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1. Introduction

This article presents the classification tree method for

functional verification to close the gap from the specifica-

tion of a test plan to SystemVerilog [2] testbench genera-

tion. Our method supports the systematic development of

test configurations and is based on the classification tree

method for embedded systems (CTM/ES) [1] extending

CTM/ES for random test generation as well as for func-

tional coverage and property specification. We support the

structured coding of assertions and constraints by a two-

step method: (i) creation of the classification tree (ii) cre-

ation of (sample) abstract test sequences. For SystemVer-

ilog testbench generation, we introduce a mapping to Sys-

temVerilog random tests, assertions, and functional cov-

erage specifications. As our method is derived from the

CTM/ES, it is also compliant to the V-method and thus ap-

plies to IEC61508-conformant development of electronic

safety related systems. The remainder of this paper gives

an overview of the classification tree method (CTM) before

presenting our extension for functional verification.

2. Classification Tree Method (CTM)

The Classification Tree Method (CTM) was developed

in the early nineties at Daimler-Benz AG for the structured

representation of test cases. Most recently they were ex-

tended for Embedded Systems (CTM/ES) [1]. In classifi-

cation trees, potential inputs to a system under test (SUT)

are defined as a tree with composition, classification, and

class nodes. The development of classification trees and the

associated combination tables is supported by the classifi-

cation tree method (CTM). In CTM/ES, classifications are

derived from the interface of the system under test (Fig. 1)

and classes are given by values or intervals. The combina-

tion table of the CTM/ES defines abstract test sequences

with time annotated test steps, the so-called synchronisa-

tion points referring to classes, i.e., to values or intervals.

Meanwhile, several editors supporting CTM/ES support be-

came available, like Razorcat’s CTE, which is integrated

into MTest from dSPACE, a test automation environment

for Model/Hardware-In-the-Loop simulation [3].

3. CTM for Functional Verification

In a first step, we create the classification tree for the

testbench starting from the interface description of the de-

sign under test (DUT). Based on a existing interface we cre-

ate a classification tree, e.g., for an interface ACC we cre-

ate a tree for a testbench with ACC_TB as a root node.

For this, we only consider in and inout ports and create

one classification node for each of them. In our small exam-

ples, the classifications are taken as direct ancestors of the

root node and we arrive at a tree with desired_speed, track-

ing_distance, desired_distance, tracking, etc. as classifica-

tions (see Fig.1).

In a next step, the user manually creates classes for each

classification. The creation of classes for test values and test

intervals is due to the requirement specification or func-

tional specification, respectively. For the classification de-

sired_speed, for instance, this is measured in meters per sec-

ond with the classes [−5 : −1] for backward, 0 for stopping,

and other intervals and test points like [1 : 4] for driving for-

ward (cf. Fig. 1). Based on that basic structure of the clas-

sification tree, we continue to define random test and func-

tional coverages, which are defined as tree annotations and

as tables referring to the existing classes.

Constraints and Weights for Random Tests. We define

constraints for random generation as boxed tables. Those ta-

bles annotate the tree at the bottom and refer to the differ-

ent classes as given in Fig. 1. Each boxed table defines a

compound constraint, where each line in the table repre-

sents a single constraint. A constraint is defined by an op-

tional square and circles on the line both referring to spe-

cific classes (i.e., values/intervals of classifications). A cir-

cle on a line selects a class with a specific weight. When no

value is given, the default weight is 1. In Fig. 1, for example,

the first line defines the weights 20 and 80 for the classes of

tracking. Conditional constraints are defined with a square

and circles, where the square specifies the condition and

circles specify which inputs are considered for distribution

of random values, where each point can be annotated by a

weight again. E.g., a square for 1 of tracking in our exam-

ple defines that the line with the specific random distribu-

tion only applies for tracking = 1.

In Fig. 1, the table has Constraint1 with simple depen-
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Figure 1. Example: Adaptive Cruise Controller

dencies between tracking and desired_distance. Random

test generation shall be executed with weights depending on

the different classes for tracking, where the corresponding

SystemVerilog code sketches the mapping:

rand CT_value tracking, desired_distance;
...
constraint Constraint1 {

tracking.value == {0 := 20, 1 := 80};
tracking.value == 1 -> (

desired_distance.value inside {
10:=20,[11:99]/=60,100:=20

};
);
...

}

For the generation of randomized variables, classes like

tracking and desired_distance are given as instantiations

of type CT_value, which is a struct containing a value

and a transition. For tracking, for instance, weight is de-

fined with a distribution of 20% and 80%, respectively.

For desired_distance, a different distribution is chosen,

depending on the value of tracking: if tracking = 0,

desired_distance is set to 10 or 100 with a weight of

20% each, and it is set to a value from the interval [11, 99]
with a weight of 60% for the interval. If tracking = 1,

desired_distance is set with equal weights to the corner

cases and the interval, with 33.3% each.

Functional Coverage and Bins. SystemVerilog offers

covergroup, and coverpoint with bins for the defi-

nition of functional coverage. The previously described sub-

trees naturally map to such definitions without any major

modification. I.e., classifications refer to a set of coverpoints

and each class refers to a bin. As an example, take the fol-

lowing SystemVerilog code, which directly corresponds to

the tree in Fig. 1.

covergroup ACC_TB @(posedge clk);
...
tr0: coverpoint tracking

{bins tr1 [1] = {0}; option.weight = 1;};
...

endgroup;

Here, the coverpoint tr0 for input variable tracking contains

a bin for the time 0 with weight 1 as an annotation.

Creation of Abstract Test Sequences. The definition of

abstract test sequences is accomplished by a set of combi-

nation tables, one for each test sequence. For random test

generation, we can associate a classification tree test se-

quence with productions of a SystemVerilog random se-

quence grammar. The different test sequences then show up

as different alternatives of a production in that grammar. In

addition, each test sequence is given by a production rule

with the sequence of synchronization points. For each syn-

chronization point, we assign the values/intervals as well as

the transition type and randomize over the interval. Addi-

tionally, we can easily apply test sequences for the gener-

ation of transition coverage specifications without further

modification. Then, a covergroup is triggered by the syn-

chronisation point event and has a coverpoint for a class

with a bin, which covers the specific abstract test sequence.
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