Variable Latency Speculative Addition:
A New Paradigm for Arithmetic Circuit Design

Ajay K. Verma
AjayKumar.Verma@epfl.ch

Philip Brisk
Philip.Brisk@epfl.ch

Paolo Ienne
Paolo.lenne @epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland

Abstract

Adders are one of the key components in arithmetic circuits.
Enhancing their performance can significantly improve the qual-
ity of arithmetic designs. This is the reason why the theoretical
lower bounds on the delay and area of an adder have been anal-
ysed, and circuits with performance close to these bounds have
been designed. In this paper, we present a novel adder design that
is exponentially faster than traditional adders; however, it pro-
duces incorrect results, deterministically, for a very small fraction
of input combinations. We have also constructed a reliable ver-
sion of this adder that can detect and correct mistakes when they
occur. This creates the possibility of a variable-latency adder that
produces a correct result very fast with extremely high probabil-
ity; however, in some rare cases when an error is detected, the
correction term must be applied and the correct result is produced
after some time. Since errors occur with extremely low probability,
this new type of adder is significantly faster than state-of-the-art
adders when the overall latency is averaged over many additions.

1 Introduction and Motivation

Binary addition is one of the most frequently used arithmetic
operations. It is a vital component in more complex arithmetic
operations such as multiplication and division. Researchers have
established lower bounds on the delay and area of the adder [8].
In particular, An n-bit adder must have a delay 2(log) and area
Q(n). Certain adders having delay and area of the same complex-
ity as the ones mentioned above have been presented in literature:
A Ripple Carry Adder requires a linear number of gates, and fast
adders such as Carry Look-Ahead Adders (CLA), Prefix Adders
etc. have logarithmic delays. These bounds indicate that no reli-
able adder can be implemented with sub-logarithmic delay; how-
ever, unreliable adders can be implemented with sub-logarithmic
delay. Unreliable adders could, for example, be used in the do-
main of cryptographic attacks; alternatively, reliable adders could
be constructed from unreliable adders by augmenting them with
additional circuitry for error detection and correction.

This paper has two major contributions: first, we design an ex-
tremely fast unreliable adder that produces correct results for the
vast majority of input combinations. For brevity, we will call this

978-3-9810801-3-1/DATE08 © 2008 EDAA

adder an Almost Correct Adder (ACA). The second contribution
is to design a correct adder, called a Variable Latency Specula-
tive Adder (VLSA), which uses an ACA as a component. Similar
in principle to speculative execution, the VLSA will produce the
ACA result, and a signal indicating whether the result is correct or
incorrect after a delay that is much shorter than the delay of a fast
traditional adder. This result will be correct in the vast majority of
cases. In the event that an error occurs, the error will be corrected,
and the correct result will be produced several cycles later, assum-
ing a pipelined implementation of the VLSA. The VLSA could be
implemented in a purely combinatorial fashion as well, if desired.

Contrary to what one may expect, the first contribution is not
futile. Applications do exist that can use an incorrect adder with-
out compromising the final result. One such class of applications
are those that attempt to deduce a conclusion by repeating some
operations on many different inputs. If the conclusion is not sensi-
tive to the result of the operation on any individual input, then the
small percentage of incorrect results will not adversely affect the
outcome, while speeding up the application significantly.

One such application domain, which occurs in cryptography,
is Ciphertext-Only Attacks, in which an attacker has access to a
large set of encrypted text. The attack is successful if the private
key is deduced, or if the encrypted plaintext is retrieved. The most
commonly ciphertext-only attacks rely on a frequency analysis,
i.e., the fact that in a normal text of any language certain char-
acters and combinations of characters occur more frequently than
others. For example, in English, character e’ occurs with 12.7%
frequency, while character *x” occurs with 0.15% frequency. The
attacker deduces a key by first pruning the set of potential keys,
and then exhaustively enumerates the decryption procedure using
each of the potential keys. Any key for which the deciphered text
has a frequency of characters that is similar to what is expected,
the key is considered to be valid, and is then analysed using more
sophisticated methods.

The success and speed of such an attack depends on the amount
of ciphertext provided and the number of keys tried. Speeding
up the decryption process will significantly reduce the runtime of
an attack. Many encryption algorithms first divide the plaintext
into fixed-size blocks, which are then encrypted individually with
the same key. Similarly, in decryption decrypted blocks are con-
catenated to get the plaintext. Thus, the incorrect decryption of
an individual block in a large corpus of text is unlikely to reduce
the overall efficacy of the attack due to the fact that an individual
block cannot change the frequencies of characters significantly. If

an ACA is used in place of a full adder in the context of such
an attack, decryption, with an extremely high probability of suc-
cess, could be performed significantly faster. A few blocks may be
decrypted wrongly; however, once the correct key has been iden-
tified, a correct adder can be used to fix any incorrect blocks of
text.

The second contribution, meanwhile, is relevant to general ap-
plications where correct results are demanded. The VLSA uses an
ACA to produce the sum, but it also checks if the output of the
ACA is correct. If the sum is incorrect, an error recovery mech-
anism is invoked to correct the sum. This occurs with extremely
low probability, so the average latency of the VLSA is practically
the same as an ACA.

The remainder of the paper focusses on the design of the ACA
and VLSA. The next section discusses related work on fast adders.
The following section formally introduces the ACA, and analyses
its performance and error probability. Section 4 discusses how to
build a reliable VLSA using the ACA. Last, we present results in
Section 5 followed by conclusions and future work.

2 State of the Art

Depending on the performance metric, several designs have
been proposed for binary addition. The Ripple Carry Adder [11]
is the smallest adder, however it is significantly slower compared
to other fast adders. On the other hand, the Carry Look-Ahead
Adders based on the parallel prefix computation [13, 1, 7] are the
fastest one. These adders focus on minimising logic levels [13],
maximum fanout [7], and maximum wire tracks [1]. The adders
such as the one presented in [6] consider the trade-offs between
conflicting performance metrics. In a recent work, Liu et al. [9]
formulated the problem of finding Pareto-optimal prefix adders as
an integer linear programming problem to solve the problem opti-
mally.

However, all these adders are reliable adders and work cor-
rectly on all instances of inputs—hence, they cannot overcome the
minimum theoretical delay and area bounds [8]. One possible way
to reduce the complexity of addition is to use a redundant num-
ber system [11]. However, the conversion from a redundant num-
ber system to the binary number system itself is delay-expensive,
which means that a redundant number system is typically useful
only for multi-input addition.

Some work has been done on using probabilistic arithmetic
components made of probabilistic gates to save energy [3]. Ernst
et al. [2] presented a novel method to save power; it detects
and corrects circuit timing error dynamically in order to tune
the processor supply voltage. In a similar work by Hegde and
Shanbhag [5] error detection and correction methods have been
introduced to amend the errors due to the reduction in power sup-
ply voltage beyond critical limits. However, these methods are
primarily focused on energy saving. In our work, we use the er-
ror detection and correction methods to improve the critical path
delay without introducing computation errors. A somewhat sim-
ilar approach has been deployed by Nowick [10] to improve the
latency of an asynchronous adder; however, in this paper we target
a synchronous design.

3 Main Idea and Analysis

This section introduces the unreliable ACA. Throughout the
paper, binary integers are denoted by uppercase letters, e.g.,

1011000110011 10101
0110110111010 111 1

ppPpgpPPPkggpkglppPPP|lgPPI

Longest propagate
sequence

&

101100 011000 010101 101011
011011 110110 777 101110 011101
S19 Sis Se S5848382:818¢

Figure 1. An example showing two 20-bit integers
and the corresponding signals at each bit posi-
tion. Since there is no sequence of more than 4
propagates, the sum bit at any position depends
only on the inputs bits of 6 preceding bit positions.

A, B, X etc.; the i*" least significant bit of an integer X is de-
noted by z;_1. In order to add two n-bit integers A and B, one
can define generate, propagate and kill signals at each bit position
as follows:

gi = aib;,
pi =a; D b;, and
ki = a; + b;.

Using these signals the carry output ¢; at each bit position 7 is
generated and is used to compute the sum bits. The recurrence for
¢; is shown below.

0 ifk; =1,
C; = 1 lng:L

ci—1 otherwise (p; = 1).
Si=a; Db Bci—1.

Note that the carry bit ¢; depends on the carry bit c;—1 only if the
propagate signal p; is true, otherwise c; can be determined locally
based on the values of g; and k;. Similarly, ¢;—1 depends on ¢;—2
only if p; 1 is true. This means c; depends on ¢;—» only if both p;
and p;_1 are true. In general c; will depend on c;_j, only if every
propagate signal between bit position ¢ and ¢ — k + 1 (inclusively)
is true.

If an oracle provides us with the longest sequence of propa-
gate signals in advance, then an extremely fast adder could be con-
structed. For example, in Fig. 1 we want to add two 20-bit integers.
Since the longest sequence of propagate signals is 4, the carry out-
put ¢; at bit position ¢ will be independent of ¢;—5. Hence, s; can
be computed only using the input bits of 6 preceding bit positions
starting from °" bit position. In other words, we can form several
6 bit adders, each computing the carry-in and sum bit for a partic-
ular bit position as shown in Fig. 1. The delay of this particular
20-bit adder will be virtually the same as that of a 6-bit adder.

Ideally, one would like to know the longest sequence of prop-
agate signals in the input addenda. There are, in fact, no bounds
on the length of the longest propagate sequence. In extreme cases
such as for integers A = 11...1, B = 00...0 the length of the
longest propagate sequence is the same as the bitwidth of A and
B. However, in the next section, we show that on average, the
length of the longest propagate sequence is approximately log n,
where n is the bitwidth of the integers.

Figure 2. The infinite line graph where at each step
acoin is tossed, the head leads to next node, while
tail leads to node 0.

3.1 Longest sequence of propagates

Here we derive the probabilistic bounds on the longest se-
quence of propagates, that occur in the addition of two binary in-
tegers A and B. Since p; = a; @ b;, the length of the longest
sequence of propagates is the same as the longest run of 1’s in
A @ B. It can also be shown that if two n-bit integers A and B
are chosen randomly, then their XOR has a uniform distribution
over {0, 1}". Combining the two statements we can deduce that
proving the bounds on the longest sequence of propagates in inte-
ger addition is equivalent to prove the bounds on the longest run
of 1’s in an n-bit integer, or equivalently, the longest run of heads
in n independent random unbiased coin flips.

Next we need to find bounds on the longest run of heads in
n independent random coin tosses. The next theorem indicates
that on average the longest run of heads in random coin tosses is
approximately logn — 1.

Theorem 1 In order to achieve a run of k heads one must flip a
fair coin at least 281 — 2 times on average.

Proof Consider the following experiment involving a walk on an
infinite line graph. Consider the infinite line graph shown in Fig. 2,
where each node ¢ has exactly two outgoing edges: one to node
(i 4 1), and other to node 0. Suppose a person starts at node 0. At
each step the person flips a coin and depending on the outcome, he
or she chooses one of his two outgoing edges to take. In case of
head, the person advances to the next node; otherwise, the person
returns to node 0.

The person will reach node & only after having a run of £ heads.
We must prove that the average number of steps taken to reach
node k for the first time is 2°T! — 2. Let us denote the average
number of steps taken to reach node k by T.

Since the only incoming edge to node k is from node k£ — 1;
hence, T} is equal to T%—; plus the average number of steps to
advance to node k£ from node £ — 1. After reaching node k — 1,
the person moves to node k or node 0 with equal probability. In
the first case the number of steps taken to advance to node k from
k—1is 1, however in the second case the number of steps required
is 1 + T}, (one step to reach node O and T}, steps to reach node k
from node 0). This means the average number of steps taken from
node k — 1 to node k is the average of 1 and 1 + 7%. In other
words,

1+ (14 Tk)

Te=Tiat ——5—

Bitwidth Longest run of 1’s Longest run of 1’s
with 99% probability | with 99.99% probability
64 11 17
128 12 18
256 13 20
512 14 21
1024 15 22
2048 16 23

Table 1. Bounds on the longest run of 1’s with high
probability.

The solution to the recurrence is T = 2°T! — 2, completing
the proof. g

Theorem 1 indicates that the minimum number of coin tosses
required to achieve a run of k heads is exponential in k on average.
Hence, one should expect that the longest run of heads in n coin
tosses will be logarithmic in n on average. This does not, however,
allow us to conclude anything about the distribution of the longest
run.

Schilling [12] proved that the expected length of the longest run
of heads in n random, independent, unbiased coin flips is log n —
2/3 with variance 1.873. In n random coin tosses if the number of
instances where longest run of head does not exceed x is denoted
by An(x), then

An(z) = {Zn

> o<j<a An—1-j(z) otherwise.

ifn <z,

This recurrence relation does not have an elegant closed form;
however, we can use a computer program to compute A, (z) for
given values of n and x. We used this recurrence to find the frac-
tion of integers where the longest run of 1’s is bounded by some
constant. Table 1 shows the upper bound on the longest run of
heads for most of the instances (e.g., 99%, 99.99%) in n random
coin tosses.

Table 1 shows that the longest run of 1’s in an n-bit integer is
less than under log n + 12 with extremely high probability. Gor-
don et al. [4] also showed that the probability approaches to 1
exponentially fast when the bound on the longest run of 1’s is in-
creased (e.g., in Table 1 the error probability reduces from 1% to
0.01% just by increasing the bound by 7).

The consequence is that when adding two integers, the carry
propagates only a small way in the vast majority of cases. In case
of a 1024-bit adder the largest carry propagation is under 22 bits in
99.99% cases. In other words, if we implement a 1024 bit adder
using several 24-bit adders similar to Fig. 1, then the result pro-
duced will be correct in 99.99% of cases.

3.2 Area Overhead

One concern about a circuit implementation of the ACA is the
area overhead due to a multitude of small adders. As shown in
Fig. 1, to implement a 20-bit adder, fifteen 6-bit adders are re-
quired. This results in large fanout of primary inputs as well as a
fairly large area. This section, shows how to effectively share the
computation blocks among the small adders in order to conserve
area and reduce the fanout on primary inputs.

We do not need all the bits of the small adders but only the most
significant bit. Thus we must determine the exact functionality of
each small adder block. Based on the recurrence ¢; = g; +pici—1,

Mo new computation
M3 Mo
Mz My Mo
Mp.y ----- M2 M1 Mo /

Mn-1 Mn.x / My M3 Mo

original computation

Figure 3. A comparison of the computations of the
traditional adder and of our fast adder.

MlS M14 M13 M12 Mll MlO M9 S 7 6 5 4 3 MZ l 0

\/\/\/\/\/\/\/\/\/\J\/\/\/\/\/

Figure 4. An example illustrating how to imple-
ment the new adder with shared logic.

the expression for the carry output ¢; can be written as a matrix
multiplication:

(Cf) = (%Z %Z) (Ciil) =M, (cil’l) , and hence,
<Cf> =M;M;—1- - M;i_p41 (Cll_k) .

Note that the matrix multiplication described above is based
on simple OR and AND operations. In a traditional adder, one
is supposed to compute the product M;M;_1 --- My in order to
compute the carry bit ¢;. However, in our adder we assume
that no carry propagates more than k-bit position for some k.
Hence, in our adder, one needs to compute only the product
M;M;_1 --- M;_k+1 to compute the carry bit ¢;. This is denoted
as a triangle in Fig. 3, where the matrices are written horizontally
and each row in the triangle correspond to the product of matrices
beneath the row. However, the new adder computes only product
of k matrices as shown by a slanted strip of width k in Fig. 3. In
each of the small adder blocks of Fig. 1 one of these matrix product
is computed.

Hence, the goal is to compute the products of k£ matrices with
minimal area, without increasing the critical path delay. First, we
compute the product of two consecutive matrices, i.e., M1 Mo,
MaoM, ..., My—1M,_2. Second, these products are re-used to
get the products of 4 consecutive matrices, e.g., M3Mo M My =
(MsMyz)(MqMy). The same process is repeated for |log k | steps
to compute the products of all 2,4, 8, . 2ok consecutive ma-
trices. In the last step some of these products are multiplied to
compute the final products of all k& consecutive matrices. This pro-
cess is shown in Fig. 4 for n = 16 and k = 6.

Each step in the above process computes the product of two
matrices at most n times, and there are log k + 1 steps. Thus
the total number of matrix multiplications is O (n log k). Since k
is of complexity O (logn), the space complexity of this adder is
O (nloglogn), which is near-linear, even for sufficiently large
values of n. Since each intermediate matrix is used at most 3
times, all gates will have bounded fanout.

The resulting ACA is slightly larger than a ripple carry adder,
and is exponentially faster than fast traditional adders. However,
it may produce incorrect result on a very small fraction of inputs.
In the next section we augment the ACA with error detection and
correction mechanisms.

4 Average Fast Exact Adder

Although the ACA is ideal for applications such as crypto-
graphic attacks, the user may also want to know whether or not the
computed sum is correct. The incorrect sums can then be ignored
and recomputed with a slower traditional adder. Alternatively, the
ACA can be augmented with error detection and correction mech-
anisms, ensuring that the final result is correct.

4.1 Error Detection

This section presents a circuit that flags an error if the sum
computed by the ACA is incorrect. This only occurs when there
is a chain of more than k propagates in the addenda. To check
for the presence of an error, we must consider all chains of length
k + 1, and check if any of them contain solely propagates. The
expression for error signal is stated as follows:

n—k—1
Z PiPi+1 * - Pitk-

The critical path delay to compute error signal has complexity
O (log k +log(n — k)). Since k = O (logn), the error signal
complexity can be reduced to O (log n). The critical path delay of
error detection has the same complexity as that of the critical path
delay of a traditional adder; however, the error detector only re-
quires simple gates, such as AND, OR, etc., which are faster than
the complex gates such as OR-AND gates used to compute expres-
sions such as g+ pc used in traditional adders. Experimentally, we
report that the delay of the error detection signal is approximately
two-thirds of the delay of a traditional adder.

4.2 Error Recovery

Once an error has been detected, one could simply employ a
traditional correct adder to produce the sum. Instead, we have de-
veloped a novel error recovery technique that uses a computation
inside the ACA to reduce both the critical path delay and hardware
area.

The matrix product M;M;_1 - -+ M;_;41 in Section 3.2 com-
putes the propagate and generate signals for the block between bit
position 7 and ¢ — k + 1. Thus, the ACA computes the propagate
and generate signals for each k-bit block. If we divide the input
integers into n/k blocks of k-bits, the values of propagate and
generate for each block can be taken from the ACA. An n/k-bit
carry look-ahead adder then takes these values and computes the
carry for each of the blocks, as shown in Fig. 5. Meanwhile, we
compute the propagate and generate signals for each bit in a block

an-1 a, ap
by, ey b, b
*
ADDER (p, 9)
(. @) .o
(p, 9 (p, 9) (p, 9)

WO [/

Error Recovery
(n/k bit CLA)

[1

Cun/k - 1 Cn/k - 2 Co

Figure 5. Significant amount of computation of the
fast adder can be reused for error recovery.

suM

Error
Recovery|

Error
Detectio:

VALID

STALL‘—°<

Tewx > Max (Too's Tereor)

Tsom < 2 Tox

Figure 6. An implementation of the variable la-
tency adder. Almost in all cases the adder will
have a latency of one cycle. However, seldom it
will require two cycles to compute the result.

other than the last bit, which was already computed by the ACA.
The carry bits computed by carry look-ahead adder can be used to
compute the correct sum.

The overhead of error recovery is similar to carry look-ahead
addition, except for the fact that propagate and generate signals
are computed by the ACA. Since there is no guarantee that k is the
optimal group size, the process of error recovery may be slower
than a traditional adder; however our experiments shown that the
delay of ACA addition plus error recovery is approximately the
same as a traditional adder.

Since the critical path of error recovery is the same as the delay
of a fast carry look-ahead adder, the proposed speculative adder
has virtually no advantage when implemented in a combinatorial
circuit. On the other hand, this adder could be used inside a pro-
cessor: ACA additions and error/no-error signals are quickly pro-
duced in a single cycle. In the vast majority of cases, there is no
error and the correct result is produced quickly. In the rare event
of an error, the processor must wait an additional cycle or two to
receive the corrected sum. Since errors are extremely rare, the

CLK SN D S D A Y A
a X1 a X[2 X A X2
B X B X B X B, X_|B.
VALID \ / \
STALL / \ /
T Toaeo Toaro
SuM; = SUM; | SUM; (wrong) fv.rm2 SUM; = SUM,
suM)q: 7 d
Teme | T T
T

A+ B, and A,+ B, — no error

A,+ B,

— error

Figure 7. The timing diagram showing the execu-
tion of variable latency adder. In this example, on
the first and third operands it produces the correct
output, while on the second operand it produces
the incorrect sum and then corrects it.

average time to produce a correct sum will be comparable to the
ACA. In the next section we explain how a variable latency adder
can be designed.

4.3 Variable Latency Speculative Adder

In Section 5, we observe that for 64 bits, the delay of the ACA
and error detection mechanisms are approximately equal and, indi-
vidually, both are significantly less than the delay of a traditional
adder. Based on this observation, we have designed the circuit
shown in Fig. 6 whose clock period is slightly greater than the
critical path delay of the error detection circuit.

After one cycle, the circuit produces the result of the ACA and
a bit indicating whether or not an error has been detected. If there
is no error, then the circuit provides SUM * as its output and will
also set the VALID bitto 1. Since STALL is the complement of
valid, the circuit will be ready to accept a new set of input addenda.
If an error occurs, the valid bit will be set to 0 and the stall bit will
be set to 1. After two cycles, the corrected sum value will be
available and the valid bit will be set to 1. At this point, the circuit
is ready to accept new inputs. We call this type of adder a Variable
Latency Speculative Adder (VLSA).

The timing diagram of the VLSA is shown in Fig. 7. In this
case, the ACA produces the correct sum for the first and third pairs
of integers that are summed. It produces the wrong sum and then
corrects it on the second pair of inputs. Since the ACA produces a
correct sum in more than 99.99% of all cases, the average latency
will be 1.0001 cycles. The effective latency of the circuit is almost
half of the latency of the fastest traditional adder.

5 Experimental Results

We have written a C++ program which takes the value n as
input and generates VHDL files corresponding to the circuit of

Traditional Adder E=—=431

Almost Correct Adder (ACA) E=mm
Error Detection s

ACA + Error Recovery M

Delay (ns)
.

0.5

Input Bitwidth

Traditional Adder =21
Almost Correct Adder (ACA) Emmmm
2 r Error Detection Hmmm o
ACA + Error Recovery I

1.5

Hardware Area (Normalised)

Input Bitwidth

Figure 8. Comparison of delay and area of the new adders with respect to a traditional adder.

ACA (the one with 99.99% accuracy), error detection, and error
recovery. Note that the error recovery uses ACA as discussed in
Section 4.2. The three circuits are synthesised using a common
standard-cell library for UMC 0.18um CMOS technology. We
compare the delays and hardware areas of these circuits with the li-
brary implementation of fast adders provided by DesignWare. We
have also implemented a carry look-ahead adder and compared its
delay with the adder provided by DesignWare, and observed that
the adder provided by DesignWare is slightly faster.

Fig. 8 compares the delay and hardware area of the DesignWare
adder with the delays and hardware areas of the circuits generated
by our algorithm. As we can see, the circuit for ACA has a speedup
of 1.5-2.5% over the DesignWare adder and is 25% smaller. Sim-
ilarly, the circuit for error detection signal has a critical path delay
almost 2/3 of the critical path delay of the DesignWare adder. This
is due to the fact that both circuits have O (log n) levels of logic,
although each level in the latter is more complex.

Finally, we compare the error recovery circuit with the Design-
Ware adder. Note that the error recovery circuit contains an ACA
too, this is why it has a larger area. Although the delay of the
error recovery and the DesignWare adder is almost same, but the
error recovery circuit is used only on a minuscule fraction of in-
puts. This means that, on average, the effective delay of the VLSA,
which is composed of ACA, error detection, and error recovery, is
almost the same as the delay of error detection. In other words, on
average VLSA has a 1.5x speedup over the DesignWare adder.

6 Conclusions and Future Work

We have presented an adder design which works correctly in
almost all the instances of input integers. The adder presented
here is exponentially faster compared to reliable adder. Our exper-
iments indicate a speedup of 1.5-2.5x. This design is particularly
useful in computation-intensive applications which are robust to
small errors in computation. We also present a methodology to
detect the errors and correct them. This results in a fast variable
latency adder, which has a speedup of 1.5x on average on the tra-
ditional fast adder. As a future work, we plan to design fast almost
correct design for other arithmetic components such as multipli-
ers, multi-input adders, etc.

References

[1] R. P. Brent and H. T. Kung. A regular layout for parallel
adders. IEEE Transaction on Computers, C-31(3):260-64,
1982.

[2] D. Ernst, N. S. Kim, S. Das, S. Lee, D. Blaauw, T. Austin,
T. Mudge, and K. Flautner. Razor: Circuit-level correction of
timing errors for low-power operation. IEEE MICRO special
issue, Mar. 2005.

J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Proba-
bilistic arithmetic and energy efficient embedded signal pro-
cessing. In Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Sys-
tems, pages 158-68, 2006.

[4] L.Gordon, M. F. Schilling, and M. S. Waterman. An extreme
value theory for long head runs. In Probability Theory and
Related Fields, pages 279-87, 1986.

13

—

[5] R.Hegde and N. R. Shanbhag. Soft digital signal processing.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, VLSI-9(6):813-23, Dec. 2001.

[6] S. Knowles. A family of adders. In IEEE Symposium on

Computer Arithmetic, pages 277-81, 2001.

[7] P.M. Kogge and H. S. Stone. A parallel algorithm for the ef-
ficient solution of a general class of recurrence. IEEE Trans-
action on Computers, C-22(8):783-91, 1973.

[8] L. Koren. Computer Arithmetic Algorithms. Prentice-Hall
Inc., New Jersey, 1993.

[9] J. Liu, Y. Zhu, H. Zhu, C. K. Cheng, and J. Lillis. Optimum
prefix adders in a comprehensive area, timimg and power
design space. In Proceedings of the Asia and South Pacific
Design Automation Conference, pages 609-15, 2007.

[10] S. M. Nowick. Design of a low-latency asynchronous adder
using speculative completion. In IEE Proceedings on Com-
puters and Digital Techniques, Sept. 1996.

[11] B. Parhami. Computer Arithmetic: Algorithms and Hard-
ware Design. Oxford University Press, New York, 2000.

[12] M. F. Schilling. The longest run of heads. The college Math-
ematics Journal, pages 196-207, 1990.

[13] J. Sklansky. Conditional sum addition logic. IRE Transaction
on Electronic Computers, EC-9:226-31, 1960.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

