
OTAWA, Open Tool for Adaptative WCET Analysis

Hugues Cassé, Christine Rochange

{casse, rochange}@irit.fr

IRIT - University of Toulouse – France

http://www.irit.fr/recherches/ARCHI/MARCH/

Abstract

OTAWA is a generic framework for the computation of
Worst-Case Execution Time. Delivered under the LGPL
licence, it provides a versatile environment with services for
static analyses on executables.

1. Introduction

OTAWA1,2 is a freeware application dedicated to the
computation of the WCET3 of programs. The WCET is
usually estimated when designing critical real-time systems
embedded in avionics and automotive. As it is an essential
information for tasks scheduling, time constraints fulfilment
checking but also for sizing the hardware resources, the
computed WCET must be both safe and tight. Safety is
achieved by a proved WCET overestimation based on sound
analyses. On the other hand, tightness is obtained using
detailed models of the hardware allowing cycle-level
accuracy of the estimated execution times.
More precisely, OTAWA concerns the numerous WCET
approaches based on static analyses of the executable
program. Unlike many existing usual tools, the choice has
been done to avoid specialisation and to produce, instead, a
generic and open framework.
After a short description of the motivations that led us to the
development of OTAWA, we present the architecture of this
framework, i.e. (1) how multiple architectures are supported
and (2) how extensibility is achieved. Finally, the current
achievement level is presented and we conclude the paper.

2. OTAWA Genesis

For many years, the compilation and architecture domains
have seen the development of generic and experimental
frameworks as soon as the problem model had become
mature enough. For example, we can cite SUIF [1], Salto [2]
and many more. Even if they let room for improvement,
these frameworks have speeded up the development of new
techniques by making the re-use of existing algorithms
easier.
We think that WCET computation techniques have reached
such a point [3] and OTAWA is attempt to provide such a
generic framework. As other ones, it features some properties
that allows a wide range of use: multi-architecture support,
genericity, openness, re-usability, extensibility. Yet, OTAWA
has been designed using the concepts and the experience
provided by existing frameworks in order to avoid a
maximum number of design pitfalls.

1 Open Tool for Adaptative WCET Analysis
2 OTAWA is developed in the MasCotTE project supported by the

ANR-PREDIT French Research program.
3 Worst-Case Execution Time

OTAWA comes from the needs of an open and generic
software usable for our research activities: (1) a tool that may
be used to develop new algorithms or new analyses in the
WCET estimation field and (2) a software platform allowing
the implementation of an adaptive experimental approach for
WCET computation. To maximize the benefits of
development efforts, we have re-targeted the tool to make it
as much generic as possible. This has led to the current
implementation of OTAWA.

3. Architecture Abstraction

The foundations of OTAWA are its Architecture Abstraction
Layer. It provides support for the multiplicity of hardware
platform Instruction Set Architecture (ISA) that exists in
embedded systems. It also hides the details of the actual ISA
to the upper layer but exposes the hardware information
useful to the WCET analyses. This allows the re-usability of
the analyses whatever the actual hardware.

As shown in Figure 1, this layer is implemented a simple
system of plug-ins that makes easier the extension and the
integration in the OTAWA framework. Although it is
relatively easy to develop a new plug-in for a specific
architecture, a significant speed-up can be achieved using an
Architecture Description Language like SimNML [4]
processed by the GLISS tool suite [5] interfaced to OTAWA.
As many WCET computation methods are based on the
simulation of parts of code, this layer also includes a generic
processor simulator simply configured through an XML-file
description and working for any ISA supported by OTAWA.

3. Properties and Analyzers

Built upon the Architecture Abstraction Layer, the concept of
properties provides the main material to build analyses.
Indeed, most of the WCET computation methods implement
the same steps. First, the flow analysis gathers information
about the possible execution paths either from the program

Figure 1: OTAWA Architecture

architecture
abstraction

OTAWA
kernel

PowerPC ARM M68HC

flow
facts

executable

architecture
description

ETS IPET

structural
simulator

???

???

mailto:Cyril.luxey@unice.fr
http://www.elec.unice.fr/

instructions, or from user-provided annotations. In the
second step, the temporal properties of the program are
computed taking the hardware model into account. Often,
this step includes a global analysis phase that handles
features like caches and a local analysis phase that examines
the behaviour of the pipeline. Finally, the information
produced by the flow and temporal analyses is merged to
compute the WCET of the program.
A look to previously proposed approaches shows that they
have some similarities: (1) they start from a blank program
image and each phase improves the obtained information to
converge to the WCET; (2) they share a lot of analyses that
should be factorized in a common framework.

Based on these two observations, the OTAWA property
system is built on two main concepts: properties and
analysers. The properties are pieces of information defined
by an identifier, a type and a value. They are used to annotate
the execution image of the program with information useful
to derive the WCET. The analysers use available properties
hooked to the program and produce new properties that
express their results.
This simple scheme makes easier the interactions between
the analyses because they have to share the same properties
to be composed. Moreover, it is also very easy to substitute
one analysis by one or several other ones, or to get the
required information from an external source.
Another useful service coming from the OTAWA property
system comes from its standard interface to retrieve the
information hooked to the code. This interface allows
developing general purpose facilities on properties: textual or
graphics display, serialization to disk, property filtering or
clean-up, etc. Figure 2 shows a sample produced by a library

dedicated to the output of graphs with the attached
properties.

4. Achievement Level

Today, the first version OTAWA is about to be distributed
with support for the PowerPC and ARM ISAs.
Two main approaches for WCET computation are provided:
(1) the Implicit Path Enumeration Technique (IPET) [6] is
fully functional and handles several pipeline and cache
analyses while (2) only basics of the Extended Timing
Schema [7] are available. This last scheme has been
developed to prove the versatility of the framework but it
will be completed soon.
Generic facilities for the development of new analyses are
also provided: Control Flow Graphs, Abstract Syntactic
Trees, iterative Data Flow Analysis engine, abstract
interpretation engine, Integer Linear Programming solver
based on lp_solve, flow fact loader, etc. We are also
developing a plug-in to integrate OTAWA in the Eclipse
environment.

5. Conclusion

OTAWA is a generic framework dedicated to the
implementation of static analyses used to compute WCETs.
Its original architecture is aimed at speeding up the
implementation of new analyses and at promoting the re-use
and the interaction among different analyses. One of the goal
of OTAWA was to fulfil the lack of open-source tool in the
WCET domain and we hope that its extensibility and
openness features might also stimulate a community of
developers looking to share their programs.
In the future, we plan to extend OTAWA with more ISA
supports (like M68HC processors), more output facilities and
analyses for new hardware features (like data cache and
branch prediction).

6. References

[1] R.P. Wilson, R.S. French, C.S. Wilson,
S.P. Amarasinghe, J.M. Anderson, S.W.K. Tijang,
S.-W. Liao, C.-W. Tseng, M.W. Hall, M.S. Lam,
J.L. Hennessy. SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers.
ACM SIGPLAN Notices, V29, N12, 1994.

[2] R. Rohou, F. Bodin, A. Seznec, G. Le Fol, F. Charot,
F. Raimbault. Salto : System for Assembly-Language
Transformation and Optimization. Technical Report
RR-2980, INRIA, 1996.

[3] J. Engblom, A. Ermedahl, M. Sjodin, J. Gustafsson, and
H. Hansson. Towards industry-strength worst case
execution time analysis. Technical Report ASTEC 99/02,
April 1999.

[4] M. Freericks, The nML Machine Description Formalism,
TU Berlin Computer Science Technical Report, 1993.

[5] GLISS, www.irit.fr/recherches/ARCHI/MARCH/
[6] Y.-T. S. Li, S. Malik, Performance Analysis of Embedded

Software using Implicit Path Enumeration, Workshop on
Languages, Compilers, and Tools for Real-time Systems,
1995.

[7] R.C. Shaw, Reasoning about time in higher-level
language software. IEEE Transactions On Software
Engineering, 15(7):875.889, July 1989.

Figure 2: graphic sample of property display.

http://www.irit.fr/recherches/ARCHI/MARCH/

