
Loose Synchronization of Event-Triggered Networks
for Distribution of Synchronous Programs

Jan Romberg
romberg@in.tum.de

Andreas Bauer
baueran@in.tum.de

Technische Universität München, Institut für Informatik
Boltzmannstrasse 3, D-85748 Garching, Germany

ABSTRACT
Dataflow synchronous languages have attracted considerable inter-
est in domains such as real-time control and hardware design. The
potential benefits are promising: Discrete-time semantics and de-
terministic concurrency reduce the state-space of parallel designs,
and the engineer’s intuition of uniformly progressing physical time
is clearly reflected. However, for deriving implementations, use
of synchronous programs is currently limited to hardware synthe-
sis, generation of non-distributed software, or deployment on time-
triggered architectures.

In this paper, it is shown how synchronous dataflow designs can
be used for synthesizing distributed applications based on target
architectures that do not provide a global time base by default.
We propose a distribution method called “synchronization cascade”
where the nodes’ local clocks depend on each other in a tree-like
manner. For evaluation of the method, we characterize some re-
quirements for firm real-time applications, and evaluate our ap-
proach with respect to the postulated requirements.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design, Languages

Keywords
Embedded Software, Synchronous Languages, AutoFocus, Code
Distribution, Scheduling

1. INTRODUCTION
Dataflow synchronous programs and specifications, exempli-

fied by LUSTRE and SIGNAL [2], or AUTOFOCUS[7], provide a
discrete-time abstraction from real-time, concurrent implementa-
tions. This abstraction is familiar to control engineers and hard-
ware designers: all parts of the program run in a uniform time-
frame (time-synchronous). Concurrency in synchronous designs is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

based on lock-step composition, which usually results in more un-
derstandable designs, and avoids a blow-up of the state space of
parallel programs.

While synchronous programs are well suited for synthesis of
monolithic hardware and software, the problem ofdistributedim-
plementation of a synchronous program is still a challenging one.
Clearly, formal abstractions of distributed systems, along with an
automated procedure to synthesize distributed implementations, are
desirable for several reasons, including improved behavioral vali-
dation, for instance by simulation or formal verification.

However, there are numerous challenges to an (preferably au-
tomated) approach for distribution of synchronous programs, e. g.
(1) integration of existing systems with the synthesized executives,
(2) required compatibility with the numerous platforms in the do-
main, (3) compliance with tight nonfunctional requirements such
as timeliness, memory consumption, and hardware cost.

Looking at real-time control application in the automotive sec-
tor, time-triggered protocols [8] are an attractive target platform
for highly critical applications such as X-By-Wire. However, for
applications where cost concerns and legacy integration issues
are more dominant compared to criticality requirements, existing
event-triggeredbus architectures such as Controller Area Network
(CAN) may play an important role for some time to come. Appli-
cations characterized by this requirement will be calledmedium-
criticality applicationsin the sequel.

Synchronous approach vs. firm real time
In the context of medium-criticality applications, let us discuss the
synchronous distribution issue in more depth: Certainly, seman-
tically correct implementation of the distributed program is vital.
But when looking at the state of the art in distributed real-time con-
trol applications, many of these applications meet their timing and
criticality requirements even though they are based on communi-
cation media that provide no absolute guarantees about response
times. As a possible explanation, some control applications are
known to tolerate the loss of a bounded number of messages, e. g.
state values. In real-time systems, this corresponds to the notion
of firm real-time: transactions are discarded when they miss their
deadlines, as there is no value to completing them afterwards. In
contrast to hard real-time systems, a bounded number of deadline
misses is not considered fatal. How can the notion of firm real-time
be married with the distribution of synchronous programs?

It can also be questioned whether synchronous implementations
require the existence of a precise global timebase. Existing works
on asynchronous distribution of synchronous programs [5] have
shown that this is not necessarily the case. On the other hand, it
is quite clear that asynchronous distribution does not satisfy some
requirements of real-time control applications when communica-

193

tion media are involved that allow message losses or unbounded
latencies. Can we use a loose timebase, which may be cheaper
to implement, and still obtain implementations suited for real-time
control applications?

Based on this discussion, our approach is twofold: (1) Provide a
distribution method for synchronous programs based on a synchro-
nization / communication layer with a loose timebase. The method
should ensure semantically correct execution of the synchronous
program under normal operation conditions. (2) Make sure the
synchronization / communication layer provides a reduced service,
including synchronization, in case of certain faults. By adjusting
some well-defined parameters, it is then up to the developer to en-
sure that the system remains in normal operation for the most part
of its lifecycle, and meets the correctness and timeliness require-
ments imposed by the application.

In the following, we will describe the procedure to deploy
synchronous programs onto event-triggered networks based on
loose synchronization, and evaluate our method with respect to
the requirements of medium-criticality applications. Section 2
introduces a simple denotational style [4] used for specifying
synchronous programs and abstractions of communication chan-
nels. Section 3 introduces a synchronization / communication layer
calledsynchronization cascade, which is used for distributed de-
ployment of synchronous programs. Section 4 defines some re-
quirements for distribution of synchronous programs for medium-
criticality applications, and shows that our distribution method sat-
isfies some essential properties related to these requirements. Sec-
tion 5, finally, relates our approach to works of other authors, and
gives an outlook discussing future directions.

2. DATAFLOW SYNCHRONOUS
SPECIFICATIONS

We model distributed software as a network ofcomponentscom-
municating over timedstreams.

Streams
A stream is a finite or infinite sequence ofmessagesfrom a setM .
For such a set of messages, we useMω = M∗∪M∞ to denote the
set of all finite and infinite streams overM . For a streamσ ∈Mω,
the i-th message is written asσ.i. We define a special message⊥,
theabsent message: for a given setM , we writeM⊥ = M ∪ {⊥}
for the set obtained by adding the absent message.

The length operator# yields the length of the stream to which
it is applied. Concatenationof streams, writtenσ1&σ2, yields a
stream that starts with the messages ofσ1 followed by the messages
of σ2. The filtering operators is used to filter away messages.
M ′sσ is the substream ofσ obtained by removing all messages in
σ that are not in the setM ′ ⊆M .

In the following, we will use atime-synchronous interpretation
of streams: for all streams, the position of a message in a stream is
associated with a unique instant in a uniform discrete timeframe.

Components
A componentc has a set ofinput signalsI = {i1, i2, . . . , im}
with typesMij and a set ofoutput signalsO = {o1, o2, . . . , on}
with typesMoj . I = Mω

i1 ×M
ω
i2 × · · ·M

ω
im andO = Mω

o1 ×
Mω
o2 × · · ·M

ω
on are the input and output domains of the compo-

nent, respectively. We consider onlydeterministic componentsthat
arecomplete on their inputs: for these, inputs and outputs can be
related by a total functionf : I → O. We call this functionf the
I/O functionof the component. For time-synchronous streams, we
require I/O functions to becausal; that is, present outputs do not

depend on future inputs, andlength-preserving, i.e. there is a fixed
correspondance between the lengths of inputs and outputs.

Networks of Components
For composition of two componentsc1 (I/O function f1, inputs
I1, outputsO1) and c2 (I/O function f2, inputsI2, outputsO2)
yields a component with inputs(I1\O2) ∪ (I2\O1), and outputs
O1∪O2. Semantically, composition ofc1 andc2 is then defined by
intersection ofc1’s andc2’s behavior on the shared inputs/outputs
(synchronous composition); we restrict the scope of our semantics
to the class of systems where the intersection is again a (total) I/O
function. Such networks of components can be specified in a graph-
ical style, using rectangles for components, and directed arrows for
signals/channels [4].

Abstractions for Communication Channels
In the following, we will use components for abstractly defining
properties of a given communication channel. This definition will
be used in Sections 3 and 4 to formalize assumptions about the
communication medium and guarantees provided by the synchro-
nization / communication layer.

DEFINITION 1 (CHANNEL). A componentc is a channeliff
|I| = |O| = 1 andI = O.

DEFINITION 2 (m-LENGTH-PRESERVINGCHANNEL).
Given somem ≥ 0, a channel is anm-length-preserving channel
iff ∀σI ∈ I.#(f(σI)) = #(σI) +m.

DEFINITION 3 (UNIT DELAY CHANNEL). 1 A channel is a
unit delay channel with initial messagem iff ∀σI ∈ I.f(σI) =
m&σI .

As a corollary, unit delay channels are1-length-preserving.

DEFINITION 4 (n-BOUNDED LOSSYCHANNEL).
Given somen > 0 and somem-length-preserving channelch with
domainI = O = M⊥, ch is ann-bounded lossy channeliff, for
all input/output streams(σI , σO) ∈ f , for all of σI ’s substreams
σiI of lengthn at positioni, for all of σO ’s substreamsσi+mO of
lengthn at positioni+m, the following condition holds:

#(MsσiI) = n =⇒ #(Msσi+mO) ≥ 1

Intuitively, if fed with messages from the setM , ann-bounded
lossy channel will lose at mostn − 1 subsequent messages. As a
direct consequence of the above definition, anyn-bounded lossy
channel is alson+ 1-bounded lossy.

3. SYNCHRONIZATION CASCADES

3.1 Terminology
A synchronization cascadeprovides a layer for synchronization

and communication, and implements a logical network topology
on top of some suitable physical topology where each link in the
logical topology can be mapped to a physical counterpart. We call
the underlying protocol(s) thebase protocol(s)of the cascade.

A synchronization cascade is a rooted tree with nodesN = {N0,
N1, . . . }, and edgesS ⊆ N × N . Each node corresponds to a
processor or control unit in the distributed implementation. Edges
1Our unit delay definition corresponds with a combined use of the
pre and-> operators in LUSTRE.

194

s
1

s
2

s3u1

u
2

N
0

N
1

N
2

N
3

Figure 1: Example for a synchronization cascade

s ∈ S are called (direct)synchronizing links: Each such link com-
municates a periodic message that is used by its child node to syn-
chronize itself with the parent node.

The root of the tree is calledmaster nodeN0. For a non-master
nodeN , we denote asLi(N) the set of those synchronizing links
that form a path fromN0 to nodeN . If (N,N0) /∈ S, the links
in Li(N) form an indirect link from N to N0. Par(N) is the set
of parent nodesalong the path such thatN0ßPar(N) andN /∈
Par(N).

The rooted tree is extended to a (directed) multigraph by adding
edgesU = {u1, u2, . . . } (depicted as dashed edges). The edges
u ∈ U are callednonsynchronizing links: while their value is usu-
ally important to the receiver, the timing of their reception does not
influence the receiver’s activation times.

An example for a synchronization cascade is shown in Fig. 1:
NodeN0 is the master node. Linkss1, s2, s3 are synchronizing
links, while u1 andu2 are nonsynchronizing. The master node
emits a periodic synchronizing message with a predefinedbase pe-
riod T .

Processing phases
Fig. 2 shows, schematically, the timing of computations performed
by a single node. During each cycle, the node performs two sub-
sequent computations: asend/receivephase, and acomputation
phase. For givenNi ∈ N , j ∈ N0, instantti,j denotes the acti-
vation instant of nodeNi at stepj.

Send/receive phase
The send/receive phase is triggered by a periodically elapsing timer
for the master, and by the respective synchronizing message for a
non-master node. During this phase, the nonsynchronizing mes-
sages received since the last send/receive phase and the incoming
synchronizing message are read, and all outgoing messages com-
puted in the last computation phase are emitted. Because the send/
receive phase requires nonzero time for execution, and the receiver
node could potentially lose synchronizing messages if their inter-
arrival time is too short, we define aquiet interval that overlaps
the send/receive phase, and during which the node is not required
to process incoming synchronizing messages. The remaining part
of the cycle is called thereceptive interval. For nonsynchronizing
messages arriving in the quiet interval, the node may either read
the message immediately, or leave it in the message buffer so it
can be processed by the next send/receive phase. The quiet in-
terval (0, Q] starts at the beginning of each period. The analysis
below will ensure that a node does not receive synchronizing mes-
sages in(0, Q] under given operating conditions.Q is typically a
worst-case estimate of the send/receive period’s combined task re-
sponse and execution times. In the following, we formally require
0 ≤ Q < T · (1− 2ε), whereε is a clock drift constant introduced
in Section 3.2. Because communication overhead is usually small
compared to computation time, we expect typical assignments for
Q to be less thanT/4.

write
messages

send/
receive
phase

computation
phase

receive
nonsynchronizing

messages in buffer

time

incoming
messages

node
activation

outgoing
messages

triggered by
synchronizing

message

read buffered
 nonsynchronizing

messages

ti,k ti,k+1

send/
receive
phase

t
i,k

+Q

Figure 2: Processing phases for stepk of a nodeNi. Filled
arrowheads denote synchronizing messages, empty arrowheads
correspond to nonsynchronizing messages

Computation phase
During the computation phase, the local part of the distributed pro-
gram is executed, the received messages are processed, and the next
values of the outgoing messages are computed. Outgoing messages
are buffered till the next send/receive phase.

Note that the computation phase may be interrupted by the next
send/receive phase under certain circumstances. It is assumed that
the send/receive handler uses default values for all of those outgo-
ing synchronizing messages where no value has been computed in
the last step. Consequently, the availability of a synchronization
message for the next cycle does not depend on the completion of
the computation phase.

Activation of the send/receive phase
Each nodeNi defines the following functions and variables:

• getSynchronizingMessage: M yields the value of the current
synchronizing message.

• sendReceive: M → tt, ff executes the processing phase
given a synchronizing message, and yields a boolean value
whether the execution was successful.

• getDefaultMessage: M yields a default message for the syn-
chronizing message, e. g. based on the last available values
of the message.

• state ∈ {EXTERNALLY_TRIGGERED, MESSAGE_ABSENT,
SELF_TRIGGERED} is a state variable.

• timeri ∈ R is the physical timer of nodeNi.

• count ∈ N is a counter.

The send/receive phase of each node is initiated by two tasks,mes-
sage_available_task andtimer_task. timer_task is activatedT time
units and, if necessary,Tma time units after the last activation.
(The meaning ofTma will be explained in the next paragraph.)ti-
mer_task has an idealized release time of zero. The two tasks and
the states and transitions of the activation algorithm are shown in
Fig. 3.

States and transitions
After initialization of the cascade, the master node is in stateSELF-
_TRIGGERED, all other nodes are in stateEXTERNALLY_TRIGGE-
RED. In stateEXTERNALLY_TRIGGERED, the respective node is
synchronized with its parent node, and the send/receive phase is

195

message_available_task:
if state ∈ {EXTERNALLY_TRIGGERED,

MESSAGE_ABSENT} then
timeri := 0
state := EXTERNALLY_TRIGGERED
sendReceive(getSynchronizingMessage()) endif

timer_task:
if state = SELF_TRIGGERED then

if timeri = T then
timeri := 0
sendReceive(getDefaultMessage()) endif

else ifstate = MESSAGE_ABSENT then
if timeri = T then

timeri := 0, count := count + 1
if count≥ npf then

state := SELF_TRIGGERED endif
sendReceive(getDefaultMessage()) endif

else
if timeri = Tma then

timeri := 0, count := 0
state := MESSAGE_ABSENT endif endif

EXTERNALLY
_TRIGGERED

SELF
_TRIGGERED

MESSAGE
_ABSENT

count > n
pf

timer = T
mamsg. available

and count < npf

Figure 3: Activation, states, and transitions of a nodeNi

periodically activated by the synchronizing message. In stateMES-
SAGE_ABSENT, the node has detected a (possibly transient) ab-
sence of the synchronizing message. The send/receive phase is
activated by the node’s own periodic timer in this state. We will
show in Section 3.4 that, while in stateMESSAGE_ABSENT, the
node is able to re-synchronize itself with its parent node. In state
SELF_TRIGGERED, the node is periodically activated by its own
timer, and there are no guarantees about the node’s ability to re-
synchronize itself with its parent node, if existent. The parameter
Tma is called themessage absence detection margin. It denotes
the time interval after which, if no synchronizing message has been
detected, a node in stateEXTERNALLY_TRIGGERED changes to
MESSAGE_ABSENT. Parameternpf is theparent fault detection
count. It denotes the maximum number of periods the node will
remain in stateMESSAGE_ABSENT if no synchronizing message
is detected. If this number exceedsnpf , the node will change to
stateSELF_TRIGGERED. Sender fault detection therefore initiates
a fallback behavior in case either the parent node or the commu-
nication medium fails for a longer period of time. Note that re-
synchronization with the parent after the node has entered state
SELF_TRIGGERED is not in the scope of this paper.

3.2 Environment assumptions
We will now state some assumptions about the physical environ-

ment of the cascade. The assumptions will be necessary in order to
show that the cascade meets its operational requirements. Some of
the assumptions will be required independent of the network state,
while others are prerequisites for normal operation of the network,
and may be violated under fault conditions.

Physical clocks
Each nodeNi has its own physical clocktimeri. A physical clock
is typically subject to drifts and jitter w.r.t. the ideal physical time
t. Operation of a synchronization cascade requires that deviations
of all the nodes’ clocks from ideal time are bounded by a constant.

DEFINITION 5 (ε-BOUNDED CLOCK DRIFT).
For a given cascade, let each nodeNi be associated with a physical
clocktimeri. The cascade is said to have anε-bounded clock drift
iff, for all intervals wheretimeri is not reset,

∀Ni ∈ N .
∣∣∣∣dtimeri

dt
− 1

∣∣∣∣ ≤ ε
In combination with our definition oftimer_task, the bounded clock
drift assumption guarantees that the physical base period of each
node is bounded by[T/(1 + ε), T/(1 − ε)], and the message ab-
sence detection period is bounded by[Tma/(1 + ε), Tma/(1− ε)].

Message jitter
We define for each linksj , uj in the cascade a map∆li mapping di-
rect links, i. e. links between adjacent nodes, to their corresponding
worst casemessage jitters, assuming that some adequate method
for analysis is available2. The minimum and maximum message
latencies for direct or indirect links(Ni, Ni′) will be denoted as
dmin(i, i′), dmax (i, i′), respectively, such that

dmax (i, i′)− dmin(i, i′) =
∑
sj∈Li(N) ∆li(sj) (1)

holds for all(N,N ′).
The message jitter summarizes the end-to-end jitter from the in-

stant the send/receive phase at the parent is activated until the child
node’s activation time. The worst-case jitter will typically include
(1) execution time jitter of the sender’s send/receive code, (2) queu-
ing jitter at the sender, (3) communication jitter of the medium, (4)
response time jitter of the receiver’s task.

Because the message jitter includes the queuing jitter at the
sender, the bound may be invalid if the communication medium
is not accepting messages (e. g. due to unforeseen overload condi-
tions or external disturbances). We therefore assume the existence
of a simplecommunication layerthat enforces the predetermined
queuing interval by retracting the message when the precomputed
worst-case queuing time is overrun. Note that this typically re-
quires the layer to have some access to lower-layer operations of
the controller.3

For correct operation of the cascade, the end-to-end jitter from
the master to any node must be bounded:

DEFINITION 6 (BOUNDED SYNC. MESSAGE JITTER).
Let Li(N) denote the set of all synchronizing links that form a
path from the master to the nodeN . The network is said to have a
bounded synchronizing message jitteriff

∀N ∈ N .
∑
sj∈Li(N) ∆li(sj) < min

(
T −Q

2
,
T (1− 5ε)

2

)

This bound should be satisfiable for a large number of practical ap-
plications. For instance, in an automotive case study described in
2For the CAN protocol, the analysis described in [9] yields both
bounds for worst-case response times and message jitters on the
bus.
3In the case of the CAN protocol, the two most popular controller
ICs (Intel 82527 and Philips 82C200) allow to retract messages
after they have been put in the send buffer

196

[9], for the case of a 1MBit/s CAN bus, most high-priority mes-
sages have a jitter of around10−3s, so forε = 10−6, T = 10−2s,
andQ = T/20, cascades up to depth 4 (four synchronizing links
between master and the “farthest” node) are possible.

Message loss
The synchronization mechanism has to meet certain fault tolerance
requirements. A typical fault in event-triggered real-time systems
is the loss of a message: the loss can be caused by the sender when
aborting a send operation (e. g. if the queuing delay is longer than
expected, and a newer value is available), or by the communication
medium itself. Seen more abstractly, we can associate message
loss with theinput/output behavior of a linkin the cascade. The
following definition will capture this:

DEFINITION 7 (I/O FUNCTION OF A (DIRECT) LINK). For a
given execution of a cascade, theI/O function of a linkl ∈ S ∪ U ,
writtenfl, is defined as the function mapping the sequence of mes-
sages written by the sender’s program to the sequence of messages
arriving at the receiver node, where the special output symbol⊥
indicates a lost message.

DEFINITION 8 (I/O FUNCTION OF AN INDIRECT LINK). For
a given execution of the cascade, theI/O function of an indirect link
l = l1→ l2→· · ·→ lm, whereli ∈ S ∪ U and l1 and lm are the
first and last links in the direction of message flow, respectively, is
defined as the composition of the individual links’ I/O functions:

fl = flm ◦ · · · ◦ fl2 ◦ fl1
Using these definition, alossylink models both message loss due
to the sender’s communication layer aborting the send, and due to
the medium losing messages. In order to defineboundedmessage
losses, we will use the definition ofn-bounded lossy channels from
Section 2 to capture the condition that a cascade may suffer from a
bounded number of message losses on each of its direct and indirect
synchronizing links.

DEFINITION 9 (n-BOUNDED LOSSYCASCADE). A cascade
with masterN0 is ann-bounded lossy cascadeiff, for all execu-
tions of the cascade, for all direct and indirect synchronizing links
fromN0 to nodesN ∈ N , the link’s input/output function is an
n-bounded lossy channel.

3.3 Choice of Parameters
This section gives some predefined values for the parameters

Tma andnpf used by the send/receive phase activation algorithm.
Tma is chosen such that loss of the synchronizing messages cause
the receiver’s activations to be delayed byT/2 w.r.t. the master’s
activation instants, whilenpf results from an analysis of the maxi-
mum number of lost messages that can be tolerated by the synchro-
nization algorithm:

Tma =
3

2
T, (2)

npf = max
N∈N

(⌊
1

4Tε

(
T −

(
2
∑
sj∈Li(N) ∆li(sj)

+ max(2Q,Tε)
))⌋)

, (3)

where the computed value fornpf is required to be positive. For
ε << 1, Q << T , the choice forTma can be shown to be very
close to an optimally robust assignment, so that a maximal number
of lost synchronizing messages can be tolerated in the presence of
clock drifts. We will demonstrate in the next section that, for our
assignment forTma , the cascade indeed satisfies this robustness
requirement for annpf -bounded number of lost messages.

3.4 Analysis of Operational Modes
This section will provide an analysis of the different operational

modes of the cascade: operation undernormal conditions, opera-
tion undertransient fault conditions, and operation underperma-
nent fault conditions. For normal operation, we will show that
all non-masters remain in stateEXTERNALLY_TRIGGERED, while
under transient fault conditions, it will be shown that non-masters
never enter stateSELF_TRIGGERED.

The following two definitions deal with the property ofsynchro-
nization– the offset of the node’s activation instant w.r.t. the mas-
ter’s activation instant is bounded – andreceptiveness– an assertion
about the principal ability of a node to receive the synchronizing
message for the current step during its receptive interval. Note that
for forwarding a synchronizing message over the entire length of
an indirect link,all nodes along the link have to be receptive.

DEFINITION 10 (j-SYNCHRONIZATION). For a nodeNi and
a stepj ∈ N0, the statement “Ni is j-synchronized” corresponds
to the property

dmin(0, i) ≤ ti,j − t0,j ≤ dmax(0, i) (4)

Nodes inN are assumed to be0-synchronized (proper initializa-
tion of the cascade). Furthermore, we define that the master node
N0 is j-synchronized for allj ∈ N0. Again,j-synchronization is
extended to sets of nodes and indices.

DEFINITION 11 (j-RECEPTIVENESS). For a nodeNi and a
stepj ∈ N, the statement “Ni is j-receptive” corresponds to the
three properties

t0,j + dmin(0, i) > ti,j−1 +Q, (5)

(j − 1)−synchronized(Ni) =⇒
t0,j + dmax (0, i) < ti,j−1 +

Tma
1 + ε

, (6)

¬(j − 1)−synchronized(Ni) =⇒
t0,j + dmax (0, i) < ti,j−1 +

T

1 + ε
, (7)

whereTma/(1 + ε) is the minimum message absence detection
period defined in Section 3.2. The master nodeN0 is defined to
be j-receptive for allj ∈ N. j-receptiveness is extended to sets
of nodesN ′ ⊆ N and to sets of indicesJ ⊆ N such thatN ′ is
j-receptive iff all of its members are, andNi is J-receptive iffNi
is j′-receptive for all membersj′′ ∈ J .

DEFINITION 12 (NORMAL OPERATING CONDITIONS). A cas-
cade is said to be undernormal operating conditionsiff it is 1-
bounded lossy, and theε-bounded clock drift assumption holds.

LEMMA 1. LetNi be a non-master node in a cascade. Thenj-
receptiveness ofNi and arrival of a synchronizing message in step
j atNi imply j-synchronization ofNi.

PROOF. By Definition 11, it follows fromj-receptiveness ofNi
that, if a synchronization message originating fromN0 arrives at
Ni for stepj, it is received during the receptive interval ofNi,
leading to an activation ofNi at ti,j . According to our assumption
about the communication medium, the differenceti,j − t0,j is then
bounded by[dmin(0, i), dmax(0, i)], soj-synchronization holds for
Ni.

197

LEMMA 2. Let N be a non-master node in a cascade un-
der normal operating conditions. Thenj-receptiveness ofN and
Par(N) imply j-synchronization ofN .

PROOF. Straightforward adaptation of Lemma 1: Normal op-
erating conditions ensure that the direct or indirect synchronizing
link to N is 1-bounded lossy, so synchronizing messages fromN0

are never lost. BecauseN0 will send a message in every stepj,
and bothN andN ’s parent nodes arej-receptive, a synchronizing
message will be received byN in its receptive interval for allj.

LEMMA 3. LetN be some non-master node in a cascade under
normal operating conditions. Then(j − 1)-synchronization ofN
impliesj-receptiveness ofN .

A detailed proof is given in the appendix. Intuitively, it suf-
fices to show that, givenj-receptiveness ofPar(N) and j − 1-
synchronization ofN , messages will always arrive after the quiet
interval has elapsed atN , and beforetimer of N reachesTma. It
is sufficient to examine two corner cases, where (1)N0’s clock is
“fast”, N ’s clock is “slow”, the synchronizing message atj−1 has
maximum latency, and the synchronizing message atj has mini-
mum latency, and (2)N0’s clock is “slow”, N ’s clock is “fast”,
the synchronizing message atj − 1 has minimum latency, and the
synchronizing message atj has maximum latency.

LEMMA 4. Under normal operating conditions, all nodes inN
are j-receptive andj-synchronized for allj.

PROOF. Double induction over the index set forj, and over the
nodes on the path fromN0 to given nodeN ∈ N , using Lemmas
2 and 3.

THEOREM 1. Under normal operating conditions, a non-master
nodeN will always remain in stateEXTERNALLY_TRIGGERED.

PROOF. We observe thatN is initialized to stateEXTERNAL-
LY_TRIGGERED. Because of Lemma 4,N is j-receptive for allj,
we conclude from Definition 11 that the precondition for leaving
stateEXTERNALLY_TRIGGERED, timeri = Tma , will never hold.
Therefore, the only reachable state forN is EXTERNALLY_TRIG-
GERED.

In case of temporary message losses, the network is operating
under transient fault conditions: nodes affected by loss of their
synchronizing message may transition temporarily to stateMES-
SAGE_ABSENT. We can show, however, that a given node will al-
ways re-synchronize itself with the master, andcount never reaches
npf . As a consequence, the node will never enter stateSELF_TRIG-
GERED.

DEFINITION 13 (TRANSIENT FAULT CONDITIONS).
A cascade is said to operate undertransient fault conditionsiff

it is npf -bounded lossy, and theε-bounded clock drift assumption
holds.

LEMMA 5. LetN be some non-master node in a cascade under
transient fault conditions. Then if there exists ann, 1 ≤ n ≤ npf ,
such thatN is (j − n)-synchronized, thenN is j-receptive.

Again, the details of the proof can be found in the appendix. It
demonstrates that, for anyn′ such that1 ≤ n′ ≤ npf , if a nodeN
has performedn′ − 1 unsynchronized cycles, synchronizing mes-
sages will arrive after the quiet interval has elapsed, and before

timer of N reachesT . Similarly to Lemma 3, the two corner cases
are: (1)N0’s clock “fast”, N ’s clock “slow”, synchronizing mes-
sage atj − n with maximum latency, synchronizing message at
j with minimum latency, and (2)N0’s clock “slow”, N ’s clock
“fast”, synchronizing message atj−1 with minimum latency, syn-
chronizing message atj with maximum latency.

LEMMA 6. LetN be some non-master node in a cascade under
transient fault conditions. Then for a given stepj > npf , let J =
{j − npf , . . . , j − 1} be a set of successive step indices. IfN and
Par(N) areJ-receptive, then there is at least onej′′ ∈ J such that
N is j′′-synchronized.

PROOF. Transient fault conditions imply that the synchronizing
link from N0 parent toN is npf -bounded lossy. According to our
definition for the node’s behavior,N0 will send a synchronization
message in every step. Then from Definition 9, it is clear thatN
receives a synchronizing message for at least onej′′ ∈ J , and so
Lemma 6 is a direct adaptation of Lemma 1.

LEMMA 7. Under transient fault conditions, all nodes inN are
j-receptive for allj.

PROOF. The proof is again by double induction overjs in the in-
dex set, and over the nodes on the paths fromN0 to nodesN ∈ N .

(1 – base case)∀j.j-receptive(N0):
By Definition 11.

(2 – induction step)(∀j.j-receptive(Par(N))) =⇒ (∀j.j-
receptive(N))):
Split into cases (2a) and (2b) for the inner induction.

(2a – base case)
∀j ≤ npf .j-receptive(N):
By Definition 10,N is 0-synchronized. So there exists ann ≤ npf

such thatN is (j − n)-synchronized and, By Lemma 5,N is j-
receptive.

(2b – induction step)
∀j > npf . ({j − npf , . . . , j − 1}-receptive(Par(N))

∧ {j − npf , . . . , j − 1}-receptive(N))
=⇒ j-receptive(N) :

BecauseN and Par(N) are j′-receptive for allj′ ∈ {j −
npf , . . . , j−1}, we know by Lemma 6 that there exists ann ≤ npf

such thatN is (j − n)-synchronized. But this is just the precondi-
tion for Lemma 5, soN is j-receptive.

THEOREM 2. Under transient fault conditions, a non-master
node will never enter stateSELF_TRIGGERED.

PROOF. By Lemma 7, the non-master node will be always re-
ceptive when receiving a synchronizing message. Therefore, each
arriving synchronizing message is received. Transient fault condi-
tions guarantee that the medium loses at mostnpf − 1 subsequent
messages. Consequently,count never reachesnpf , so the precondi-
tion count≥ npf for transitioning to stateSELF_TRIGGERED will
never hold.

We denote aspermanent fault conditionsall other operating condi-
tions, such as non-npf -bounded lossy cascades, violation of theε-
bounded clock drift assumption, or complete failure of nodes. Be-
havior of the cascade under such conditions will not be discussed
in the scope of this paper.

198

4. PROPERTIES
This section defines some essential requirements that a synchro-

nization cascade has to satisfy for distribution of synchronous pro-
grams in medium-criticality applications, and demonstrates the cor-
responding formal properties.

4.1 Requirements

P -reactivity
Distributed real-time control applications typically containperi-
odic, reactiveparts which continually compute output values from
a given input. Because inputs may originate from other nodes, it
is highly desirable to provide an architecture that allows reactive
programs to safely synchronize their local processing with commu-
nication on the medium, eliminating the needs for special “watch-
dogs” or similar mechanisms. We will define a property calledP -
reactivity which captures the fact that a node performs communi-
cation actions with a certain minimal frequency. Local processing
can therefore be triggered by the communicatin handler

DEFINITION 14 (P -REACTIVITY). A nodeNi is calledP -
reactive for someP ∈ R+ iff, for all possible executions ofNi
and for all instantst, there is at least one activation instant for a
send/receive phase in the time interval[t, t+ P).

Unit delay and length preserving channels
Semantically correct deployment of a synchronous specification
warrants that the communication channels provided by the com-
munication layer are valid implementations of the corresponding
abstract channels in the specification. As will be indicated in Sec-
tion 4.4, we will use unit delay channels as our model for an ab-
stract channel. Breaking down the original requirements for the
cascade from Section 1 to the implemenation of channels, the
cascade should (1) provide a valid implementation of unit de-
lay channels under normal operating conditions, and (2) provide
some limited service, including synchronization, under transient
fault conditions. The synchronization service can be abstracted
as a lossy channel with the1-length-preserving property. Length-
preservation then captures the fact that sender and receiver never
get “out of sync”.

In the following, we will show that the cascade indeed satisfies
the stated requirements.

4.2 Properties of Synchronization Cascades

PROPOSITION 1. Under normal operating conditions or tran-
sient fault conditions, all nodes are(Tma/(1− ε))-reactive.

By definition of timer_task in Fig. 3,Ni is activated at least every
Tma time units (measured by its physical clock) in all of the three
possible statesEXTERNALLY_TRIGGERED, MESSAGE_ABSENT,
SELF_TRIGGERED. Because the bounded clock drift assumption
holds under normal and transient fault conditions, the worst case of
a “slow” physical clock isdtimeri/dt = 1−ε. In physical time, the
greatest interval in between activations is thereforeTma/(1 − ε).

PROPOSITION 2. Under normal operating conditions, the in-
put/output behavior of a synchronizing link is a unit delay channel.

For an intuitive treatment, there are four parts constituting the unit
delay channel property: (1) every message sent by the sender must
be accepted by the communication medium, (2) once accepted, the

message must reach the receiver, (3) the cascade receiver must be
receptive, (4) a message computed at stepj at the sender is pro-
cessed at stepj + 1 at the receiver. (1) and (2) are guaranteed
by the 1-bounded message loss assumption. (3) and (4) are direct
consequences of Lemma 4.

PROPOSITION 3. Under normal operating conditions or tran-
sient fault conditions, the input/output behavior of a synchronizing
link is a1-length-preserving channel.

In the case of normal operating conditions, the1-length-preserving
property results from Proposition 2. For transient fault conditions,
the fact that the synchronizing link itself is1-length-preserving fol-
lows from Lemma 6: letN,N ′ be the sender and receiver of the
synchronizing message, respectively. For a given stepj, there are
two possibilities: (1) if the synchronizing message is not lost in step
j, thenN andN ′ will both bej-synchronized. They will therefore
agree on the step number, andN ′ will process in stepj the result
of N ’s computation at stepj − 1, so the channel’s behavior may
be characterized as a unit delay for stepj. (2) if the synchronizing
message is lost in stepj, thenN ′ will detect a⊥ symbol each time
N emits a synchronizing message. In both cases, the input/output
behavior of the link constitutes a1-length-preserving channel.

4.3 Nonsynchronizing messages
In the discrete-time abstraction of the synchronous programs,

synchronizing messages correspond to messages withdeterminis-
tic timing: if the sender component has computed the synchroniz-
ing message at stepj, the synchronizing message will always be
processed by the receiver component at stepj+ 1 in normal opera-
tion. This is why abstracting the link as a (deterministic) unit delay
channel in the synchronous program, as shown in the Section 4.2,
is justified for synchronizing links.

For nonsynchronizing links, the deterministic delay channel ab-
straction may not always be valid. A nonsynchronizing message
computed in stepj by a sender node may reach a receiver node at
stepsj, j + 1, . . . , depending on the timing of activations of the
two nodes, and the timing of messages on the synchronizing link.
Fortunately, best/worst-case analysis, such as in [9], can be used in
theory to ensure thatsomenonsynchronizing messages have deter-
ministic timing. For other messages, it may be necessary to either
add some flow control mechanism to the communication layer, or
to account for the nondeterminism in the discrete-time abstraction.

4.4 Mapping Synchronous Programs to Cas-
cades

Consider the simple network in Fig.4(a): The network includes
components{A,B,C,D}, and unit delay channelspre in between
components.A sends messages through signalb to componentB,
and through signalc to componentC. B sends messages to D
(signald1), C sends messages through signald1 to componentD,
and toA through signala. The dataflow network is mapped to
the cascade of Fig. 1 with the mapping{(A,n0), (B,n1), (C, n2),
(D,n3)} Fig. 4(b) shows a depiction of the resulting cascade. The
resulting distribution is correct for normal operation if the two non-
synchronizing channelsu1, u2 have deterministic unit-delay be-
havior. Note that the synchronization messages carry values that
the distributed program needs to communicate. If, for a given sys-
tem step, no such value needs to be communicated, an empty mes-
sage with no relevant data must be used as a synchronizing mes-
sage.

199

A

B C
a

b

D

d'1

d2

pre

b'

c
pre

c' pre

pre

a'

pre
d

1

d'
2

(a) Dataflow network

(c,s
2
)N0

N1 N2

N
3

A

B C

D

(b,s
2
)

(d
2
,s

3
)(d

1
,u

1
)

(a,u
2
)

N
0

N
1

N
2

N
3

(b) Deployed
dataflow network

Figure 4: Mapping a dataflow network to a cascade

5. CONCLUSION
Our method of distribution relies on the existence of delays at

the partitioning boundaries in the specification. Clearly, intro-
duction of such delays is somewhat implementation-driven: an
“ideal” platform with infinite resources would not require delays
in the model, except for breaking causal loops. Bottom-up in-
troduction of delays will in most cases necessitate a re-validation
of the entire design, and is in conflict with the idea of having
implementation-independent synchronous specifications. We pro-
pose in [1] a methodology which enforces introduction of delays
at the boundaries of (abstract) software components at early design
stages, thus ensuring both implementation-independence and parti-
tionability of the specification.

In comparison to the LTTA approach of Benveniste et. al. [3],
synchronization cascades are designed for protocols with restricted
availability, while in LTTA, the bus is assumed to be ideally avail-
able. LTTA links may be abstracted as deterministic channels,
while in cascades, even under normal conditions, some unsynchro-
nized links may exhibit nondeterministic behavior. In cascades, the
activation timing of non-master nodes always depends on the mas-
ter node, and is roughly periodic. This is also true if synchronous
programs with (delayed) feedback loops are deployed onto a cas-
cade. For LTTA networks, convergence of the activation frequen-
cies for periodic, length-preserving programs with feedback is not
obvious from [3]4.

For the special case of the CAN protocol, Time-Triggered CAN
(TTCAN) [6] is a CAN-based synchronization layer which, in its
Level 1 stage, does not rely on additional hardware for synchro-
nization, similar to cascades. Arbitration in TTCAN is primarily
based on static assignment of message slots. An interesting ques-
tion is whether existing unsynchronized nodes can be integrated
with the synchronized network: In TTCAN, unsynchronized nodes
may only have read access to the bus, while in a CAN-based cas-
cade, full read/write interoperation is possible if the messages sent
by unsynchronized nodes are included in the message jitter analysis
in Section 3.2.

High-precision clock synchronization algorithms such as [10]
are well-studied. This kind of algorithm provides a high-precision
synchronization, where clocks are synchronized within an inter-

4Consider a periodic synchronous program with (delayed) feed-
back loop deployed onto an LTTA with nodesN1, N2: If the se-
quence sent byN1 has periodic timing, the timing of the received,
decoded sequence atN2 is usually aperiodic becauseN2’s alter-
nating bit decoder will occasionally drop duplicate messages. For
providing a periodic feedback sequence toN1,N2 must either send
duplicate messages, or adjust its send rate to the average frequency
of the decoded sequence, and vice versa forN1. It is unclear how
the actual periods ofN1 andN2 converge in such cases.

val in the range of∆(1 − 1/|N |), with |N | the number of nodes,
while cascades are merely synchronized in the range ofT/2, with
T as the base period. However, we claim that our design of a syn-
chronization cascade is more specifically suited to the requirements
outlined in Section 1: For instance, Welch and Lynch’s algorithm
requires|N |2 synchronization messages for each round vs.|N |−1
messages for a cascade. Welch and Lynch’s algorithm uses explicit
synchronization rounds, where the synchronization messages could
potentially block other real-time traffic on the medium. Cascades,
on the other hand, provide synchronization using the regular real-
time traffic of the distributed program. We also claim that theT/2
precision may be sufficient in cases where synchronization is im-
portant for correct, timely implementation of the distributed pro-
gram’s semantics, but a precise absolute global time base is not
necessary.

Our next goals will be an experimental evaluation of the method
along with some tool support [7], and the definition of a fault-
modular variant of the cascade, where subtrees within the cascade
can safely retain their relative synchronization in the case of master
faults.

Acknowledgements
Thanks to Bernhard Schätz and the anonymous reviewers for help-
ful comments on an earlier version of this paper.

6. REFERENCES
[1] A. Bauer and J. Romberg. Model-based deployment: From a

high-level view to low-level code. InProceedings of the 1st
International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MOMPES), Hamilton,
Canada, June 2004.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L.
Guernic, and R. D. Simone. The synchronous languages
twelve years later.Proceedings of the IEEE, 2003.

[3] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P.
Talpin, and S. Tripakis. A protocol for loosely time-triggered
architectures. InProceedings of EMSOFT 2002.
Springer-Verlag, 2002.

[4] M. Broy and K. Stølen.Specification and Development of
Interactive Systems. Springer, 2001.

[5] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of
reactive systems for asynchronous networks of processors.
IEEE Transactions on Software Engineering, 25(3):416–427,
May/June 1999.

[6] T. Führer, B. Müller, F. Hartwich, and R. Hugel. Time
triggered CAN (TTCAN). InSAE 2001, Detroit. SAE
number 2001-01-0073.

[7] F. Huber, B. Schätz, and G. Einert. Consistent Graphical
Specification of Distributed Systems. In J. Fitzgerald,
C. Jones, and P. Lucas, editors,Industrial Applications and
Strengthened Foundations of Formal Methods (FME’97),
LNCS 1313, pages 122–141. Springer Verlag, 1997.

[8] H. Kopetz.Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer, Boston, 1997.

[9] K. Tindell and A. Burns. Guaranteeing message latencies on
controller area network (CAN). InProceedings 1st
International CAN Conference, September 1994.

[10] J. Welch and N. Lynch. A new fault-tolerant algorithm for
clock synchronization.Information and Computation,
77(1):1–36, 1988.

200

APPENDIX
Upper and Lower Bounds
We will use the following properties for working with upper and
lower bounds: LetS be a set, letF,G : S → R be functions from
S to the reals such that upper and lower bounds exist forF,G,
and letmins∈S(F (s)) andmaxs∈S(F (s)) be the lower and up-
per bounds ofF on S, respectively. Furthermore, letC be some
constant. Then the following properties hold:

max
s∈S

(C) = C (8)

min
s∈S

(C) = C (9)

max
s∈S

(F (s) +G(s)) ≤ max
s∈S

(F (s)) + max
s∈S

(G(s)) (10)

min
s∈S

(F (s) +G(s)) ≥ min
s∈S

(F (s)) + min
s∈S

(G(s)) (11)

max
s∈S

(−F (s)) = −min
s∈S

(F (s)) (12)

min
s∈S

(−F (s)) = −max
s∈S

(F (s)) (13)

max
s∈S

(F (s)) < min
s∈S

(G(s)) =⇒ ∀s ∈ S.F (s) < G(s) (14)

max
s∈S

(F (s)) ≤ min
s∈S

(G(s)) =⇒ ∀s ∈ S.F (s) ≤ G(s) (15)

Proof of Lemma 3
For j-receptiveness ofN , Equations 5 (case (1)) and 6 (case (2))
must hold.

(1) We can rewrite Equation 5 as

Q+ (ti,j−1 − t0,j−1) < dmin(0, i) + (t0,j − t0,j−1).

This condition is quantified over all possible executions of the cas-
cade under normal operating conditions: we indicate the set of such
executions withNOC . Using Equations 8–15, we eliminate the
quantification and use lower/upper bounds instead:

Q+ max
(NOC)

(ti,j−1 − t0,j−1) < dmin(0, i) + min
(NOC)

(t0,j − t0,j−1).

From Section 3.2, it follows thatT/(1 + ε) is a lower bound for
t0,j − t0,j−1. BecauseN is (j − 1)-synchronized by assump-
tion, the bounded message jitter property from Section 3.2 yields
max(NOC)(ti,j−1 − t0,j−1) = dmax(0, i). Substituting and using
Equation 1, the following must hold:

Q+
∑
sj∈Li(Ni) ∆li(sj) <

T

1 + ε
.

Using the(T−Q)/2 bound for the message jitter from Definition 6,
we have to show

Q+
T −Q

2
<

T

1 + ε
.

Solving for Q yields the condition (0 ≤ ε < 1)

Q < T

(
1− ε
1 + ε

)
,

which holds forQ < T · (1− 2ε), 0 ≤ ε < 1. This proves case 1.
(2) By assumption, it is true that(j − 1)-synchronized(N).

Rewriting Equation 6 and using upper/lower bounds yields:

Tma

1+ε
+ min

(NOC)
(ti,j−1 − t0,j−1)>max

(NOC)
(t0,j − t0,j−1)+dmax(0, i)

With T/(1− ε) as an upper bound fort0,j − t0,j−1, dmin(0, i) as
a lower bound for(ti,j−1 − t0,j−1), and Equation 1, we obtain:

Tma

1 + ε
>

T

1− ε +
∑
sj∈Li(Ni) ∆li(sj).

Substituting our choice forTma from equation 2 and solving for∑
sj∈Li(Ni) ∆li(sj) with 0 ≤ ε < 1 yields:∑

sj∈Li(Ni) ∆li(sj) <
T (1− 5ε)

2(1− ε2)
.

For 0 ≤ ε < 1, this inequation follows from Definition 6. This
proves case 2.

Proof of Lemma 5
By assumption, there exists ann ∈ {1, . . . , npf } such thatN is
(j − n)-synchronized. Letn′ be the smallest suchn. Then for
j-receptiveness ofN , Equations 5 (case (1)) and 6 (case (2)) must
hold.

(1) We distinguish cases (1a) (N is (j − 1)-synchronized) and
(1b) (N is (j − n′)-synchronized, and2 ≤ n′ ≤ npf).

(1a) See case (1) of the proof for Lemma 3.
(1b) We can rewrite Equation 5 as

Q+ (ti,j−1 − t0,j−1) < dmin(0, i) + (t0,j − t0,j−1).

The equation is implicitly quantified over the set of executions un-
der transient fault conditions,TFC . Quantification is removed by
taking upper/lower bounds:

Q+ max
(TFC)

(ti,j−1 − t0,j−1) < dmin(0, i) + min
(TFC)

(t0,j − t0,j−1).

(16)

For obtaining an upper bound forti,j−1− t0,j−1, we split the term
ti,j−1 − t0,j−1 using the identity

ti,j−1 − t0,j−1 = (ti,j−n′ − t0,j−n′)
+(ti,j−1 − ti,j−n′)
−(t0,j−1 − t0,j−n′).

Taking the maximum over executionsTFC , and using Equations
8–13, we obtain

max
(TFC)

(ti,j−1 − t0,j−1) ≤ max
(TFC)

(ti,j−n′ − t0,j−n′)

+ max
(TFC)

(ti,j−1 − ti,j−n′)

− min
(TFC)

(t0,j−1 − t0,j−n′),

which can be resolved as follows:

• max(TFC)(ti,j−n′ − t0,j−n′):
We observe that, by assumption of Lemma 5 and using the
right-hand side condition of Equation 4,ti,j−n′ − t0,j−n′ ≤
dmax(0, i). Therefore,dmax(0, i) is a valid upper bound.

• max(TFC)(ti,j−1 − ti,j−n′):
According to the operational definition ofN ,N will first de-
tect a message absence (yieldingTma/(1 − ε) as an upper
bound for the duration of cyclej − n′) and then perform
n′ − 2 unsynchronized steps (yielding an upper bound of
(n′ − 2) · T/(1 − ε) for the remaining cycles). The total
upper bound isTma/(1− ε) + (n′ − 2) · T/(1− ε).
• min(TFC)(t0,j−1 − t0,j−n′):

The lower bound for the duration ofn′−1 cycles of the master
is (n′ − 1) · T/(1 + ε).

We substitute the upper bound forti,j−1− t0,j−1 into Equation 16,
and useT/(1+ε) as a lower bound fort0,j−t0,j−1 and Equation 1
for dmax−dmin. Then the following property remains to be shown:

Tma
1− ε + (n− 2)

T

1− ε +Q+
∑
sj∈Li(Ni) ∆li(sj) < n′

T

1 + ε
.

201

Solving forn′ results in the condition (0 ≤ ε < 1, T > 0):

n′ <
1

4Tε

(
T (1 + ε)−

(
2Q+ 2

∑
sj∈Li(Ni) ∆li(sj)

)
(1− ε2)

)
.

For0 ≤ ε < 1, this holds if

n′ <
1

4Tε

(
T −

(
2Q+ 2

∑
sj∈Li(Ni) ∆li(sj)

))
.

This follows fromn′ ≤ npf and Equation 3, so we’re done for case
1.

(2) We distinguish cases (2a) (N is (j − 1)-synchronized) and
(2b) (N is (j − n′)-synchronized and2 ≤ n′ ≤ npf).

(2a) See case (2) of the proof for Lemma 3.
(2b) For this case, it is true that¬(j − 1)-synchronized(N).

Rewriting Equation 7 and using upper/lower bounds yields:

T

1+ε
+ min

(TFC)
(ti,j−1 − t0,j−1)>max

(TFC)
(t0,j − t0,j−1)+dmax(0, i).

(17)

A lower bound forti,j−1− t0,j−1 is again found by splitting up the
term and using Equations 8–13:

• min(TFC)(ti,j−n′ − t0,j−n′):
By assumption of Lemma 5 and using the left-hand side con-
dition of Equation 4,ti,j−n′ − t0,j−n′ ≥ dmin(0, i), so
dmin(0, i) is a valid lower bound.

• min(TFC)(ti,j−1 − ti,j−n′):
N will first detect a message absence (lower boundTma/(1+
ε)) and then performn′ − 2 unsynchronized steps (lower
bound(n′ − 2) · T/(1 + ε) for the remaining cycles). The
total lower bound isTma/(1 + ε) + (n− 2) · T/(1 + ε).

• max(TFC)(t0,j−1 − t0,j−n′):
The upper bound for the duration ofn′−1 cycles of the master
is (n′ − 1) · T/(1− ε).

With T/(1− ε) as an upper bound fort0,j − t0,j−1 and Equation
1, substituting the above bounds into Equation 17 yields:

Tma
1 + ε

+ (n′ − 1)
T

1 + ε
> n′

T

1− ε +
∑
sj∈Li(Ni) ∆li(sj).

Solving forn′ yields (0 ≤ ε < 1, T > 0):

n′ <
1

4Tε

(
T (1− ε)− 2

∑
sj∈Li(Ni) ∆li(sj)(1− ε2)

)
.

For0 ≤ ε < 1, this constraint is satisfied if

n′ <
1

4Tε

(
T (1− ε)− 2

∑
sj∈Li(Ni) ∆li(sj)

)
.

Again, forn′ ≤ npf , this follows from Equation 3. This concludes
the proof for case 2.

202

	Introduction
	Dataflow Synchronous\ Specifications
	Synchronization Cascades
	Terminology
	Environment assumptions
	Choice of Parameters
	Analysis of Operational Modes

	Properties
	Requirements
	Properties of Synchronization Cascades
	Nonsynchronizing messages
	Mapping Synchronous Programs to Cascades

	Conclusion
	REFERENCES -9pt

