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Abstract 
 

We demonstrate MOVES, a tool which allows designers of 
embedded systems to explore possible implementations 
early in the design process.  
The demonstration of MOVES will show how designers 
can explore different designs by changing the mapping of 
tasks on processing elements, the number and/or speed of 
processing elements, the size of local memories, and the 
operating systems (scheduling algorithm). 
 
1. Introduction 
 
One of the major challenges in designing an embedded 
system is to find a mapping of the application onto the 
execution platform which effectively fulfills the non-
functional requirements of the embedded system such as 
timing, memory usage, energy consumption, and other cost. 
A particular challenge is to model and analyse cross-layer 
dependencies, where the change of a property in one part of 
the system, e.g. scheduling policy, may impact the 
performance of another part of the system, e.g. deadline 
miss on another processor, and hence, the overall system 
performance.            
 
MOVES is a tool which supports formal analysis of non-
functional properties of an embedded system, covering the 
system layers of an application mapped on an execution 
platform, consisting of a heterogeneous multiprocessor 
architecture where each processor may run a real-time 
operating system, and where all processors are connected 
through a network. The system-level model of MOVES is 
based on ARTS[1]. 
 
2. System-level model 
 

An application is specified as a set of independent 
programs which have to be executed on the execution 

platform. Each program is modelled as a task graph, i.e. 
a directed acyclic graph where each task is a node and 

edges indicate causal dependencies (see  
Figur 1). A task τ

j
 is currently considered to be periodic and 

is represented by a period, a deadline and an offset. The 
execution time and memory footprint of the task will 
depend on the characteristics of the processing element pe

i
 

to execute it. 
 

 
 

Figur 1 System-levl model for a MPSoC 
 
The execution platform is a heterogeneous multiprocessor 
System-on-Chip (MPSoC) in which a number of processing 
elements pe are connected through an on-chip network. A 
processing element pe

i
 is characterized by a clock 

frequency f
i
, a local memory m

i
 with a bounded size, and a 

real-time operating system os
i
 which schedules the tasks 

mapped to the processing element and handles inter-task 
dependencies. 
 
An application implementation is a mapping of tasks to 
processing elements of the execution platform. When a task 
τ
j
 is mapped to a processing element pe

i
 it is equipped with 

worst case wcet
ji

 and best case bcet
ji

 execution times 
which means that a task may complete its execution 
anywhere in the interval [bcet

ji
; wcet

ji
]. The exact 

values of bcet
ji

 and wcet
ji

 are dependent on the type and 
frequency f

i
 of the processing element pe

i
. The memory 

footprint of a task is split into a static part (the program 
code) and a dynamic part (the data needed during execution 
and for data transferred to another task). 
 
2. MOVES 
 

MOVES is based on timed-automata models of tasks 
with causal dependencies and the components of the 

execution platform. The frontend of MOVES will 
translate a given implementation of an application into 
an UPPAAL[2] model. The UPPAAL tool environment 

is used as backend for MOVES, as illustrated in  
Figur 2. 
 
Currently MOVES supports preemptive periodic tasks, hard 
and soft deadlines, causal dependencies between tasks on 
the same as well as on different processing elements, and 
execution times as discrete values between best and worst 
case. Systems of arbitrary sizes can be modelled and 
MOVES offers verification of timing, energy and memory 
usage. Systems of 250 tasks mapped onto 15 processing 



elements have been formally verified for timing and 
memory properties. 
 

 
 

Figur 2 Components of the tool 
 
 
3. Using MOVES 
 
Designers can explore different designs by changing the 
mapping of tasks, the number and/or speed of processing 
elements, the size of local memories, and the operating 
systems (scheduling algorithm). 
 
The application, execution platform and mapping are given 
by the user in a simple language, currently embedded 
within Java, as shown below. 
 
public class system { 
 public Application apps; 
 public Platform pl; 
 public system(int M, int N, int granularity) { 
 Resource r1 = new Resource(); 
 
 //Tasks (bcet, wcet, deadline, offset, period, FP) 
 Task t1 = new Task(2, 2, 4, 0, 4, 1); 
    Task t2 = new Task(1, 1, 6, 0, 6, 2); 
    Task t3 = new Task(2, 2, 6, 0, 6, 3); 
 Task t4 = new Task(3, 3, 6, 4, 6, 4); 
 Task tm = new Task(1, 1, 6, 0, 6, 5); 
 
 //Processors (frequency, schedule policy) 
    Processor p1 = new Processor(1, Processor.RM); 
    Processor p2 = new Processor(1, Processor.EDF); 
    Processor pm = new Processor(1, Processor.RM); 
         
 //Mapping 
    Task[][] tasks = {{t1,t2},{t3,t4},{tm}}; 
     
 //Adds the processors to the system 
    Processor[] ps = {p1,p2,pm}; 
 
 // cost 
 Cost memory = new Cost(tasks); 
 Cost power = new Cost(tasks); 
 
  

Cost[] ca = {memory, power}; 

    pl = new Platform(ps); 
 apps = new Application(tasks, ca, r1.rs, granularity); 
 
 //Add dependencies to the system.  
 apps.addDep(t2,tm); 
 apps.addDep(tm,t3); 
 apps.useResource(tm,r1); 
 
 //memory usage (task-id, static, idle, redy, running) 
 memory.set(t1,1,0,0,3); 
 memory.set(t2,1,0,0,5); 
 memory.set(t3,2,0,0,6); 
 memory.set(t4,1,0,0,9); 
 memory.share(t2,t3,5); 
 
 //power usage (task-id, static, idle, redy, running) 
 power.set(t1,0,0,0,5); 
 power.set(t2,0,0,0,10); 
 power.set(t3,0,0,0,10); 
 power.set(t4,0,0,0,5); 
    } 
} 

This code, together with the property to be 
verified, is translated into a timed automata model 

and verified by UPPAAL, as illustrated in  
Figur 2. If the property is not satisfied, UPPAAL can 
create the trace of a counter example. MOVES 
translates this trace into a Gantt chart, in which the 
designer can see where the system failed. The 
properties which can currently be verified are: 

• Timing: E<>missedDeadline  
• Memory: E<>totalCostUsed(Memory)>=23  
• Energy: E<>totalCostUsed(Energy)>=15  

 
4. Case study 
 
We have used MOVES to explored implementations 
of an MP3 decoder. The MP3 decoder has 16 tasks 
(see Figur 3) performing all the steps for producing an 
audio stereo frame every 25 ms. 

 
Figur 3 Task graph for the MP3 decoder 

 
The worst case execution times vary from 476 to 
266.687 cycles. Analysis has to be applied over the 
complete interval of 25 ms, which amounts to 25.000 
time units using a clock frequency of 25MHz and a 
granularity of 25 cycles per unit. The granularity is a 
parameter in MOVES which allows the designer to 
limit the search space. If the desired property can not 
be satisfied, the granularity has to be lowered. In the 
case of the MP3 decoder, MOVES verifies the timing 
properties on a two processor platform in 30 s. 
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