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Abstract

A methodology will be presented to design at Electronic System 
Level (ESL) and map the design into an implementation using a 
Mission Level Design tool.

1. Introduction

Electronic systems in aircraft, automobiles, home entertainment 
systems,  mobile  telephones,  GPS/Galileo navigation systems, 
multi-functional  systems  such  as  Quint  Network  Technology 
(QNT)  or  Systems  On  Chip  (SoC)  are  today  networked 
embedded systems that exhibit complexities that can no longer 
be developed at reasonable cost and acceptable technical risk at 
implementation level or functional level. Integrated hierarchical 
model based design methodologies and tools have to be used to 
integrate  the  design  flow  from  concept  to  implementation. 
Moving model based design methodologies to electronic system 
level  (ESL)  has  permitted  rapid  development  of  verified 
executable  specifications,  model  systems at  system level  [1], 
fast  optimization  of  networked  architectures  at  performance 
level [2] or size resources in complex reconfigurable electronics 
[3]. The move towards higher abstraction has made it possible 
to  cope  with  the  increased  complexities.  However,  it  has 
widened the gap between design and implementation.
In  this  paper  a  method  is  presented  that  overcomes  the  gap 
between abstract system models for design and the realization 
in  hard  and  software  at  RTL  level.  An  integrated  design 
methodology and extensions for the tool MLDesigner [4] are 
presented that makes design decision on function, performance, 
and architecture at ESL and translates this design automatically 
to  VHDL.  Figure  1  shows in  overview the  proposed  design 
flow  from  mission  level  with  informal  descriptions  of  the 
systems  tasks,  use-  and  testcases  and  its  environment  to 
implementation  in  hard-  and  software.  The  link  between 
mission level and implementation is the electronic system level. 
Function and architecture is designed and validated at that level. 
The left side of Figure 1 shows neccessary steps for a systems 
design and their connection to the particular abstraction levels.

Figure 1: Mission Level Design Flow

2. MLDesigner

The tool MLDesigner is related to the earlier project Ptolemy 
and allows the  creation and simulation of  models  containing 
different  models  of  computation.  MLDesigner  models  and 
simulations can be defined by a graphical model editor and are 
stored  in  XML,  permitting  standardized  methods  for 
transformations  and  translations  of  the  models.  Multiple 
execution  domains  permit  to  model  functional  behavior,  the 
environment  and  the  architecture  in  their  respective  native 
forms. The execution domains include discrete events (DE) [5], 
synchronous  and  dynamic  data  flow,  extended  finite  state 
machines (FSM) and continuous and analog domains.

3. Chippo Project

The new design methodology is demonstrated for the design of 
a Cheap High Precision Positioning (Chippo) system. Figure 2 
shows the functional characteristics of the Chippo system. The 
position  measurements  of  a  GPS  receiver  are  enhanced  by 
measurements of accelerations and angular rates of an inertial 
measurement  system on  a  chip  and  integrated  by  a  Kalman 
navigation filter. The accuracy of the GPS receiver is enhanced 
by differential GPS corrections received  from RASANT. The 
interface  to  external  systems  is  realized  by  USB.  For  the 
development of this system some of the hardware components 
are  available  off  the  shelf,  others  have  to  be  developed  and 
integrated into the overall positioning system.

Figure 2: Concept of the GPS based Chippo system

The  mathematical  model  of  the  sensor  fusion  system within 
Chippo is a discrete Kalman navigation filter [6]. This model 
was developed and validated with GNU Octave.
Characteristic trajectories for the missions of the system, use 
cases, are used for the validation. To permit a unified integrated 
design, the mathematical model was described by a hierarchical 
block diagram of the modeling tool MLDesigner.
Figure  3 shows the  top-level  hierarchy of the functional and 
environmental model. The states of the environmental model, 
e.g., the number of available radio stations or kinematic states 
are  realized  by  memories.  The  characteristics  of  the 
environmental model can be changed by parameters. Additional 
elements for reception and decoding of differential GPS data 
are added. The functional model of the Chippo system therefore 
includes  the  validated functional  model  as  well  as  the  event 
based  processes  for  operation  of  the  system.  The  system  is 



validated by simulation against the mathematical model of the 
system.

Figure 3: Top level structure of Chippo functional model

After  system behavior  is  specified,  accompanying execution- 
and communication structure must be pinpointed in the form of 
an  architecure  model  (Figure  4).  Executable  components 
(partitions) are operating resources of their assigned functions 
of  the  functional  model.  Data  transfer  between  partitions  is 
modeled  by  communication  components  (channels). 
Communication  structure  arises  from  the  partitions,  because 
interacting functions within the functional model are mapped on 
channels  within  the  architectural  model.  The  architectural 
model  permits  performance  analysis  of  execution  and 
communication  components  by  simulation  on  ESL  level. 
Specific properties of partitions and channels are abstracted by 
parameterized resources. Utilization of resources is expressed in 
terms of quantities and queuing of events. Resources restrict the 
choice of assignable functions to partitions and throughput of 
channels. For example, quantity resources can model memory 
or CPU utilization of partitions and queue resources can control 
access of channels within the model. The architectural model is 
also the basis for the following synthesis.

Figure 4: Chippo architectural model

The development of a working prototype at the implementation 
level requires transformation of the abstract models of function 
and architecture into hardware and software components. It is 
desirable that as little as possible has to be tuned by hand. The 
main task in translating the ESL functional/architectural model 
into a prototype is the translation of the algorithms into hard- 
and software languages (IP Cores) and mapping of transactions 
between architectural components into implementation specific 
communication  structures.  The  architectural  model,  as  we 
described  it  in  the  previous,  permits  to  generate  a  message 
passing  communication  system,  which  can  be  used  for 
hardware and software. Mapping of transactions into message 
passing  communication  models  is  controlled  by  modeled 
elements  of  the  architectural  model  and  annotations.  The 
advantage of this method is its easy realization into languages 
like VHDL that do not explicitly support this construct.
The ESL functional/architectural model includes all information
about communication system and distribution of functional and 
architectural  components.  Components  of  the  architectural 
model  become IP cores  or  independent SW processes of the 
implemented prototype. Transformation of models is carried out 
independently for each partition. Each partition is transformed 

by an XSLT transformation into implementable functional code 
plus interfaces (Figure 5). Modifications of the XSLT scripts 
permit to generate code for different description languages or 
intermediate  descriptions.  To  perform this  translation,  XSLT 
transformations  have  been developed that  translate  annotated 
XML descriptions  of  the  model  into  implementable code for 
FPGAs  and  ASICs.  Dependent  on  the  structure  of  the 
communication  system  and  the  architectural  components, 
corresponding interfaces and architectural components have to 
be  generated.  There  are  a  variety  of  standards  that  define 
communication  between  architectural  components  at  board 
level, e.g., VME, PCI, as well as on ICs, e.g., Wishbone.

Figure 5: Iterative transformations for code synthesis

4. Conclusion

An integrated design method for overcoming the gap between 
design  at  ESL and  implementation  has  been  developed.  The 
new design methodology was demonstrated for the design of a 
high  performance  GPS  based  positioning  system  with 
differential  corrections  and  additional  inertial  measurements. 
During the functional level design step, a navigation filter was 
designed to meet the functional requirements of the system. In 
the next design step architectural elements were automatically 
added to this model by XSLT transformations from annotations. 
Sizing  information  for  the  architectural  components  were 
determined  by  performance  simulation.  In  the  third  step  the 
ESL  model  was  translated  by  an  XSLT script  into  HW/SW 
code  of  a  prototype:  Implementation  details  were  added 
iteratively by updating annotations on the ESL model.
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