
MOVES - A tool for Modelling and Verification
of Embedded Systems

J. Ellebæk, K. S. Knudsen, A. Brekling, M. R. Hansen and J. Madsen

Embedded Systems Engineering Group
Informatics and Mathematical Modelling, Technical University of Denmark

Abstract

We demonstrate MOVES, a tool which allows designers of
embedded systems to explore possible implementations
early in the design process.
The demonstration of MOVES will show how designers
can explore different designs by changing the mapping of
tasks on processing elements, the number and/or speed of
processing elements, the size of local memories, and the
operating systems (scheduling algorithm).

1. Introduction

One of the major challenges in designing an embedded
system is to find a mapping of the application onto the
execution platform which effectively fulfills the non-
functional requirements of the embedded system such as
timing, memory usage, energy consumption, and other cost.
A particular challenge is to model and analyse cross-layer
dependencies, where the change of a property in one part of
the system, e.g. scheduling policy, may impact the
performance of another part of the system, e.g. deadline
miss on another processor, and hence, the overall system
performance.

MOVES is a tool which supports formal analysis of non-
functional properties of an embedded system, covering the
system layers of an application mapped on an execution
platform, consisting of a heterogeneous multiprocessor
architecture where each processor may run a real-time
operating system, and where all processors are connected
through a network. The system-level model of MOVES is
based on ARTS[1].

2. System-level model

An application is specified as a set of independent
programs which have to be executed on the execution

platform. Each program is modelled as a task graph, i.e.
a directed acyclic graph where each task is a node and

edges indicate causal dependencies (see
Figur 1). A task τ

j
 is currently considered to be periodic and

is represented by a period, a deadline and an offset. The
execution time and memory footprint of the task will
depend on the characteristics of the processing element pe

i

to execute it.

Figur 1 System-levl model for a MPSoC

The execution platform is a heterogeneous multiprocessor
System-on-Chip (MPSoC) in which a number of processing
elements pe are connected through an on-chip network. A
processing element pe

i
 is characterized by a clock

frequency f
i
, a local memory m

i
 with a bounded size, and a

real-time operating system os
i
 which schedules the tasks

mapped to the processing element and handles inter-task
dependencies.

An application implementation is a mapping of tasks to
processing elements of the execution platform. When a task
τ
j
 is mapped to a processing element pe

i
 it is equipped with

worst case wcet
ji

 and best case bcet
ji

 execution times
which means that a task may complete its execution
anywhere in the interval [bcet

ji
; wcet

ji
]. The exact

values of bcet
ji

 and wcet
ji

 are dependent on the type and
frequency f

i
 of the processing element pe

i
. The memory

footprint of a task is split into a static part (the program
code) and a dynamic part (the data needed during execution
and for data transferred to another task).

2. MOVES

MOVES is based on timed-automata models of tasks
with causal dependencies and the components of the

execution platform. The frontend of MOVES will
translate a given implementation of an application into
an UPPAAL[2] model. The UPPAAL tool environment

is used as backend for MOVES, as illustrated in
Figur 2.

Currently MOVES supports preemptive periodic tasks, hard
and soft deadlines, causal dependencies between tasks on
the same as well as on different processing elements, and
execution times as discrete values between best and worst
case. Systems of arbitrary sizes can be modelled and
MOVES offers verification of timing, energy and memory
usage. Systems of 250 tasks mapped onto 15 processing

elements have been formally verified for timing and
memory properties.

Figur 2 Components of the tool

3. Using MOVES

Designers can explore different designs by changing the
mapping of tasks, the number and/or speed of processing
elements, the size of local memories, and the operating
systems (scheduling algorithm).

The application, execution platform and mapping are given
by the user in a simple language, currently embedded
within Java, as shown below.

public class system {
 public Application apps;
 public Platform pl;
 public system(int M, int N, int granularity) {
 Resource r1 = new Resource();

 //Tasks (bcet, wcet, deadline, offset, period, FP)
 Task t1 = new Task(2, 2, 4, 0, 4, 1);
 Task t2 = new Task(1, 1, 6, 0, 6, 2);
 Task t3 = new Task(2, 2, 6, 0, 6, 3);
 Task t4 = new Task(3, 3, 6, 4, 6, 4);
 Task tm = new Task(1, 1, 6, 0, 6, 5);

 //Processors (frequency, schedule policy)
 Processor p1 = new Processor(1, Processor.RM);
 Processor p2 = new Processor(1, Processor.EDF);
 Processor pm = new Processor(1, Processor.RM);

 //Mapping
 Task[][] tasks = {{t1,t2},{t3,t4},{tm}};

 //Adds the processors to the system
 Processor[] ps = {p1,p2,pm};

 // cost
 Cost memory = new Cost(tasks);
 Cost power = new Cost(tasks);

Cost[] ca = {memory, power};

 pl = new Platform(ps);
 apps = new Application(tasks, ca, r1.rs, granularity);

 //Add dependencies to the system.
 apps.addDep(t2,tm);
 apps.addDep(tm,t3);
 apps.useResource(tm,r1);

 //memory usage (task-id, static, idle, redy, running)
 memory.set(t1,1,0,0,3);
 memory.set(t2,1,0,0,5);
 memory.set(t3,2,0,0,6);
 memory.set(t4,1,0,0,9);
 memory.share(t2,t3,5);

 //power usage (task-id, static, idle, redy, running)
 power.set(t1,0,0,0,5);
 power.set(t2,0,0,0,10);
 power.set(t3,0,0,0,10);
 power.set(t4,0,0,0,5);
 }
}

This code, together with the property to be
verified, is translated into a timed automata model

and verified by UPPAAL, as illustrated in
Figur 2. If the property is not satisfied, UPPAAL can
create the trace of a counter example. MOVES
translates this trace into a Gantt chart, in which the
designer can see where the system failed. The
properties which can currently be verified are:

• Timing: E<>missedDeadline
• Memory: E<>totalCostUsed(Memory)>=23
• Energy: E<>totalCostUsed(Energy)>=15

4. Case study

We have used MOVES to explored implementations
of an MP3 decoder. The MP3 decoder has 16 tasks
(see Figur 3) performing all the steps for producing an
audio stereo frame every 25 ms.

Figur 3 Task graph for the MP3 decoder

The worst case execution times vary from 476 to
266.687 cycles. Analysis has to be applied over the
complete interval of 25 ms, which amounts to 25.000
time units using a clock frequency of 25MHz and a
granularity of 25 cycles per unit. The granularity is a
parameter in MOVES which allows the designer to
limit the search space. If the desired property can not
be satisfied, the granularity has to be lowered. In the
case of the MP3 decoder, MOVES verifies the timing
properties on a two processor platform in 30 s.

5. References

[1] S. Mahadevan, M. Storgaard, J. Madsen, K. Virk, ARTS:
A system-level framework for modeling MPSoC components
and analysis of their causality, In proceedings og the 13th
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS), 2005, 480-483.

[2] G. Behrmann, A. David, K. G. Larsen, A tutorial on
uppaal, Lecture Notes in Computer Science 3185 (2004)
200-236.

[3] A. Brekling, Modelling and Verification of MPSoC,
Master thesis, Informatics and Mathematical Modeling,
technical University of Denmark, December 2006.

