
Mapping of Electronical System Level (ESL) Models into Implementation
Tommy Baumann, Horst Salzwedel

{Tommy.Baumann|Horst.Salzwedel}@tu-ilmenau.de

TU Ilmenau, Faculty for Computer Science and Automation,

P.O.Box 100565, 98694 Ilmenau, Germany

http:/tu-ilmenau.de/sst

Abstract

A methodology will be presented to design at Electronic System
Level (ESL) and map the design into an implementation using a
Mission Level Design tool.

1. Introduction

Electronic systems in aircraft, automobiles, home entertainment
systems, mobile telephones, GPS/Galileo navigation systems,
multi-functional systems such as Quint Network Technology
(QNT) or Systems On Chip (SoC) are today networked
embedded systems that exhibit complexities that can no longer
be developed at reasonable cost and acceptable technical risk at
implementation level or functional level. Integrated hierarchical
model based design methodologies and tools have to be used to
integrate the design flow from concept to implementation.
Moving model based design methodologies to electronic system
level (ESL) has permitted rapid development of verified
executable specifications, model systems at system level [1],
fast optimization of networked architectures at performance
level [2] or size resources in complex reconfigurable electronics
[3]. The move towards higher abstraction has made it possible
to cope with the increased complexities. However, it has
widened the gap between design and implementation.
In this paper a method is presented that overcomes the gap
between abstract system models for design and the realization
in hard and software at RTL level. An integrated design
methodology and extensions for the tool MLDesigner [4] are
presented that makes design decision on function, performance,
and architecture at ESL and translates this design automatically
to VHDL. Figure 1 shows in overview the proposed design
flow from mission level with informal descriptions of the
systems tasks, use- and testcases and its environment to
implementation in hard- and software. The link between
mission level and implementation is the electronic system level.
Function and architecture is designed and validated at that level.
The left side of Figure 1 shows neccessary steps for a systems
design and their connection to the particular abstraction levels.

Figure 1: Mission Level Design Flow

2. MLDesigner

The tool MLDesigner is related to the earlier project Ptolemy
and allows the creation and simulation of models containing
different models of computation. MLDesigner models and
simulations can be defined by a graphical model editor and are
stored in XML, permitting standardized methods for
transformations and translations of the models. Multiple
execution domains permit to model functional behavior, the
environment and the architecture in their respective native
forms. The execution domains include discrete events (DE) [5],
synchronous and dynamic data flow, extended finite state
machines (FSM) and continuous and analog domains.

3. Chippo Project

The new design methodology is demonstrated for the design of
a Cheap High Precision Positioning (Chippo) system. Figure 2
shows the functional characteristics of the Chippo system. The
position measurements of a GPS receiver are enhanced by
measurements of accelerations and angular rates of an inertial
measurement system on a chip and integrated by a Kalman
navigation filter. The accuracy of the GPS receiver is enhanced
by differential GPS corrections received from RASANT. The
interface to external systems is realized by USB. For the
development of this system some of the hardware components
are available off the shelf, others have to be developed and
integrated into the overall positioning system.

Figure 2: Concept of the GPS based Chippo system

The mathematical model of the sensor fusion system within
Chippo is a discrete Kalman navigation filter [6]. This model
was developed and validated with GNU Octave.
Characteristic trajectories for the missions of the system, use
cases, are used for the validation. To permit a unified integrated
design, the mathematical model was described by a hierarchical
block diagram of the modeling tool MLDesigner.
Figure 3 shows the top-level hierarchy of the functional and
environmental model. The states of the environmental model,
e.g., the number of available radio stations or kinematic states
are realized by memories. The characteristics of the
environmental model can be changed by parameters. Additional
elements for reception and decoding of differential GPS data
are added. The functional model of the Chippo system therefore
includes the validated functional model as well as the event
based processes for operation of the system. The system is

validated by simulation against the mathematical model of the
system.

Figure 3: Top level structure of Chippo functional model

After system behavior is specified, accompanying execution-
and communication structure must be pinpointed in the form of
an architecure model (Figure 4). Executable components
(partitions) are operating resources of their assigned functions
of the functional model. Data transfer between partitions is
modeled by communication components (channels).
Communication structure arises from the partitions, because
interacting functions within the functional model are mapped on
channels within the architectural model. The architectural
model permits performance analysis of execution and
communication components by simulation on ESL level.
Specific properties of partitions and channels are abstracted by
parameterized resources. Utilization of resources is expressed in
terms of quantities and queuing of events. Resources restrict the
choice of assignable functions to partitions and throughput of
channels. For example, quantity resources can model memory
or CPU utilization of partitions and queue resources can control
access of channels within the model. The architectural model is
also the basis for the following synthesis.

Figure 4: Chippo architectural model

The development of a working prototype at the implementation
level requires transformation of the abstract models of function
and architecture into hardware and software components. It is
desirable that as little as possible has to be tuned by hand. The
main task in translating the ESL functional/architectural model
into a prototype is the translation of the algorithms into hard-
and software languages (IP Cores) and mapping of transactions
between architectural components into implementation specific
communication structures. The architectural model, as we
described it in the previous, permits to generate a message
passing communication system, which can be used for
hardware and software. Mapping of transactions into message
passing communication models is controlled by modeled
elements of the architectural model and annotations. The
advantage of this method is its easy realization into languages
like VHDL that do not explicitly support this construct.
The ESL functional/architectural model includes all information
about communication system and distribution of functional and
architectural components. Components of the architectural
model become IP cores or independent SW processes of the
implemented prototype. Transformation of models is carried out
independently for each partition. Each partition is transformed

by an XSLT transformation into implementable functional code
plus interfaces (Figure 5). Modifications of the XSLT scripts
permit to generate code for different description languages or
intermediate descriptions. To perform this translation, XSLT
transformations have been developed that translate annotated
XML descriptions of the model into implementable code for
FPGAs and ASICs. Dependent on the structure of the
communication system and the architectural components,
corresponding interfaces and architectural components have to
be generated. There are a variety of standards that define
communication between architectural components at board
level, e.g., VME, PCI, as well as on ICs, e.g., Wishbone.

Figure 5: Iterative transformations for code synthesis

4. Conclusion

An integrated design method for overcoming the gap between
design at ESL and implementation has been developed. The
new design methodology was demonstrated for the design of a
high performance GPS based positioning system with
differential corrections and additional inertial measurements.
During the functional level design step, a navigation filter was
designed to meet the functional requirements of the system. In
the next design step architectural elements were automatically
added to this model by XSLT transformations from annotations.
Sizing information for the architectural components were
determined by performance simulation. In the third step the
ESL model was translated by an XSLT script into HW/SW
code of a prototype: Implementation details were added
iteratively by updating annotations on the ESL model.

7.References

[1] Schorcht, Gunar; Troxel, Ian; Farhangian, Keyvan; Unger, Peter;
Zinn, Daniel; Mick, Colin K.; George, Alan; Salzwedel, Horst. 2003.
System-level simulation modeling with MLDesigner . Modeling,
Analysis and Simulation of Computer Telecommunications Systems
2003. MASCOTS 2003. 11th IEEE/ACM International Symposium.
[2] K.M. McNeir; M. Zens; H. Salzwedel. 2003. System-Level
Partitioning Using Mission-Level Design Tool for Electronic Valve
Application . SAE 2003World Congress, Detroit, Michigan.
[3] D. Bueno; C. Conger; A. Leko; I. Troxel; A. George. 2005.
RapidIO-based Space System Architectures for Synthetic Aperture
Radar and Ground Moving Target Indicator . High-Performance
Embedded Computing (HPEC) Workshop, MIT Lab, Lexington, MA.
[4] MLDesign Technologies Inc. 2006. MLDesigner Documentation .
http://www.mldesigner.com.
[5] E.A. Lee, A. Sangiovanni-Vincentelli “A Framework For
Comparing Models Of Computation". In IEEE Transactions on CAD,
Vol. 17, No. 12, December 1998
[6] Qi, Honghui; Moore, John B. 2002. Direct Kalman filtering
approach for GPS/INS integration . IEEE Transactions on Aerospace
and Electronic Systems.

http://www.mldesigner.com/

