application

HW Platform instance

HaS

Application

Platform-specific component

Instance-specific component

HiS : hardware-independent software
HdS : hardware-dependent software

HaS : hardware-aware software

(a) (b)

Middel
ware

OS

HdS

Flexible HdS API

Figure 1. HdS concept (a) in classic platform based design
(b) in the proposed approach

To tackle the inefficiency problem while preserving software
reuse, the HdS API has to be made flexible, i.e. customizable
through specific services that are dependent upon the underlying
hardware platform instance. In Figure 1b, this is allowed by using
a component model across the different software layers up to the
application. In the figure, dashed elements correspond to
components that are tightly dependent on the specific architecture
instance. Note that such components may be used not only inside
the HdS layer but also in upper software layers. We talk about
hardware aware software (HaS) instead of hardware independent
software. The mechanism used to ensure the coherency of the
obtained software design is discussed in subsequent sections.

3. HW/SW INTERFACE ABSTRACTION
3.1 HW/SW interface concept
In order to allow for concurrent HW/SW design, we need abstract
models of both software and hardware components. Ideally one
would like to start with a set of SW tasks communicating with a
set of HW subsystems (figure 2a). This could be viewed as an
abstract HW/SW specification of the application. Because
software components run on processors, the abstraction needed to
describe the interconnection between software and hardware
components is totally different from the existing abstraction of
wires between hardware components as well as the function call
abstraction used to describe hierarchy in software. We simply

refer to it as abstract HW/SW interface (figure 2b). The HW/SW
interface needs to handle two different interfaces: one on the
software side using API and one on the hardware side using wires.
This heterogeneity makes HW/SW interface design very difficult
and time-consuming because the design requires the knowledge of
both software and hardware and their interaction. Once refined,
the abstract HW/SW interface eventually results in a set of
heterogenous subsystems including CPU subsystem, HdS and HW
adaptation (figure 2c).

SW tasks

HW
subsystem

SW tasks

HW
subsystem

(a)

Abstract
HW/SW
Interface

(b)

SW tasks

HW
subsystem

HdS

(c)

CPU
subsystem

SW tasksSW tasks

HW
subsystem

HW
subsystem

SW tasks

HW
subsystem

(a)

Abstract
HW/SW
Interface

(b)

SW tasks

HW
subsystem

HdS

(c)

CPU
subsystem

Figure 2. Evolution of abstraction levels in chip design (a)
Implicit HW/SW interfaces, (b) Explicit abstract HW/SW

interfaces, (c) HW/SW interfaces implementation

3.2 Removing discontinuities is SoC design
As stated previously, the discontinuity observed in classic SoC
design flows is due to the separate models for hardware and
software components. This discontinuity prevents from
performing global design space exploration and validation since
early design stages and leads to low quality designs and
unacceptable time-to-market delays.
Using a unified HW/SW model during different steps of design
flow removes this discontinuity and enables seamless design
process for both hardware and software from functional
specification to RTL implementation. Additionally, being
executable, the unified model allows for multi-level validation
and exploration of the entire design.
Figure 3 illustrates the proposed design methodology using the
unified hardware software approach. This flow starts with a
system specification using some functional model, e.g. Task
Graph (TG). The functional model describes the algorithm for the
system behavior. Instead of designing the SoC directly from the
functional model, a two-step method is widely accepted [4]. The
first step includes high-level architecture design and task level
HW/SW partitioning, and the result is an abstract architecture
model of SoC. In this model, there are three basic elements:
modules (software and hardware), global communication
interconnects and abstract interfaces. It is a high-level SoC model,
in which the details of HW/SW interface are abstracted. The
second step is to implement each element described in this
abstract model. The benefits of the two-step SoC design method
include enabling system architecture exploration and dividing the
whole SoC design into several simpler independent design steps.

161

Hardware and software modules are separated by abstract
interfaces. These need to be refined through embedded software
design and hardware design. Some of the modules can use pre-
designed implementations according to the task level partitioning.

System specification

High level
architecture design

HW/SW interface generation
- CPU subsystem design
- Hardware-dependent software

design

Back-end hardware prototype

SoC

HW Module
design

SW module
specification

HW/SW partitioning
at task level

HW module
specification

Embedded
SW design

Combined Architecture/Algorithm Model

HW/SW
interface

exploration

Abstract HW/SW Interface
- API for SW modules
- abstract interfaces for HW modules
- CPU subsystem specification

Figure 3. Proposed HW/SW interface design flow

With the support of a component library, HW/SW interfaces can
be designed using a systematic method and a HW/SW interface
generation tool (see Figure 4). The proposed method generates the
HW/SW interface by selecting, configuring and integrating
components in the component library. Hardware-dependent
software and CPU subsystem are thus generated automatically.

HdS

CPU subsystem

Component
selection

Component
configuration
Component
integration
Component
integration

HW/SW interface
generation tool

HW/SW Interfaces
component

library

Abstract
HW/SW interface

Hardware interconnectes

Application software

Application software

Hardware interconnectes

HdS

CPU subsystem

Component
selection

Component
configuration
Component
integration
Component
integration

HW/SW interface
generation tool

HW/SW Interfaces
component

library

Abstract
HW/SW interface

Hardware interconnectes

Application software

Application software

Hardware interconnectes

Figure 4. Needed HW/SW interface generation tool.

The key issue for the success of such a model is the definition of a
unified model able to represent both the HdS and the CPU
subsystem. A combined HdS-CPU refinement method is
presented in [9].

SW tasks

HW
subsystem

API

Wires

SW tasks

HW
subsystem

API

Wires

Figure 5. Unified HW/SW Model using the service-based

model

4. MODELING HW/SW INTERFACES
USING SERVICE BASED COMPONENT
MODEL
In a service based component model, the basic concepts are
components, services and service dependency. Figure 5 shows an
example of service based component model. In this figure,
rectangles, circles and arrows correspond to components, services
and service dependency respectively. Extensive description of
using this model for HW/SW interfaces is given in [5] [6]. This
section will only give an example to show how HW, CPU and
software can be described using the same model.
The design of CPU subsystem and hardware-dependent software
is tightly coupled. We present a very simple HW/SW interface
example shown in Figure 6 to illustrate the link between HdS and
the CPU subsystem. As shown in Figure 6(a), the HW/SW
interface is modeled using the unified service-based component
model [5], in which there are three hardware components, i.e.
CPU, MEMORY, BUS, and one software component, i.e.
MEMORY_IO. The BUS is the communication component whose
service ports connect only with hardware components. The
MEMORY represents a special kind of peripheral that provides
service ports for data store/retrieve. The CPU provides its
instruction-set as service port to connect with software
components. The MEMORY_IO HdS component provides two
software services, i.e. memory_put and memory_get. Figure 6(b)
shows a part of the XML-based description for this component.
Its implementation requires the instructions provided by the CPU.
Unlike the load/store CPU instructions, which get/put a fixed data
type in the memory, the service provided by MEMORY_IO can
use a configurable data type when accessing the data in memory.
This is done by specifying the date type in the MEMORY_IO_
IMPLEMENTATION definition.

162

<itemdef name="MEMORY_IO">
<typeref base="COMPONENT"/>
<value>

<value name="declararion" access="ref"
data="MEMORY_IO_DECLARATION"/>

<value name="implementation" access="ref"
data="MEMORY_IO_IMPLEMENTATION"/>

</value>
</itemdef>
<itemdef name=" MEMORY_IO_DECLARATION ">
<typeref base="DECLARATION"/>
<value>

<value name="description" access="value" data=""/>
<value name="required">

<value access="value" data="ISA"/>
</value>
<value name="provided">

<value access="value" data="memory_put"/>
<value access="value" data="memory_get"/>

</value>
</value>

</itemdef>
<itemdef name=" MEMORY_IO_IMPLEMENTATION ">
…

(a) HW/SW interface (b) XML-based description of MEMORY_IO

CPU MEMORY

BUS

ISA

MEMORY_IO

memory_put memory_get

Hardware-
dependent
software

CPU
subsystem

Hardware interconnects

Application software

bus_access bus_access

CPU MEMORY

BUS

ISA

MEMORY_IO

memory_put memory_get

Hardware-
dependent
software

CPU
subsystem

Hardware interconnects

Application software

bus_access bus_access

Figure 6. Example of hardware-dependent software and a

simple CPU subsystem

5. CONCLUSION
In conventional HW/SW codesign approaches [7] [8], designers
start from a system specification that captures the functionality of
their design in a formal way. This formal specification is then
(automatically) refined to a final architecture, generally composed
of hardware and software elements. Although they have the
advantage of being fully automated and guaranteeing the
correctness of the generated architecture with respect to the initial
specification, such approaches suffer from limitations that restrict
their effective use. These limitations are mainly related to the
restrictive assumptions that have to be satisfied by both
applications and target architectures, which make these
approaches hardly scalable to complex, real-life applications.
Having a unified model to describe both hardware and software
components at different stages of a design flow is, in our view, a
key enabler toward an effective reuse of both hardware and
software components. Moreover, we believe that this mixed level
component integration, put in a concurrent HW/SW design flow
context, is able to achieve higher quality designs while
considerably shortening the total design cycle.

A key feature of the proposed methodology is the ability to
perform global validation and design space exploration of the
entire HW/SW design at different abstraction levels [5].
Another key feature is the ability of automatically selecting,
configuring and composing different components (from different
libraries) in order to build up the complete system [9].

6. REFERENCES
[1] A. A. Jerraya, W. Wolf, « Multiprocessor Systems-on-

Chips », Morgan Kaufmann Publishers, ISBN 0-12-385251-
X, September 2004.

[2] A. Sangiovanni Vincentelli, «Platform-based Design»,
EEDesign of EETimes, February 2002.

[3] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: orthogonalization of
concerns and platform-based de-sign. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems

[4] Keutzer, K., Malik, S., Newton, A. R., System Level
Design: Orthogonolization of Concerns and Platform-Based
Design, IEEE Trans. Computer-Aided Design of Integrated
Circuit and Systems, vol.19, no. 12, Dec.2000.

[5] A. Sarmento, L. Kriaa, A. Grasset, M.-W. Youssef, A.
Bouchhima, F. Rousseau, W. Cesario, A.A. Jerraya,
“Service Dependency Graph, an Efficient Model for
Hardware/ Software Interfaces Modeling and Generation for
SoC Design”, ISSS 2005, New York, USA, 19-21
September 2005.

[6] M.Zitterbart, “A Model for Flexible High performance
Communication Subsystems”, IEEE Journal on selected
areas in communication, VOL. 11, NO, 4, MAY 1993.

[7] G. De Micheli, R.K. Gupta, Hardware-Software Codesign ,
Proceedings of the IEEE, V85, No3, 1997.

[8] W. Wolf, A Decade of Hardware/Software Codesign , IEEE
Computer, 2003.

[9] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, A.A.
Jerraya, “Using Abstract CPU Subsystem Simulation Model
for High Level HW/SW Architecture Exploration”, ASP-
DAC 2005 proceedings, 18-21 January 2005, Shanghai,
China, 2005.

163

