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ABSTRACT

Embedded devices like smartcards can now run multiple interact-
ing applications. A particular chalenge in this domain is to dy-
namically integrate diverse security policies. In this paper we show
how a framework based on a concise formal model lets us securely
customize a payment card equipped with a programmable chip.
We present policy automata, a forma model of computations that
grant or deny access to a resource. This model combines defea
sible logic with state machines, representing complex policies as
combinations of simpler modular policies. We use the model in a
framework for specifying, merging and analyzing modular policies.
This framework is implemented as Polaris, a tool which analyzes
policy automata to reveal potential conflicts or redundancies, and
compiles automata into Java Card applets.

Categories and Subject Descriptors

C.3[Computer SystemsOrganization]: Special-Purpose and App-
lication-Based Systems—real-time and embedded systems, smart-
cards; D.2.4 [Software Engineering]: Software/Program Verifica
tion—formal methods; model checking; D.2.11 [Software Engi-
neering]: Software Architectures—domain-specific architectures;
languages (e.g., description, interconnection, definition); F.4.3[Ma-
thematical Logic and Formal Languages]: Formal Languages

General Terms
Design, Theory, Verification

Keywords
Policy Integration, Model Based Design, Smartcards, Java Cards

1. INTRODUCTION

Embedded computer systems are now routinely deployed in a
wide range of engineered products such as appliances, medica
devices, communication devices, and automobiles. Increasingly,
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embedded devices, such as smartcards and cell phones, are pro-
grammable, and offer an open application programming interface
(API) for software applications. Whilethis offers the user the much
coveted flexibility to customize and enhance functionality, it un-
derscores the need for formal assurances about system operation
as many embedded devices are used in safety-critical and security-
critical contexts. We believe that the model -based design paradigm,
with its promise for greater design automation and formal guaran-
tees of reliability, is particularly relevant for this purpose. In this
paper, we describe a model-based approach to adding policies to
payment cards.

Smartcards are plastic cards, usually no larger than a credit card,
that contain a tamper-resi stant embedded processor. They are com-
monly used for identification, payment, and access control. Java
Cards are programmable smartcards with an API that supportsare-
stricted subset of Java (see j ava. sun. coni product s/
j avacar d). The GlobalPlatform architecture provides an exten-
sion framework for these cards, allowing installation of certified ap-
plets that run in restricted contexts or security domains (see Www.
gl obal pl at f orm or g). This enabling technology, together
with the obvious need for assurances of security and integrity for
downloading applications on such cards, prompted us to explore
formal and model-based devel opment.

We focus on a specific form of programs called policies. A pol-
icy specifies whether or not a transaction should be approved, pos-
sibly based on the history of transactions. Sample policies are “the
total amount of money spent during the past month should not ex-
ceed a specified limit,” and “transactions involving a specified list
of emergency services are always allowed.” These policies can be
written by multiple parties, and installed at any time. Whilethis of -
fersflexibility, it is necessary to detect and resolve conflicts among
different policies. Also, a new policy needs to be integrated with
existing policies, possibly with checks for redundancy since on-
card memory islimited.

We therefore need to solve the following problem: how can we
create and integrate modular security policies securely and reliably
in such away that the policies can function in an embedded envi-
ronment?

The Java Card platform gives us the basic ability to combine
policies which are implemented as applets written in Java. We
could simply writeour policiesin Javaand use existing Java-specific
tools (for example, Javaeditors, type-checkers and model -checkers)
to assure ourselves that our policies will behave as intended. This
is unsatisfactory for the following reasons:

e A policy developer should concentrate on the core function-
ality of a policy—guarding access to a resource—instead of



worrying about the byte-level manipulations and system calls
required by the Java Card. Developers should work with a
more abstract representation of policies.

e General purpose Java tools cannot exploit domain-specific
knowledge to make validating a policy more efficient. Nor
are general purpose tools aware of the specific problems that
apolicy developer is concerned with.

Our solution is a model-based approach in which we use a new
formal model, policy automata, to define and reason about our se-
curity policies. This formal model concisely expresses the behav-
ior with which we are concerned, while leaving other functionality
to be supplied by an automatic code generator. This focus on ac-
cess control and policy integration allows the developer to concen-
trate on correctly implementing the core functionality of an applet.
Similarly, analysis tools can be optimized to check domain-specific
properties. A clear formal semantics makesit easier to reason about
the behavior of a policy. This approach therefore retains the ability
to integrate modular policies, but it allows usto do so securely and
reliably. Finaly, the model is designed so that policies can easily
be trandated from a formal notation to Java Card applets, so the
model is suitable for embedded devices.

A policy automaton is an extended finite-state machine that ex-
amines the requested transaction and votes on whether it should
be accepted. Votes are written as rules in defeasible logic that es-
sentially say which outcome the policy automaton prefers and how
strong that preference is. The domain of votes is also equipped
with a decision rule that combines the votes of al the policy au-
tomata and determines whether to approve the transaction, reject it,
or declare a conflict. The individua policy automata update their
states based on this global resolution. Using this framework one
can specify policiesin amodular fashion. Note that the constraints
imposed by these policies are non-monotonic (as policies are added
approval of a transaction can switch from yes to no and back to
yes), and stateful (approval of atransaction depends on decisions
on previous transactions). We show that static techniques such as
model checking can be used to detect potential conflicts among a
set of policy automata, and also to check whether a new policy is
redundant with respect to a set of existing policy automata. Our
policy description framework is relevant in other contexts such as
firewall policies, where multiple parties wish to independently add
rules governing approval of access requests.

After presenting our policy description language, we describe a
prototype implementation of our approach in the tool Polaris. Po-
laris provides agraphical editor for specifying policies as extended
state machines, and an enumerative reachability checker to detect
conflicts and redundancy. We have modified the development kit
from Oberthur Card Systems that allows us to install applets onto
Java cards. To install a policy onto the card, Polaris compiles a
policy automaton into a Java package, instals it on the card, and
registers the new policy with the manager routine that polls all the
registered policies before deciding on atransaction. We believe that
this architecture for dynamically adding policies to a Java card is
an advance in the state-of-the-art for smartcard technology.

The paper is organized as follows. Section 2 discusses the con-
flicts that arise when policies are merged and how this behavior
can be modeled. Section 3 introduces our target application, pro-
grammabl e payment cards, and discusses the technol ogy that makes
such cards possible. Section 4 presents our formal model. Sec-
tion 5 discusses our prototype tool for working with policy au-
tomata. Section 6 summarizes our contribution and discusses re-
lated and future work.
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2. POLICY MERGING AND CONFLICTS

A common task for computer systems is to guard access to a
resource. The policy that is used to grant or deny access is often
based on a diverse set of criteria, possibly representing the inter-
ests of many different stakeholders. Describing such a policy as a
combination of sub-policies may aid a developer by allowing her
to focus on one piece of a policy at a time. However, when the
individual policies are combined there is potential for conflicts or
other interactions that make the combined policy inappropriate for
itsintended purpose.

Consider three policies regarding the use of a swimming pool.
Each policy representstheinterests of aseparate stakeholder: P, is
the policy put in place by the lifeguard, P, isthe policy put in place
by the business administrators of the pool, and P. isthe policy put
in place by the pool cleaner.

Py, Inanemergency no one except thelifeguard can enter the pool.
The lifeguard can always enter the pool. No more than 30
people should be in the pool at one time.

P, Nobody but the owner can enter the pool between 5pm and
9am.

P. When 100 people have used the pool, it should be closed and
cleaned.

The policies are simple to understand and are modular in the
sense that each is solely concerned with the interests of the respec-
tive stakeholder. However, the policies contain potentia conflicts.
For example, can the lifeguard enter the pool at 6pm? A model-
based approach to designing and implementing such policies will
need some mechanism to reason about conflicts among stakehold-
ers’ interests.

Non-monotonic logicg[ 5] are afamily of logicsin which new in-
formation may lead to previously valid conclusions being retracted.
These logics are partially motivated by a desire to capture rea
world common-sense reasoning. For example, if we are told that
Tweety is a bird we may tentatively conclude that Tweety can fly.
However, if we later learn that Tweety is a penguin we will be
forced retract our conclusion. Non-monotonic logics are one pos-
sible tool for representing and analyzing the kind of conflicting
swimming pool policies we see above. We can encode arule such
as “no one can enter the pool after 5pm” by marking it a tentative
rule, possibly overridden if we learn more information—for exam-
ple, the lifeguard needs to enter the pool because of an emergency.

The policies described above also have features that are more
naturally represented as a reactive system. The decision to admit
a swimmer depends on the previous events at the pool. Imagine
a gatekeeper at the pool who has to decide when to let people in.
If the gatekeeper cannot see the pool from where she sits she will
have to keep track of how many people have entered and left the
pool in order to keep the number of people in the pool below 31
(to satisfy the lifeguard) and to stop admitting people when 100
people have used the pool (so that the pool can be cleaned). So our
model must have some notion of storing information and making
decisions based on the history of past events.

Embedded devices like smartcards have minimal space for stor-
ing information so it is undesirable to maintain a complete history
of past transactions. However, we do not want to arbitrarily restrict
what information can be used to make access control decisions; we
should record exactly the minimal amount of information needed
by policies. In our framework we accomplish this by making the
security policies responsible for collecting their own information.

In order to represent state and handle conflicts we propose a hy-
brid scheme for modeling interacting policies. Our model uses



classical finite state automata, extended with some high-level con-
structs like variables, to model how policies react to and store in-
formation about previous events. We choose automata because they
allow straightforward analysisand it issimpleto trand ate them into
code suitable for a smartcard. These automata interact with each
other using defeasible logic [22], a non-monotonic logic designed
so that statements can be proved or disproved efficiently—an im-
portant consideration if the policies must be integrated in smartcard
with limited computational power. We have found that this hybrid
approach succinctly models many policies that one might want to
install on a programmable payment card.

3. PROGRAMMABLE PAYMENT CARDS

Payment cards such as credit cards and debit cards are a com-
mon substitute for cash and checks. There are a variety of ways
in which cards come into the hands of users. A user may directly
contact a bank to obtain the card, or it may be supplied to the user
by an employer or parent. In the latter cases the card has a kind of
‘secondary issuer’ such as an enterprise or family. This secondary
issuer may have policiesthat extend those of the bank. For instance
an enterprise may stipulate that acard for an employee is used only
for business expenses or a parent may stipulate that a card can only
be used in an emergency. Such policies can be enforced in basically
two ways in most systems. The bank or payment gateway can (and
typically does) enforce certain basic restrictions such as an out-
standing balance limit on the card. Other polices are enforced in a
more reactive fashion by the secondary issuer when reconciling the
purchase records with billsit receives. (For example, an employee
can be fired or a child admonished for deviation from policy.)

A Programmable Payment Card (PPC) is a payment card that
can be specialized with custom policies written by a secondary is-
suer, such as an enterprise, a family, or even the user of the card
himself. PPC policies can provide privacy and risk management.
For instance, in some kinds of PPC it is possible to disallow pur-
chases before they are made on the basis of policies that are never
revealed to the bank, payment gateway, or merchant. In these cases
banks and payment gateways can benefit from PPCs because they
shift liability for policy enforcement to the secondary issuer and
user. Secondary issuers benefit by preventing some problems be-
fore admonishing or firing become necessary.

As a case study for purposes of specific analysis for policy in-
tegration we now sketch the architecture and implementation of
PPCs presented in [11]. This approach is based on the Global Plat-
form implemented on Java Cards and provides for policies written
in Java. These policies control payment transactions based on the
Secure Electronic Transactions (SET) protocol [21]. Our PPC im-
plementation is based on an implementation of SET by Mykhailo
Lyubich [18]. There are two primary extensions. First, it is ported
to run on the Global Platform for the IBM JCOP Java Card simula-
tor or the Oberthur CosmopolIC cards and, second, it isextended by
a basic policy integration technique called ‘simple conjunctive re-
finement’. In simple conjunctive refinement acollection of policies
are consulted by atransaction management applet. Policies provide
aboolean result and a SET transactionisalowed if, and only if, itis
approved by each of the policies based on the form of the purchase
reguest (PReq) message in the SET protocol. After it isissued, the
card allows parties to add such policies but not remove them. Con-
sequently, each new policy allows no more payment transactions
than the card allowed before it was added. Policies must be ap-
proved by a certification process to ensure that they do not violate
the language-based protection mechanisms of the Java Card Run-
time Environment (JCRE). It is possible in principle for the JCRE
to run defensively so that this step can be omitted, but thisis expen-
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sive for the card. Fortunately, the policy certification only requires
verifying that the program is well-formed code.

Our implementation of the simple conjunctive refinement tech-
nique was unsatisfactory for two reasons. We could not express
policieswhich override other policies aseach policy had veto power
over atransaction request. Secondly, the policies were written in
Java, which made it difficult to formally analyze a policy’s behav-
ior. The next section describes our formal model, which gives a
more expressive policy integration mechanism and a rigorous de-
scription of policy behavior.

4. FORMAL FRAMEWORK

A policy model approves or rejects a transaction request based
on the characteristics of the transaction request and the history of
previous transactions. The model is composed of separate policy
automata that vote individually as to whether a transaction request
should be approved. The votes are coalesced into an approval or
disapproval using aresolution function.

4.1 Votesand Conflicts

We use D to denote the abstract set of possible votes. Associated
with D is afunction f, which resolves votes into yes, no, or T,
representing accept, reject, and conflict (or error), respectively. As
a simple example, D contains yes, no, and maybe, and f maps a
set of votes to yes if the set contains yes and does not contain no;
to no if contains no and does not contain yes; and to T otherwise.

For our payment card application we use defeasible logic to de-
scribe and resolve votes. We briefly introduce defeasible logic here.
Readers who want a more detailed explanation of the logic are re-
ferred to [22, 19].

Atomic formulas and their negations make up the literals of de-
feasible logic. For example, p, g, —p, —q are dl literas. Defeasible
logic has three kinds of rules:

Strict rules Strict rules are like normal implication:

penguin — —fly

The meaning of thisruleis“if penguin istrue then fly is not
true” (or, in other words, penguins don't fly).

Defeasible rules Defeasible rules are like strict rules except that
they can be preempted by other information. For example,
therule

bird = fly

says that “if bird is true then we conclude that fly is true
unless we have some reason to think otherwise.”

Defeater rules Defeater rules are used to block the tentative con-
clusions of defeasible rules. For example, therule

injured ~ —fly

will block arule like bird = fly since the knowledge that
abird is injured counteracts our intuition that birds tend to
fly. However, the defeater rule (unlike a similar defeasible
rule) does not lead to the conclusion —fly —since we have
no intuition about whether injured birds fly or not we do not
want to make a tentative conclusion either way.

Each of the rules can have a set of literals on the left hand side
instead of just asingle literal. In such arule all literals in the set
must be true for the rule to apply.

In defeasible logic there are two notions of provability. Given
a set of literals that are known to be true, called facts, aliteral is



definitely provable if it can be proved using strict rules and facts.
A literal is defeasibly provable if it can be proved using facts and
any of the rules. Space limitations make it impossible to include a
formal description of the algorithm used to determine if aliteral is
defeasibly provable; readers are referred to [19].

In our framework, policies vote by giving rules that reason about
a special literal yes which stands for “approve the transaction re-
quest.” More precisely, thereisaset of atomic formulas F whichis
fixed for an application. The atomic formula yes is one element of
F. Let R bethe set dl rules (strict, defeasible and defeater) made
of elements of F'. The set D of votes is the set of finite subsets
of R. In other words, every voted € D isalist of zero or more
rules. All the votes are combined by taking the union of all the sets
of rules. This combined set of rules forms the defeasible logic the-
ory which we use to test the provability of the formula yes. If the
votes yield a theory in which one can defeasibly prove yes with-
out making —yes defeasibly provable then the transaction request
isapproved. If yes isnot defeasibly provable then the transaction is
rejected. If both yes and —yes are defeasibly provable (possible in
defeasible logic) then thereis a conflict.

4.2 Policy Models

Let T be the set of al transaction requests for a particular ap-
plication domain. For example, in an e-commerce application we
might have T be a set of integer-string pairs that represent the price
and the seller of the transaction request. Let D be a set of votes.

A policy automaton P isatuple (M, X, qo, R, d). The compo-
nents of P are

M A finite set of modes

X A finite set of variables, each of which has atype. Wewrite Vx
for the set of possible tuples of values for al the variables
in X. A state g of the policy automaton is a pair (m,v)
withm € Mandv € Vx,andweuse Q = M x Vx to
denote the set of all possible states. (We separate states into
variables and modes to make automaton descriptions more
readable.)

qo Aninitial state (mo, vo) that specifies the initial mode and ini-
tial values of dl the variables.

R Therule-set of P. Risafunction
R:QxT—D

which determines how the policy automaton votesin a given
state to process a given transaction. Recdl that D is the set
of possible votes, each of which isalist of defeasible logic
rules. Riscaled a‘rule-set’ because in practice we specify
R by attaching ‘rules’ to modes in a policy automaton.

¢ Thetransition function,
0:Q xT x{yes,no} — Q

which governs how the policy automaton updates its state
when atransaction request has been approved or disapproved.

As discussed in the next section, in practice we specify a policy
automaton using a graph over its modes. The edges are annotated
by guards and assignments that refer to the variables and transac-
tion parameters, and specify the transition function 6. The modes
are annotated with rules that refer to the current state and the trans-
action parameters, and specify the function R.

A policy model is a triple (I1, D, f) where IT is a finite set of
policy automata, D isthe set of votes, and f isaresolution function
that maps a set of elements of D to {yes, no, T }.
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4.3 Semantics

Consider apolicy model (IL, D, f), whereII = {Pi,..., Py }.
Let Q; betheset of states of each policy automaton P;. The state of
the policy model at any point in time can be described by a vector
(q1,---,qx), whereeach ¢; € Q;. Initidly, each policy automaton
startsin itsinitial state. We proceed to describe how transactions
are processed and states are updated.

Suppose the current state of the policy mode is (q1, ... qx) and
the current transaction request is ¢t. For each policy automaton P;,
its vote is d; = R(qi,t). We then evaluate f(d), where d =
{d1,...dx}, and interpret the outcome as follows:

yes the transaction request is approved.
no the transaction request is rejected.
T thereisaconflict between two or more policies.

One desirable property for apolicy model isthat if votes dare pro-
duced by the individual policies then f(a?) = yes Or no—in other
words, policies do not conflict with each other when composed.

Once a transaction request is approved or rejected each policy
automaton updates its state. Intuitively, a policy automaton always
has two possible transitions that it can follow—one to record ap-
provals and another to record rejections. |f a policy automaton is
in state ¢ and a transaction request ¢ is approved then the state is
updated to 4(q, t, yes). Similarly, if the transaction request ¢ isre-
jected, the state will be updated to be §(q, ¢, no).

Thisupdate extendsin the natural way to states of apolicy model.
For a state (qu, - . - gx ) of the policy model and a transaction ¢, let
d; = R(q:,t) bethevote the policy automaton P; supplies, and let
a= f({d1,...,dr}). If a = yes or a = no, then we write

tTa
(g1, ax) = (q,---qk)
where g, = §(q;, t, a) gives the updated state of the automaton P;.
If @ = T then there is a conflict between policies and the policy
model moves into a special error state g+, essentially terminating
the operation of all the automata. We denote this case by

tTT
(@, a) > g7

Once the policy model entersthe error state it responds to all trans-
action requests with T, indicating an error:
vteT, gt LIEN qr.

The update relation is now generalized to a sequence of transaction
reguests. Given a sequence of transaction requests 7 = ¢4, . . .
we write

s Un,

S5 Tl =

g = ¢.
if there exist model states ¢i,...,qn-1, and a = a1 ...a, Such
that

7 t1:Ta>1 Qi t2:Ta>2 tn—lZTa}nfl T tg, q7

Given apolicy model A and asequence 7 of transaction requests
wesay A emits  on 7 if for theinitial state gy of the model, there
exists some ¢’ such that

-

ﬂ*

M = q.
4.4 Conflicts
A policy model with initial state o is conflict-free if for all se-

quences T of transaction requests, gy —= ¢’ impliesq’ # g Itis
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easy to see that a conflict-free model will never emit T in response
to atransaction request. Typically a developer will want to ensure
that her policy model is conflict-free before deploying it.

45 Redundancy

Intuitively, a redundant policy automaton is one which has no
effect on the responses to transaction requests.

Given apolicy model A = (I1, D, f) whereIl = {Pi, ..., Py}
then policy automaton P; is redundant in A if for al sequences
of transaction requests, A emits « on 7 if and only if the policy
mode (II — {P;}, D, f) emitsa on 7.

In some circumstances having aredundant policy automaton may
be undesirable—it may be an indication that apolicy is being over-
ridden by other policies. At the very least, it indicates that a sim-
pler, smaller model could be used to do the same job. If adevice has
alimited amount of memory in which to store programs then ade-
veloper would want to avoid installing redundant policy automata.
However, if a policy automaton P is redundant with respect to a
policy model A = (II, D, f) it may not remain redundant if we
add some policy automaton P’ to I1. A developer may therefore
want to install a redundant policy automaton on a device if she
expects more policy automata to be installed on the device in the
future.

5. PROTOTYPE

We are implementing a prototype called Polaris (www. Ci S.
upenn. edu/ " mrcdougal pol ari s) that performs policy au-
tomata analysis and compilation. It includes a graphica interface
for editing the automata, an analysis engine that checks for policy
conflicts, and a code-generator that creates Java Card applets that
implement the policy automata. The architecture of the prototype
is shown in Figure 1. The tool is being implemented in Java and
uses the Hermes [1] code base. The prototype has four modules:

Front end: A developer uses the graphical front-end to create,
edit and save policy automata. The automata are described using a
graphical language made up of boxes and arrows which are anno-
tated with small pieces of text; creating automatais much like using
agraphics application like xfig or Adobe Illustrator. The automata
are stored as XML. The front end must also interact with the anal-
ysis engine to illustrate the outcome of any analysis procedures.
Figure 2 shows a screen shot of the automata editor.

Analysisengine: The analysis engine takes a policy model from
the front end and checks that the automata satisfy various proper-
ties the designer chooses: conflict-freedom, reachability of certain
states or whether an automaton is redundant with respect to other
automata. The analysis algorithms are discussed in more detail in
Section 5.3. The andysis engine borrows some code from the enu-
merative reachability procedures of Hermes but is still only par-
tially complete.

Code generator: The code generator converts a policy model
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Figure 2: Polaris automata editor

into Javathat is suitable for a Java Card. Each policy automaton is
compiled into a separate applet that implements that policy. This
architecture of separate applets allows new policy applets to added
to the card dynamically.

Payment card: The payment card provides the run-time envi-
ronment for the policy automata that have been compiled into Java
Card applets. The payment card takes part in a SET transaction
with a remote website via alocal PC that has a Java Card reader.
Before the transaction takes place the policy model implementation
must approve the purchase request.

5.1 Graphical Language

Polaris uses agraphical language to describe policy automata. A
policy model is created by drawing a number of rectangles, each
of which represents a policy automaton. Each of the policy rect-
angles can be annotated with a list of variables X that store infor-
mation needed by the policy automata. Inside those rectangles, the
developer can draw rounded rectangles which represent the policy
automaton’s modes. Figure 2 shows a policy automaton with three
modes being edited in Polaris.

The 4 transition function is specified by drawing arrowsfrom one
mode to another. Each arrow isannotated with yes or no, indicating
whether the transition should apply to an accepted or rejected trans-
action request, and a boolean expression involving the variables of
the policy automaton and the transaction, and alist of updated val-
ues for the variables. The boolean expression is similar to the ex-
pressions in high-level programming languages like Java or C. For
example, a transition from m to m’ could be annotated with yes
andtheexpression“t . pri ce<30 & count ==1", where count
is a variable and ¢ is a transaction request, and variable update
“count : =2". Such a transition gives a partial description of §,
mapping ((m, v), t, yes) to (m’,v") for all variable settings v where
count = 1, for al ¢ with a price under 30, and where v’ has the
same variable settings as v except that count isnow 2.

Therule-set function R is specified by annotating the mode rect-
angles with rules. Each rule has a boolean expression (like the
expressions attached to the transition arrows) referring to the cur-
rent transaction request and the variables of the automaton, and a
vote d. If a policy automaton isin a mode m which is annotated
with rule » and a transaction request arrives that, along with the
current variable settings, makes the boolean expression true, then
vote d becomes the policy automaton’s vote. Votes are lists of de-
feasible logic rules written in the syntax of the Deimos defeasible
logic query tool [20]. Each rule therefore gives apartial description
of R. Figure 2 shows alist with one rule that has been attached to



the “bonus purchase alowed” mode. The expression is “pri ce
< 100" and thevoteis“{}=> yes”, whichis {} = yes written
using ASCII characters. The rule essentialy says “conclude yes
tentatively unless others override.”

We use simpletyping rulesto check if expressionsinvolving pol-
icy automaton variables and the transaction requests are well typed.
Each variable must be declared as a particular type (for example,
a boolean, integer or enumerated type). Transaction requests are
treated as records with a number of fields, each of which has a
particular type. We check that types are used consi stently—for ex-
ample, an integer is not compared to asymbol or aboolean variable
isnot set to 3. We also perform checks on the graphical structure to
ensure that the picture on the screen can be tranglated into a policy
automaton.

5.2 Example: a Payment Card Policy

We now show an example of a policy model made up of the
following policies:

Ps Allow up to 3 purchases per day.

Pr Guarantee payment to emergency services twice.
P.. A cash card: spend no more than $500 total.

Px No acohol can be purchased.

P, Prevent purchases of prescription drugs which conflict with the
anti-depressant Tofranil.

The last policy, P:, deserves some explanation. Tofranil is an
prescription drug used to treat depression. It can be fatal when com-
bined with a drug that is a monoamine oxidase inhibitor (MAOI).
We envision P; being installed by a doctor or a pharmacist when
the card holder begins taking Tofranil. This policy will prevent
purchases of drugs that conflict with Tofranil, thereby reducing the
risk that a mistake by a doctor or pharmacist leads to a fatal drug
interaction. Tofranil can also interact with another drug called Al-
buterol, but the interaction is less severe so our policy automaton is
not as insistent about rejecting purchases of Albuterol.

Figure 3 shows these five policy automata in a simplified form
of the graphical language accepted by our prototype. Variables are
declared at the left of the diagram, along with the initial value of
thevariable. For example, theinitia value of P..'svariablet ot al
is 500.

Modes are indicated by rectangles with solid lines. A mode's
rules are contained in a rectangle with a dotted border within the
mode. Rules are written in the form “i f expression t hen vote”.
The expression E(t . sel | er) usedintherulesof Pg isapred-
icate that istrue if t . sel | er is contained in a set of approved
emergency service sellers (for example, hospitals and ambulance
companies). Theword ALCOHOL intheruleof Py refersto astan-
dard product identifier that identifies a purchase as alcohol. Sim-
ilarly, the words MAOI and ALBUTEROL in P; refer to standard
identifiers for particular classes of drugs.

Therule'svoteiswritten asalist of rules of defeasible logic. We
describe afew of the votesthat appear in the example here.

{}=>yes the transaction request should be approved tentatively
but can be overridden

{}~>~yes override atentative approval

{}->yes; {}- >e approve the transaction and assert that the lit-
era e istrue. Making e true signas to other automata that
the transaction request is an emergency.
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~e->~yes if e is not true then reject the transaction request.
This vote allows Py to override P; and P.. without con-
flicting with Pg.

When no rule appliesin agiven state then an empty set of defeasible
logic rulesis used as the vote.

Asdescribed above, arrows represent transitions between modes.
The annotation attached to the arrow has the form “expression ; up-
date”. The expression indicates when that transition is enabled and
the update section determines how the variables are updated. For
example, in P, the transition with an expression “yes &t ot al
== t. pri ce” isenabled when atransaction request has been ap-
proved and the total is equa to the transaction price. If the up-
date section is empty then no change will be made to the variables.
When there is no enabled arrow starting at a mode then no update
is made to variables or modes when the transaction request is ap-
proved or rejected. For example, if P.. isin mode 0 and atransac-
tion request is rejected then the variable t ot al is left unchanged
and the automaton stays in mode 0.

We now quickly sketch how the policies in figure 3 react when
given the following sequence of transaction requests: ¢1, a $40 al-
cohol purchase which is not an emergency; and ¢, a $300 bicycle
purchase. The request ¢; has its ‘type’ field set to ALCOHOL so
policy Py will vote ~e- >~yes, while Pg will vote { }- >~e be-
cause the request is not from an emergency seller (i.e. E(t . sel -
I er) isfase). The defeasible logic engine will recognize that
these two votes form a proof of ~yes. Policies P.. and Ps; both
contribute {}=>yes as votes, but this defeasible rule is overrid-
den by the strict rule in Px’s vote. Policy P; contributes a vote
{}- >t of , but this vote does lead to a proof of yes or ~yes.
Since ~yes has been defeasibly proved and yes has not been
proved we reject the transaction. All the arrows in our policies are
enabled only when atransaction isaccepted so no updates are made
to variable or modes after the first transaction request is rejected.

When ¢, is submitted the policy P.. suppliesthevote {}=>yes
because the price of $300 isbelow the value of thevariablet ot al ,
which was set to 500. Ps; submits the same vote as P... Since this
purchase does not involve acohol the policy Px has no specific
vote—a default empty vote (i.e. a zero-length list of defeasible
logic rules) is therefore submitted. Pr submits the vote {}- >~e
since the seller is not an emergency seller. Policy P, again sub-
mits {}- >t of since the purchase involves neither Albuterol nor
an MAOI. The defeasible logic engine will show that yes is de-
feasibly provable since no votes overrule P..’s vote. Nor do any
votes conclude ~yes so thetransaction is approved. Thistriggers
Ps to move from mode 0 to mode 1 and update itst i me variable
to the time of the transaction. P will not change modes because
the seller is not an emergency seller. P.. will stay in mode O but it
will change the value of itsvariable t ot al from 500 to 200. Py
and P; each have one mode and no variables so they do not update
their state.

5.3 Analysis

If the types of the variables arefinite then a policy model must be
in one of afinite number of states. For infinite types we can make
the number of states finite by using abstraction. We can therefore
use a conservative on-the-fly reachability analysisto look for states
where conflicts occur. If none of the reachable states will emit T
on any transaction request then we know that our model is conflict-
free.

Checking a given state for conflicts involves eval uating the reso-
lution function f on all possible combinations of votesin that state.
Computing f can be done efficiently as[19] gives an algorithm for



P3: ves:
var time:=0 mode 0 time:=t time mode 1
| i (t.time-time<24) | 1 i = !
| then {} ~> ~yes | yes; lf t:ue_ttfn_(}_ Reag
| else {}=>yes |
PE: q
no variables
mode 0 mode 1
r———-—"—-—=—-=--- 1 r=——=——-=—-=--- 1
| if E(t.seller) | | if E(t.seller) |
| then{}->yes; {}->e; | [E(tseller);| | then{->ves;{->e;
| else{}->~e | | else {I->~e |
end mode yes &
__________ E(t.seller);
| if true then {}->~e

Pecc: q
var total:= 500 460 yes & end mode

[t :m_o_e_l — — — - | total>=t.price; i' ——————— |
! Lprice<=total | » if true then |

then {}=>yes | |
g~>-yes |
else {}~>~yes | | |
L === I I

\/yes & total>t.price;
total := total - t.price

PN: q
no variables
mode 0
[ CypemACoHo] |
L _ fhen-e>wyes
Pt: q

no variables

e
| if (t.type==MAOI) then {} ->~ yes |
| if (ttype==ALBUTEROL) then {} ~>~yes |
| else {} > tof |

Figure 3: Example payment card policy model

finding the consequences of adefeasible theory intimethat islinear
with respect to the number of literals and defeasible logic rules.

We may also want to check for redundant policies. For a given
model state ' let dz.;,; be the vote that the ¢-th policy automaton
gives when processing transaction ¢ in state ¢. The policy automa-
ton Py isredundant at ¢'if

vt €T, f(Dg.) J(Dge) @

where Dq,t = {dq‘,t’” 1=1... k,'} and Dtlf,t = D(T,t — {dq‘,t,l}-

Py isredundantin ({Pi, ..., Py}, D, f)if itisredundant at each
reachable model state. We can therefore check for redundancy by
finding all reachable model states and verifying that each state sat-
isfies equation (1). As discussed above, evaluating f for al trans-
actions can be done efficiently.

5.4 Code Generation and the Java Card
Platform

There are two types of Java Card applets that need to be gen-
erated: the manager applet and the policy applet. The manager
applet is responsible for polling the policy applets for their votes,
consolidating the votes to decide whether the transaction request
should be approved, and then notifying the policy applets about the
approva or disapproval. There is one manager applet on a pro-
grammable payment card and it must beinstalled before any of the
policy applets. Our prototype applet isbased on the Lyubich’'s SET
implementation [18] and most of the applet is concerned with the
details of the SET protocol. However, we have added a defeasi-
ble logic engine to the applet so that it can process the votes of the
policy applets. Most of the manager applet’s code deals with Java
Card and SET protocols; this code is specified as atemplate that is
constant for all manager applets. We envision different applications
using different transaction request types (for example, the transac-
tion date may be available in some applications and unavailable for
others) so we automatically generate the manager applet code that
processes the transaction request data.

The Java Card platform imposes certain constraints on the appl et
implementation. Garbage collection is not available on most cards,
so care must be taken to allocate the minimal memory necessary.
All data must be stored as 8 or 16 bit values. Unlike the standard
Java platform available on desktops and servers, a Java Card has
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two kinds of memory: RAM and EEPROM. RAM islikethe RAM
in most computers — it can be read from and written to quickly,
and it loses its data when power is cut off (for example, when a
card is withdrawn from a card reading terminal). Due to cost and
size constraints, RAM is limited to 1 or 2K in the currently avail-
able cards. EEPROM will retain data when power is lost, and it
is cheaper than RAM so it is feasible to put as much as 64K on a
single card. However, EEPROM can only be written to a limited
number of times (typically on the order of 100,000) and writes are
slow, so EEPROM should not be used for memory which isupdated
frequently.

Our on-card defeasible logic engine (DLE) needed to account for
theserestrictions. The DLE needsto compute all theliteralsthat are
defeasibly provable given a defeasible logic theory. We partition
the memory required for the algorithm into two parts: stable and
volatile. Stable datais kept in EEPROM and volatile dataiskept in
RAM. Our algorithm keeps the rules of the theory in stable mem-
ory, while using volatile memory to track the proof status of each
of the literals in the theory. While the total memory required by
the DLE is proportional to the size of the theory, the volatile mem-
ory required is proportional to the number of literalsin the theory.
To conserve EEPROM memory, we keep only a single copy of the
rulesin the defeasible logic theory. This copy is maintained by the
policy applet which is supplying the vote which contains the rule.

A policy applet implements a single policy automaton. Many
policy applets can be installed on the same card. Starting from a
template applet, the code generator adds two methods get Vot e
and updat e, which return a vote and update the state of the ap-
plet, respectively. The set of al possible votes is computed by the
code generator and each vote is instantiated as a member variable
stored in EEPROM. We precompuite this set of votes to minimize
the amount of RAM required at runtime. Examples of the out-
put of this code generation are available at the Polaris web site
(www. ci s. upen. edu/ " nmmtdouga/ pol ari s).

A smartcard’s limited memory makes code size an important
consideration. Table 1 shows how much the code size increased
for the Java Card implementation of the SET protocol when we ex-
tended it to use our policy integration architecture. The second col-
umn of the table shows the size of the converted applet (CAP) file.
CAP files are the standard package format for Java Card applets.



CAPfilesize | methods | static fields
original SET (bytes) 11291 3715 3355
modified SET (bytes) 15586 5911 3591
increase due to modification 38% 59% 7%

Table 1. Codesizefor original and modified SET manager ap-
plet
CAPfilesize | methods | static fields
P; (bytes) 670 364 26
P (bytes) 707 376 26
P.. (bytes) 645 342 26
Py (bytes) 579 296 24
P.. (bytes) 639 339 28

Table2: Codesizefor selected policy applets

The table a so shows the number of bytes required to represent the
methods (executable code) and static fields (persistent data) of the
applet; these two components are the largest components of the
CAP files. After extending the SET applet with a defeasible logic
engine and the code necessary to manage policy applets the total
applet sizeis only 38% larger. Table 2 shows the size of the five
applets generated from the automatain Figure 3.

5.5 Adding Policies Dynamically

The policy model gives developers aformal framework for com-
bining the policies of different stakeholders. Different departments
in an enterprise can each create their own modular policies and
when these policies are installed on a card they can be checked
against each other to ensure that they are, for example, conflict-free.
Thisincreases the assurance that a payment card will behave prop-
erly when given to a user. However, the Java Card/Global Platform
architecture allows new applets to be installed after the card has
been issued. In this section we discuss how our framework can be
adapted for the case where arbitrary parties, who may not be af-
filiated with the enterprise that issued the card, wish to add new
policies. We call the set of policies that are initially installed the
base policies. The policies added |ater are called the supplemental
policies.

In order to allow new policy automatato be checked with respect
to previously-installed policies we require that an installed policy
provide a way to access its policy automaton. This can be stored
on the card or referenced by a URL. A developer will compose
these policy automata with her new policy automaton and check
that the new policy automata is conflict-free (or whatever property
isdesired). If the desired properties hold, the devel oper followsthe
steps described in [11], which exploit the Global Platform security
model. She generates valid JCVM byte code and supplies it to a
certification authority, who uses it to generate a CAP file with a
digital signature. The CAP file, together with signed load and in-
stall instructions, are then supplied to the devel oper who uses them
to load and install the new applet onto the card. The digita sig-
natures protect the card from the installation of invalid CAP files.
When the new applet is selected (a basic Java Card operation that
chooses a particular applet for execution), it registers itself with
the manager applet installed by the primary issuer. If the applet is
subsequently removed, the manager applet disables the card.

In order to protect the functionality of the base policies from
policies that were not analyzed we modify the resolution function
dightly. If the updated set of applets generates a T then we fall
back to the base automata and evaluate f using only the votes from
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the base policies. Since the base policies were installed before the
card was issued we can be confident that they are conflict-free.
Once the transaction request is approved or rejected, all policy au-
tomata (base and supplemental) update their state and continue as
if the conflict had not occurred.

6. DISCUSSION AND CONCLUSION

Our work makes three contributions. We describe a novel appli-
cation: programmable payment cards with a dynamic on-card pol-
icy management framework. We introduce policy automata, afor-
mal framework that combines state machines with defeasible logic,
which models the dynamic integration of modular policies. Finaly,
we haveimplemented Polaris, asuite of toolsthat integrates design,
analysis and compilation for policies expressed as policy automata.

6.1 Redated Work

This work builds on a wide range of previous work in formal
methods [8], especially in model-checking [7] techniques and tools
such as SPIN [16]. Using state-machine-based models for high-
level designs is quite common in software engineering (e.g. State-
charts[13], UML [3]). Easterbrook and Chechik [6] analyze merged
state machines by using paraconsistent logics to capture the possi-
bly inconsistent views of the system. Siddigi and Atlee [24] use
a hybrid model that combines state-transitions and logical asser-
tionsto model and analyze feature interaction conflictsin telephone
systems. Lupu and Sloman [17] discuss a number of strategies
for resolving policy conflicts. There is related work using non-
monotonic logics for reasoning about policies. Grosof et al. [10]
represent business rules using courteous logic programs, while An-
toniou et al. [2] use defeasible logic to represent administrative reg-
ulations governing, for example, exam scheduling. Various pol-
icy specification languages have been proposed. Damianou et a.
[9] use the Ponder language to describe access control policies.
Hoagland et a. [15] use a graphical language to describe secu-
rity policies. Miro [14] aso uses a graphica language and allows
policiesto override other policies. Halpern and Weissman [12] pro-
pose using afragment of first-order logic as a security policy model
which accommodates merged policies and has atractable algorithm
to determine access rights. These approaches target a wide range
of access control policies protecting many resources while ours is
concentrated on protecting one resource. It is not clear whether
that they are suitable in an embedded context. As far as we know,
thereisno prior work on combining state-machine based modeling,
non-monotonic logics, and formal analysis.

In recent years there has been a lot of research on formal meth-
ods for Java Cards [4]. This research typically focuses on proving
correctness of protocols and APl implementation. The problem of
adding policies dynamically and merging them with existing poli-
cies has not been addressed.

Schneider [23] uses security automata to model access control
policies and generate monitorsthat enforce correct behavior. Schnei-
der’s security policies are primarily intended to constrain programs
while our policies constrain users. We use a voting system to in-
tegrate different policies instead of simply taking a conjunction of
policies.

6.2 FutureWork

We plan to extend this work in a number of directions. We will
continue refining and extending our tool to explore heuristics and
other engineering issues involved in analyzing policy automata and
generating code that implement the automata. A more rigorous
evaluation of the tool will be performed in order to quantify the



efficiency of various analysis strategies and the on-card running
time of the applets.

We think that aspects of this work will be applicable for guard-
ing access to network resources. In particular, we will examine
whether our policy model can adequately express the policies gov-
erning network packet processing and forwarding in firewalls. Sim-
ilarly, policy automata look promising as a model for representing
HTTP access policies.

The formal aspects of this work can be extended in various di-
rections as well. One possible extension would be to modify the
policy model so that transactions reguests would yield more than
yes and no as answers. For example, a request to access a file
might yield yes-read-only as an answer in addition to yes and no.
Policy automata as described here get only one chance to react to
atransaction request. However, there are applications where a pol-
icy automaton may want to react to the outcome of a transaction
that has been approved. For example, a cell phone policy govern-
ing what phone numbers may be called may want to react one way
when an outgoing call where the other party fails to pick up the
phone, and another way when the other party picks up the phone
and has a conversation. The set of votes D and the resolution func-
tion f are abstract parametersin the definition of apolicy model. In
thiswork we use defeasible logic for D and f but we could replace
them with some other voting system based on a more expressive
non-monotonic logic (such as default logic or abductive logic), de-
ontic logic, or multi-valued logic.
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