
A Design Flow for Configurable Embedded Processors based on
Optimized Instruction Set Extension Synthesis

R. Leupers, K. Karuri, S. Kraemer, M. Pandey
Institute for Integrated Signal Processing Systems

RWTH Aachen University, Germany

Abstract

Design tools for application specific instruction set pro-
cessors (ASIPs) are an important discipline in system-
level design for wireless communications and other em-
bedded application areas. Some ASIPs are still designed
completely from scratch to meet extreme efficiency de-
mands. However, there is also a trend towards use of par-
tially predefined, configurable RISC-like embedded proces-
sor cores that can be quickly tuned to given applications
by means of instruction set extension (ISE) techniques.
While the problem of optimized ISE synthesis has been
studied well from a theoretical perspective, there are still
few approaches to an overall HW/SW design flow for con-
figurable cores that take all real-life constraints into ac-
count. In this paper, we therefore present a novel proce-
dure for automated ISE synthesis that accommodates both
user-specified and processor-specific constraints in a flexi-
ble way and that produces valid, optimized ISE solutions in
short time.Driven by anadvanced applicationCcode anal-
ysis/profiling frontend, the ISE synthesis core algorithm is
embedded into a complete design flow, where the backend
is formed by a state-of-the-art industrial tool for proces-
sor configuration, ISE HW synthesis, and SW tool retar-
geting. The proposed design flow, including ISE synthe-
sis, is demonstrated via several benchmarks for the MIPS
CorExtend configurable RISC processor platform.

1. Introduction
In the past decade, research on embedded proces-

sor design has emphasized ASIPs [1] as efficient and
flexible programmable platforms for demanding applica-
tions such as telecommunication protocols and multime-
dia codecs. With the traditional RTL design entry level,
ASIP design has frequently been considered too tedious
and risky under tight project schedules. However, re-
cent breakthroughs in architecture description languages
(ADLs) [2, 4, 5] and the corresponding EDA tools have
enabled the step to higher abstraction levels in proces-
sor modeling and made ASIP design feasible even for
small design teams. Contemporary design tools support
ASIP ISA and micro-architecture design from scratch,
while generating synthesizable HW models as well as
SW tools (C compiler, simulator, etc.) almost automat-
ically.

Due to the entry barrier usually caused by new mod-
eling languages and tools, though, and due to the ob-
servation that many ASIPs tend to have a RISC-like
core architecture and ISA anyway, configurable proces-
sors have emerged as a special class of ASIPs. Their core
architecture can be customized and optimized towards

given applications by means of instruction set extensions
(ISEs). An ISE consists of several custom instructions
(CIs), i.e. application specific instructions with a usually
higher complexity than generic machine instructions like
ADD, SUB, etc. We assume that CIs are implemented
on a co-processor1 tightly coupled to the main core.

While partially sacrificing silicon efficiency
(MIPS/Watt), configurable processors make ASIP de-
sign more incremental and less complex, since both
the HW architecture and SW tools are largely pre-
defined. Industrial examples of configurable proces-
sors include Tensilica Xtensa, ARC Tangent, and MIPS
CorExtend. Customization of such platforms can be di-
vided into the following major steps:

1. Application code analysis: The applica-
tion specification, mostly given as C code, needs
to be analyzed to identify major dynamic execu-
tion characteristics and hot spots (i.e. frequently ex-
ecuted code regions) that need optimization via
CIs. This demands for extensive code profil-
ing.

2. CI identification: Based on the analysis results,
code regions need to be identified whose implemen-
tation as CIs leads to the desired speedup of hot
spots and is feasible from an implementation per-
spective. This is a constrained optimization prob-
lem with a huge search space, which can be auto-
mated with sophisticated solving algorithms.

3. CI implementation: The selected CIs need to be
integrated into the predefined configurable proces-
sor template. The interface specification between
the processor core and the CFU must be met and
efficient communication must be guaranteed. Fur-
thermore, CIs need to meet latency and area con-
straints, e.g. by means of proper pipeline stage bal-
ancing. As the detailed effects of HW synthesis are
not fully known at this stage, estimations have to
be used.

4. SW adaptation and tools generation: CIs need
to be recognized and supported by the C compiler,
assembler, instruction set simulator etc. While re-
targeting of most of these SW tools can be per-
formed automatically, the C compiler can automati-
cally utilize the CIs only in special cases, due to lim-
itations in the code generation techniques. There-
fore, the original application C code usually needs

1 We refer to such co-processors as Customized Functional Units
or CFUs for the rest of this paper.

3-9810801-0-6/DATE06 © 2006 EDAA

to be modified, too, e.g. by means of inserting com-
piler known functions or intrinsics for CI calls.

5. HW architecture implementation: The CFU
and the interface specification must be converted
into an RTL HDL model (VHDL or Verilog) that
can be merged with the predefined code model for
subsequent logic and layout synthesis with standard
tool flows.

After a survey of related work in section 2, in this
paper we propose a concrete design flow (section 3) for
these steps. The key contribution is a new flexible opti-
mization algorithm for the CI identification phase, de-
scribed in section 4. This algorithm is embedded into
a suite of state-of-the-art external tools for the remain-
ing phases. We provide some experimental results in sec-
tion 5, and conclusions are given in section 6.

2. Related work
A large body of research has already been done

to investigate the different aspects of CI identifica-
tion and implementation. This section briefly traces
the related scientific literature along the lines of auto-
matic instruction-set customization and associated de-
sign methodologies.

There exists two major competing approaches of CI
identification. The first one, as presented in [7, 10], re-
lies on incremental clustering of related data-flow graph
nodes using heuristic approaches with the aim of iden-
tifying frequently occurring, and therefore reusable, CI
patterns. Ienne et.al. [9], on the other hand, propose an-
other approach where the identification algorithm tries
to identify large, complex data-flow sub-graphs under
I/O and convexity constraints. Reusability of the iden-
tified CIs is a secondary concern in this approach. Al-
gorithmic improvements of the technique presented in
[9] are reported in [14, 11]. None of these papers, how-
ever, present a complete methodology of processor cus-
tomization using the CIs, and many parts of the design
flow remain manual. A more automated instruction set
customization methodology is presented in [8]. However,
this work is mostly targeted towards a very specific ar-
chitecture (Tensilica Xtensa).

There are two important recent works in the context
of the current paper, which also use an Integer Linear
Programming (ILP) technique for instruction-set exten-
sion. [12] proposes an ASIP design methodology using
ILP, but it targets control dominated applications for
VLIW machines, whereas our interest is mostly in data-
flow oriented applications. The approach presented in
[13] is closest to ours since it also uses an ILP based
model for CI identification.

The key contributions of the current paper, with
respect to the earlier works, are twofold. Firstly, we
present a complete, generic processor customization flow
which uses a novel CI identification algorithm. Our
methodology is well scalable since it maps the CIs to
an ADL based design flow. Secondly, from the algorith-
mic perspective, we use a novel technique of using local
registers in the CFU to overcome the operand I/O con-
straints to a CI. This technique is described in detail in
section 4.

3. Processor customization design flow
An overview of our processor customization design

flow is presented in fig. 1. The following subsections pro-

 Automatically

 Generated

 CorXpert

 Config File

Select Optimal Solution

Automatic CI

Identification

Configurable

Processors

GUI

+

Area / Speedup

Estimate

Generate Back End

support

User-Interaction

For Selecting &

Modifying Solution

User Input

Mark nodes / Edges

Generate CIs

(As per User Data)
Corrections

Modify Solution

NONE

Application

written in C

Profiling (Micro-Profiler)

Set of Solutions

Automatic Generation

of Modified Code

Simulate

Instruction-set

Linker & Loader

Assembler

Compiler

Binary Code

S
o

ft
w

a
re

 A
d

a
p

ta
ti

o
n

&
 T

o
o

ls
 G

e
n

e
ra

ti
o

n

Generate RTL

model

Hardware

Synthesis

Architectural

Constraint

µPµP

Applications

Code

Analysis

CI Identification

H
W

 A
rc

h
it

e
c
tu

re

Im
p

le
m

e
n

ta
ti

o
n

Figure 1. Processor Customization Design Flow

vide a brief description of the different components of
this design flow.

3.1. Application code analysis
Provided the application is specified in terms of a

C program, C code profiling is the key technique for the
analysis phase. Traditional profilers, such as GNU gprof,
are suitable tools for optimizing the application SW it-
self, but they work at a coarse granularity level that
makes them less suitable for guiding ASIP ISA design
and predicting low-level effects such as code optimiza-
tions in the compiler backend. Assembly-level profilers
provide sufficient accuracy, but they require a detailed
processor model that might not be at hand at early
design stages. Furthermore, they are relatively slow.
Therefore, we proposed a novel micro-profiler (µP) tool
[6] that fills the gap in profiler technology for ASIP de-
sign. While the µP provides some functionalities beyond
CI identification (e.g. performance estimation and mem-
ory access profiling), its major use here is the determina-
tion of operation execution frequencies in hot spots and
prediction of code optimization effects in the C compiler.

3.2. CI identification
A program hot spot is graphically represented as a

data-flow graph (DFG). CI identification is viewed as
a problem of optimal DFG covering, such that a signifi-
cant speedup is achieved by execution of some DFG frag-
ments (or the entire DFG in an extreme case) by means
of CIs. The detailed optimization algorithm is described
in section 4. It takes into account the constraints of the

core processor (e.g. maximal number of inputs and out-
puts of an instruction) and the presence of CFU inter-
nal state (e.g. local registers). The optimization is car-
ried out under area and latency constraints imposed by
the core processor and the human designer, based on es-
timations using a one-time pre-characterized CMOS tar-
get library. As the optimization algorithm cannot take
into account the designer’s expert knowledge nor the
detailed HW synthesis effects, CI identification is inten-
tionally conceived as an interactive process, where the
user can select from alternative solutions and modify
generated CIs within a graphical environment.

3.3. CI implementation
For CI implementation, we use CoWare’s CorXpert

tool. CorXpert is a graphical tool for CI capture for
configurable processors. The use of CorXpert as a back-
end makes the design flow quite generic, since it uses the
LISA ADL [2] as the specification formalism for the CIs.
The user describes a CI by specifying the format, cod-
ing information, and the behavior of the CI through the
CorXpert GUI. The CI behavior is specified in a subset
of the C language. In our flow, the graphical CI entry is
circumvented, and a CorXpert configuration file is gen-
erated directly from the CI identification phase. The CI
behavior specification corresponds to the C code frag-
ments selected as CIs in the previous phase, augmented
with necessary core/CFU communication macros. At
this point, the designer can perform fine-grained man-
ual optimizations, such as balancing CIs over the de-
sired number of available CFU pipeline stages, or rewrit-
ing the CI behavior code for optimized HW implemen-
tation.

3.4. SW adaptation and tools generation
Unless by chance the entire hot spot DFG has been

covered by CIs, the general result of CI identification is a
DFG that is partially implemented in SW (i.e. by means
of core processor instructions) and HW (i.e. by means
of CIs). The DFG portions moved to HW are automat-
ically replaced by compiler intrinsics in the original C
code, while the SW part is left virtually untouched. The
result is a C program that after compiler retargeting
and compilation makes use of the generated CIs. The
CorXpert tool retargets the core processor C compiler
as well as the instruction set simulator (ISS). The ISS
can then be used for cycle-true core/CFU simulation to
back-annotate the exact speedup in terms of cycle count
achieved by the CIs.

3.5. HW architecture implementation
CorXpert also generates a synthesizable CFU HDL

model and triggers the HW synthesis process via stan-
dard logic synthesis tools. As a result, an accurate es-
timation of the real speedup (including maximum clock
rate) and area overhead is achieved for the given CMOS
target library. In case of significant deviations from the
estimated results, the designer can return to the CI iden-
tification phase to modify the original solution.

4. Optimized CI identification

4.1. Background
The primary goal of CI identification is to maximize

speedup of the given application under different con-
straints. While the exact speedup is only known after

HW architecture implementation, it can be reasonably
estimated based on

1. The hot spot operation execution frequencies deliv-
ered by the application code analysis, and

2. An estimation of SW and HW latencies of different
operations.

CI identification, in general, can be conceived as a
problem of optimally partitioning the DFG of an appli-
cation between different CIs (and possibly between CIs
and core processor instructions) that maximizes appli-
cation speedup. However, any arbitrary cluster of nodes
in a DFG cannot qualify as a CI in general. A CI is ar-
chitecturally feasible only when the constituent DFG
fragment follows a certain set of constraints. Such con-
straints can be broadly classified into the following three
categories:

• Data-flow constraints: A set of DFG operations
grouped into the same CI must satisfy a convexity
constraint [9] that prevents cyclic dependencies be-
tween one CI and other DFG operations. Similarly,
schedulability constraints have to be met that pre-
vent deadlocks between sets of CIs during the com-
piler’s instruction scheduling phase.

• Latency and area constraints: As a rule of
thumb, the speedup due to CIs is proportional to
their complexity. Therefore, CI synthesis generally
tends to put as many DFG operations as possible
into a single CI. However, there are limitations on
permissible CI size due to area, power consump-
tion, and/or latency constraints. In particular, the
CI combinational critical path must not exceed the
core processor’s clock period. Pipelining of CIs can
soften this constraint, depending on the number of
pipeline stages available for CI execution on the
CFU. Since most embedded ASIPs need to meet
very tight area budgets, a constraint can also be
imposed by the designer on the maximum silicon
area of a CI.

• Architectural constraints: Assuming the CFU
is tightly coupled with the core processor, commu-
nication frequently takes place via the core’s gen-
eral purpose register (GPR) file. Due to the lim-
ited instruction word length, generally only a few
GPRs are available for this purpose (e.g. 2 input
GPRs and 1 output GPR per CI). Furthermore,
a CI may or may not access the data memory, and
other constraints may hold for immediate constants
etc. Although these constraints impose tight limi-
tations, the CFU may provide internal state to sup-
port more complex CIs via increased I/O capabili-
ties.

4.2. CI synthesis algorithm
Optimized CI synthesis under the above-mentioned

constraints can be precisely formulated as a mathemat-
ical optimization problem. A high degree of flexibility is
required, though, in order to (1) enable CI optimiza-
tion for a wide range of configurable processors and
(2) allow for simple accommodation of additional, user-
specified constraints. This makes Integer Linear Pro-
gramming (ILP) an attractive solution vehicle. An opti-
mal solution to the entire problem, however, cannot be

npnj

nl

CI 1

nr

ni

nm

nk

CI 2

nq

MOV

MOV

MOV

MOV

MOVIR

GPR

Figure 2. Communication through IRs

found within reasonable CPU time due to the high run-
time requirements of ILP solvers. Therefore, we follow
a divide-and-conquer approach where (1) CIs are con-
structed -locally optimal- one after another and (2) less
important optimization subtasks are outsourced to fast
heuristics2.

Besides the selection of effective CIs, our algorithm
also emphasizes minimization of communication costs
between the core and the CFU, as well as within the
CFU itself. We assume that each CI can access a small,
fixed number of GPRs, while larger I/O bandwidth is
only enabled via internal registers (IRs) of the CFU. IRs
can be freely allocated during CI synthesis. However,
they are subject to minimization due to their area over-
head, and a communication cost overhead is assumed for
moving data between GPRs and IRs. The use of such
internal state registers in CI identification has been al-
ready proposed in [18]. However, consideration of the
limited bandwidth between the core and the CFU, and
the general possibilities of overcome the limits by IRs is
the unique contribution of our algorithm.

An example of the use of such IRs and the corre-
sponding communication overheads is illustrated in fig.
2 which shows two CIs, namely CI1 and CI2, that
have more inputs/outputs than the maximum permis-
sible number of GPR reads/writes (assumed to be 2
and 1, respectively). Therefore, nodes nr, nj and np

inside CI1, and nm and nq inside CI2 require inputs
from the IRs. Similarly, nodes nj , np, nk and nm need
to produce results into IRs. However, since nodes nr,
nj and np have inputs coming from nodes outside CIs,
these inputs need to be moved first into the IRs (indi-
cated by the MOV boxes in fig. 2). Similarly, the out-
puts of nodes nj and nm are to be moved back from
IRs to GPRs. Such extra moves introduce communica-
tion overheads that must be taken into account during
the CI synthesis. Note that, however, the communica-
tion between nodes nk and nm (or, between np and nq)
does not incur any extra costs since IRs are available to
both of these nodes. The possibility of such free commu-
nication between different CIs through IRs is also taken
into account by the identification algorithm.

2 The detailed ILP formulation is omitted here for sake of brevity.
It is available in a technical report [15].

Our CI identification algorithm works in two steps.
Using ILP, the first step optimally partitions the DFG
into different clusters of nodes that qualify as valid CIs.
Although we do not consider the I/O constraints in this
step, the ILP uses heuristics that take into account the
possible communication overheads that might result due
to such constraints. When this partitioning is done, the
algorithm again uses another ILP model in the second
step to decide about the means of communication be-
tween different nodes. These two steps are briefly de-
scribed in the following two subsections.

4.3. Step 1: DFG Partitioning into CIs
In then first step, an optimization algorithm is itera-

tively applied on the DFG, G = (N,E), of an applica-
tion (or an application’s hot-spot). In each iteration, the
objective is to identify one cluster of DFG nodes that (1)
maximizes the speedup function locally, and (2) obeys
all the CI identification constraints except those on the
number of GPR inputs and outputs. However, the ob-
jective function of the optimization problem does take
the penalty of using IRs into account. This iterative pro-
cess continues until either no more CIs can be identified
(i.e. the remaining nodes in the DFG cannot be com-
bined into a valid CI), or a user specified maximum per-
missible number of CIs is reached.

Each iteration starts with a set of DFG nodes, S =
{n1, n2, · · · , nm}, which are still not part of any CI. Each
node, ni ∈ S, is associated with a unique binary variable
Ui which is used to construct the ILP model for that it-
eration. If the solution of the ILP assigns 1 to Ui, then
ni becomes part of a new CI. Otherwise, it is left out.
The objective function of the ILP is designed to maxi-
mize the speedup and therefore, tries to include nodes
with high software latencies (i.e. number of cycles to ex-
ecute that node in software). Moreover, it also tries to
include nodes with low communication costs (e.g. nodes
that are already connected to nodes inside other CIs and
therefore, can communicate using IRs without any over-
head). Therefore, the contribution of a single node, ni

to the objective function is defined as:

f(ni) = (SWi ∗ Ui) −
∑

neighbors

Commi(neighbor)

where SWi is the software latency of ni and
Commi(neighbor) is the communication cost for
ni with a neighbor in the DFG.

Any neighbor, np, of the node ni falls in one of the
following categories:

1. Nodes that can never be a part of a CI. Usually,
nodes that make main memory accesses (loads and
stores) fall into this category. Since these nodes re-
quire inputs/outputs through GPRs, communica-
tion with them may come with an overhead if ni is
included in a CI.

2. Nodes that are already part of earlier identified CIs.
Communication with such a node (through a GPR
or an IR) is always free of any overhead if ni is in-
cluded in a CI.

3. Nodes that are candidates for inclusion in a CI in
the current iteration. Such a node do not have any
communication cost if it is included in the CI along
with ni.

Keeping the above model of communication in mind,
the communication overhead of ni, for neighbor np, can
be summarized as:

Commi(np) =

{
1 case(1)
0 case(2)

(1 − Up) case(3)

The overall objective function, ON , for the set S is:

ON =
m∑

i=1

f(ni)

The problem constraints mentioned above (generic,
latency, architectural) are specified using a set of in-
equalities. For example, the convexity constraint re-
quires that if any pair of nodes ni and nk are included
in one CI, then any node nj on any path between ni

and nk must also be in the same CI. This fact is repre-
sented by the inequality:

Ui + Uk ≤ Uj + 1

for all triplets of nodes ni, nj and nk that are connected
by a path in the DFG.
4.4. Step 2: Register Type Assignment

The second step of the algorithm is performed only
once with the partitioned DFG obtained after the first
step. This step enforces the GPR I/O constraints and
optimally assigns register types (GPRs or IRs) to the
incoming and outgoing edges of the different CIs. The
objective here is to maximize the use of GPRs by the
CIs (in other words, to minimize the use of the IRs so
that the area of the IR file is kept small).

Let SE = {e1, e2, · · · , el} be the set of I/O edges to
the different CIs after the first step. The second step
tries to maximize the following objective function:

OE =
k∑

i=1

Gi

where Gi is a binary variable associated with edge
ei ∈ SE . If the ILP solves Gi as 1, then the corre-
sponding edge is assigned a GPR register type, other-
wise, it is considered to go though the IRs. The I/O
constraints on a CI (with input and output edge sets
SIN = {e1, e2, · · · , ek} and SOUT = {e1, e2, · · · , ej}, re-
spectively) are enforced by forming the following in-
equalities:

k∑
i=1

Gi ≤ INmax

j∑
i=1

Gi ≤ OUTmax

where INmax and OUTmax are the maximum permis-
sible inputs and outputs, respectively, through GPRs.

Fig. 3 shows an example run of the algorithm on a
sample DFG. The first step is iterated twice over the
original graph to identify two CIs (clusters of nodes en-
closed in ellipses). The second step takes as a input the
partitioned graph and assigns register types to differ-
ent edges (the edges which are assigned GPR types are
shown in light dotted lines, while the IR type edges are
shown in dark solid lines) as shown in the figure.

&

+

*

*

ld

<<

+

*

+
-

+

(a) Original Graph (b) After First Iteration

of Step 1

(c) After Second Iteration

of Step 1

(d) After step 2

&

+

*

*

ld

<<

+

*

+
-

+

CI 1

&

+

*

*

ld

<<

+

*

+
-

+

CI 1

CI 2

&

+

*

*

ld

<<

+

*

+
-

+

CI 1

CI 2 GPR

 IR

Figure 3. Example run of CI identification

4.5. CI scheduling and register allocation
As a preparation step for the SW adaption phase (sec-

tion 3.4), the partial ordering of the selected CIs inside
the hot spot DFG must be embedded into a sequen-
tial schedule. We use a simple list scheduler [20] for this
purpose, where each group of DFG nodes assigned to
the same CI is collapsed into a single node. The con-
straints obeyed during the CI identification phase en-
sure that a valid schedule always exists. According to
the schedule obtained, C code fragments in the origi-
nal source code are replaced by instances of compiler
intrinsic, for sake of recognition by the C compiler.

The DFG obtained after CI identification contains
edges either assigned to GPRs or IRs. As the C com-
piler takes care of GPR allocation, we are only con-
cerned with optimized IR allocation. We use a variant
of the left-edge algorithm [19] for this purpose that effi-
ciently achieves an allocation with a minimum amount
of IRs based on live range analysis. This minimizes the
area overhead due to IRs.

In the current implementation, scheduling and regis-
ter allocation are separated. Due to the well-known mu-
tual dependency between both, we expect that some-
what better results could be obtained with a phase-
coupled approach.

5. Experimental results

This section presents some results to demonstrate the
efficiency and applicability of our processor customiza-
tion design flow. Our benchmarking process has been
carried out with two objectives in mind:

1. Demonstration of the capabilities of the CI identifi-
cation algorithm. A measure of this is the speedups

CFU Area for Different Applications

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

CRC Gost Blowfish MPEG-2

Benchmarks

C
F

U
A

re
a

(t
im

e
s

3
2

-b
it

M
u

lt
.)

Speed-Ups for Different Applications

0,00

1,00

2,00

3,00

4,00

5,00

CRC Gost Blowfish MPEG-2

Benchmarks

S
p

e
e

d
-u

p
(t

im
e

s
S

/W

im
p

l.
)

Basic 1 Scratch-pad Access 2 Scratch-pad Accesses

Figure 4. Different Results for the ISE synthesis methodology

obtained for various applications which are pre-
sented in fig. 4.(a), and the corresponding CFU area
overheads as presented in fig. 4.(b).

2. The efficiency of the design flow. This is roughly
proportional to the time and effort required for CI
identification and CI implementation.

The speedup values for four different applications
(Blowfish, gost, MPEG2 and CRC), presented in fig.
4.(a), have been obtained through cycle accurate In-
structionSet Simulators (ISS) generated using the CorX-
pert tool chain for the MIPS CorExtend [3] processor ex-
tensions. As can be seen, the identified CIs result in an
average performance improvement of around 1.4x, w.r.t.
the pure software implementation on MIPS.

The speedup increases considerably if the possibil-
ity of memory accesses from CIs is considered. Since
MIPS does not allow memory accesses from the CIs,
the only way of making CIs capable of accessing mem-
ories is to put frequently used data objects into small
scratch-pad memories [17] inside the CFU block itself.
For the benchmarked applications, such objects include
the S-Boxes for the two private-key cryptographic algo-
rithms, Blowfish and gost, and a constant look-up table
for the CRC calculation. MPEG2 did not have any such
prominent data object. As can be seen from fig. 4.(a), al-
lowing each CI to make one scratch-pad access results
in around 2.3 times speedup on average, while the av-
erage speedup with two scratch-pad accesses per CI is
around 3.1 times.

Fig. 4.(b) presents the extra CFU area required for
implementing the different CI configurations for the
benchmarks. These values were obtained by synthesiz-
ing the CorXpert generated RTL code through Synop-
sys Design Compiler using a 130nm CMOS library. As
can be seen, the average area overhead is around 3 times
that of a 32-bit multiplier. This is only a fraction of the
chip area occupied by a typical embedded RISC core.

6. Conclusions

This paper presents a new workbench approach and
design flow for configurable processors with ISEs. As far
as the area overhead and the speedup is concerned, our
solutions are somewhere between pure SW implementa-
tions and full-custom designed ASIPs. A major advan-
tage of our approach is the large degree of automation in
identifying the CIs, and the completely automated gen-
eration of the modified C code and the ADL/HDL de-

scription. Using our design flow, it is possible to cus-
tomize a base processor core with a CFU within a few
hours design time. This is also enabled by the proposed
fast optimization algorithm, which takes typically a few
seconds, and up to some CPU minutes, for optimized CI
identification in realistic benchmarks.

References
[1] M. Gries, K. Keutzer, H. Meyr, et al.: Building ASIPs: The Mescal

Methodology Springer, 2005
[2] http://www.coware.com/products/lisatek.php

[3] MIPS Inc.: CorExtend Technology, http://www.mips.com

[4] Target Compiler Technologies: Chess compiler, www.retarget.com

[5] P. Mishra, N. Dutt, A. Nicolau: Functional abstraction driven de-
sign space exploration of heterogenous programmable architec-
tures, Int. Symp. on System Synthesis (ISSS), 2001

[6] K. Karuri, M. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid, H.
Meyr: Fine-grained Application Source Code Profiling for ASIP
Design, 42nd Design Automation Conference, June 2005

[7] M. Arnold, H. Corporaal: Designing Domain-Specific Processors,
Int. Conference on Hardware - Software Codesign and System Syn-
thesis (CODES), 2001

[8] F. Sun, S. Ravi, A. Raghunathan, N.K. Jha: Synthesis of Custom
Processors based on Extensible Platforms, in Int. Conference on
Computer Aided Design (ICCAD), 2001

[9] K. Atasu, L. Pozzi, P. Ienne: Automatic Application-Specific
Instruction-Set Extensions under Microarchitectural Con-
straints, 40th Design Automation Conference (DAC), 2003

[10] N. Clark, H.Zong, S.Mahlke: Processor Acceleration Through Au-
tomated Instruction SetCustomization, 36thAnnual International
Symposium on Microarchitecture, 2003

[11] P. Biswas, S.Banerjee, N. Dutt, L. Pozzi, P. Ienne: ISEGEN: Gen-
eration of High-Quality Instruction Set Extensions by Iterative
Improvement, 42nd Design Automation Conference (DAC), 2005

[12] Gero Dittmann, Paul Hurley: Instruction-set Synthesis for Reac-
tive Real-Time Processors: An ILP Formulation, IBM Research
Report, RZ 3611, 2005

[13] K. Atasu, G. Dündar, C. Özturan: An Integer Linear Program-
ming Approach for Identifying Instruction-Set Extensions, Int.
Conference on Hardware - Software Codesign and System Synthe-
sis (CODES), 2005

[14] P. Yu, T. Mitra: Scalable Custom Instructions Identification for
Instruction-Set Extensible Processors, Int. Conference on Com-
piler,Architectures andSynthesis forEmbeddedSystems (CASES),
2004

[15] Manas Pandey: Semi-Automatic Instruction-set Customization
of Configurable Embedded RISC Processors, Master’s Thesis, In-
stitute for Integrated Signal Processing Systems, RWTH Aachen
University, 2005

[16] H. Scharwaechter, D. Kammler, A. Wieferink et. al.: ASIP Archi-
tecture Exploration for Efficient IPSec Encryption: ACase Study,
Software and Compilers for Embedded Systems (SCOPES), 2004

[17] S. Steinke, L. Wehmeyer, B.S. Lee, P. Marwadel: Assigning Pro-
gram and Data Objects to Scratch-pad for Energy Reduction, Uni-
versity of Dortmund

[18] P. Biswas, K. Atasu, V. Choudhary, L. Pozzi, N. Dutt, P. Ienne: In-
troduction of local memory elements in instruction set extensions,
41stDesign Automation Conference, 2004

[19] F. J. Kurdahi, A. C. Parker: REAL: A Program for Register Allo-
cations, Design Automation Conference, 1987

[20] S. S. Gibons, A. Philips: Efficient Instruction Scheduling for a
PipelinedProcessor, SIGPLANSymposiumonCompilerConstruc-
tion, 1986

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

