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Walden C. Rhines - Mentor Graphics Corp., Wilsonville, OR 
Jackson Hu - UMC Corp., Hsinchu, Taiwan 
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Abstract 
For the past 25 years, the EDA industry has played a major role in the growth of the 
semiconductor industry, providing tools and services that have helped companies develop 
electronics products that permeate and improve every aspect of our daily lives. 
 
As the semiconductor industry moves into the nanometer era, they face many key questions 
when envisioning a new product.  When do they want the product to reach the market? How will 
that product be differentiated? Where do they develop and manufacture that product? 
 
Less than a decade ago, these questions would have been answered completely independent of 
whatever EDA vendor a semiconductor company selected. However, in the nanometer era, the 
answers to these questions can be significantly influenced not only by EDA companies but also 
by the IP and pure-play foundries that make up the infrastructure of the semiconductor industry. 
In order to compete in a global marketplace, these companies must align their individual core 
competencies with those of the semiconductor industry to help IC companies create products 
with the optimal combination of performance, price, and time-to-market. 
 
In this panel, the CEOs of the three major EDA vendors, along with peers from the IP and 
manufacturing areas discuss these fundamental changes to the semiconductor industry, and the 
challenges of working together to help customers successfully bring new products to market. 
 
Jay Vleeschhouwer, a senior analyst for Merrill Lynch, will moderate a series of questions for 
the panelists from the customer’s point of view that address how EDA, IP and pureplay foundries 
can impact the competitiveness of semiconductor companies and the products they develop. 
Keywords: Processors, EDS, Intellectual Property, Semiconductor Fabrication, Supplier-
Customer Relationships 
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Logic Soft Errors in Sub-65nm Technologies Design and CAD Challenges 

 
Subhasish Mitra, Tanay Karnik, Norbert Seifert, Ming Zhang 

Intel Corporation 
 
ABSTRACT 
Logic soft errors are radiation induced transient errors in sequential elements (flip-flops and 
latches) and combinational logic. Robust enterprise platforms in sub-65nm technologies require 
designs with built-in logic soft error protection. Effective logic soft error protection requires 
solutions to the following three problems: (1) Accurate soft error rate estimation for 
combinational logic networks; (2) Automated estimation of system effects of logic soft errors, 
and identification of regions in a design that must be protected; and, (3) New cost-effective 
techniques for logic soft error protection, because classical fault-tolerance techniques are very 
expensive. 
Keywords: Architectural Vulnerability Factor, Built-In Soft Error Resilience, derating, error 
blocking, error detection, recovery, soft error 
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SEU Tolerant Device, Circuit and Processor Design 

 
William Heidergott 

General Dynamics C4 Systems, Scottsdale, Arizona, USA 
 
ABSTRACT 
Development of highly reliable and available systems requires consideration of the occurrence of 
single event upsets, the effects they have on system performance, and strategies for their 
prevention and mitigation. Methods of systems engineering process and the application and 
validation of techniques for fault tolerance are discussed as elements in the elimination and 
mitigation of single event upsets. 
Keywords: Radiation effects, single event upset, soft error rate, fault tolerant systems, error 
detection and correction coding, fault avoidance, fault masking, modular redundancy, temporal 
redundancy 
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ABSTRACT 
This paper proposes microarchitecture-level models for Within Die (WID) process and system 
parameter variability that can be included in the design of high-performance processors. Since 
decisions taken at microarchitecture level have the largest impact on both performance and 
power, on one hand, and global variability effect, on the other hand, models and associated 
metrics are needed for their joint characterization and analysis. To assess how these variations 
affect or are affected by microarchitecture decisions, we propose a joint performance, power and 
variability metric that is able to distinguish among various design choices. As a design-driver for 
the modeling methodology, we consider a clustered high-performance processor implementation, 
along with its Globally Asynchronous, Locally Synchronous (GALS) counterpart. Results show 
that, when comparing the baseline, synchronous and its GALS counterpart, microarchitecture-
driven impact of process variability translates into 2-10% faster local clocks for the GALS case, 
while when taking into account the effect of on-chip temperature variability, local clocks can be 
8-18% faster. If, in addition, voltage scaling (DVS) is employed, the GALS architecture with 
DVS is 26% better in terms of the joint quality metric employing energy, performance, and 
variability. 
Keywords: variability, power consumption, GALS design 
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ABSTRACT 
In this paper we present a low-power tag organization for physically tagged caches in embedded 
processors with virtual memory support. An exceedingly small subset of tag bits is identified for 
each application hot-spot so that only these tag bits are used for cache access with no 
perfromance sacrifice as they provide complete address resolution. The minimal subset of 
physical tag bits, i.e. the compressed tag, is dynamically updated following the changes in the 
physical address space of the application. Special support from the operating system (OS) is 
introduced in order to maintain the compressed tag during program execution. The compressed 
tag is updated by the OS to match the current set of physical memory pages allocated to the 
application. We have proposed efficient algorithms that are incorporated within the memory 
allocator and the dynamic linker in order to achieve dynamic update of the compressed tags in 
the cases where the mapping between virtual and physical addresses is modified; such cases 
include memory allocation/deallocation and swapping physical pages on the secondary memory 
storage. The only hardware support needed within the I/D-caches is the support for disabling 
bitlines of the tag arrays. An extensive set of experimental results demonstrates the efficacy of 
the proposed approach. 
General Terms: Algorithms, Design, Experimentation, Performance 
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Abstract 
Software energy estimation is a critical step in the design of energy-efficient embedded systems. 
Instruction-level simulation techniques, despite several advances, remain too slow for iterative 
use in system-level exploration. In this paper, we propose a methodology called hybrid 
simulation, which combines instruction set simulation with selective native execution (execution 
of some parts of the program directly on the simulation host computer), thereby overcoming the 
disadvantages of instruction-level simulation (low speed) and pure native execution (estimation 
accuracy, inapplicability to target-dependent code), while exploiting their advantages. Previously 
developed techniques for software energy macromodeling are utilized to estimate energy 
consumption for natively executed sub-programs.  We identify and address the main challenges 
involved in hybrid simulation, and present an automatic tool flow for it, which analyzes a given 
program and selects functions for native execution in order to achieve maximum estimation 
efficiency while limiting estimation error.  We have applied the proposed hybrid simulation 
methodology to a variety of embedded software programs, resulting in an average speed-up of 
70% and estimation error of at most 6%, compared to one of the fastest publicly-available 
instruction set simulators. 
Keywords: Embedded Software, Energy Estimation, Energy Macromodels, Hybrid Simulation, 
Pointer Analysis 
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ABSTRACT 
We propose an embedded multiprocessor architecture and its associated thread-based  
programming model. Using a cycle-true simulation model of this architecture, we are able to 
estimate energy savings for a threaded C program. The savings are obtained by voltage- and 
frequency-scaling of the individual processors. We port a fingerprint minutiae detection 
application onto this architecture, and show the resulting performance on single-, dual-, and 
quad-processor configurations. The energy-scaled quad-processor version results in a 77 % 
energy reduction over the single-processor non-scaled implementation, at only a 2.2 % 
degradation in cycle count. 
General Terms: Design, Performance. 
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ABSTRACT 
Minimizing power consumption is one of the most important objectives in IC design. Resizing 
gates and assigning different Vt’s are common ways to meet power and timing budgets. We 
propose an automatic implementation of both these techniques using a mixed-integer linear 
programming model called MLP-exact, which minimizes a circuit’s total active-mode power 
consumption. Unlike previous linear programming methods which only consider local 
optimality, MLP-exact can find a true global optimum. An efficient, non-optimal way to solve 
the MLP model, called MLP-fast, is also described. We present a set of benchmark experiments 
which show that MLP-fast is much faster than MLPexact, while obtaining designs with only 
slightly higher power consumption. Furthermore, the designs generated by MLP-fast consume 
30% less power than those obtained by conventional, sensitivity-based methods. 
Keywords: Low power, linear programming, dual Vt, gate sizing 
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Abstract 
The large magnitude of supply/ground bounces, which arise from power mode transitions in 
power gating structures, may cause spurious transitions in a circuit. This can result in wrong 
values being latched in the circuit registers. We propose a design methodology for limiting the 
maximum value of the supply/ground currents to a user-specified threshold level while 
minimizing the wake up (sleep to active mode transition) time. In addition to controlling the 
sudden discharge of the accumulated charge in the intermediate nodes of the circuit through the 
sleep transistors during the wake up transition, we can eliminate short circuit current and 
spurious switching activity during this time. This is in turn achieved by reducing the amount of 
charge that must be removed from the intermediate nodes of the circuit and by turning on 
different parts of the circuit in a way that causes a uniform distribution of current over the wake 
up time.  Simulation results show that, compared to existing wakeup scheduling methods, the 
proposed techniques result in a one to two orders of magnitude improvement in the product of 
the maximum ground current and the wake up time. 
General Terms: Algorithms, Performance, Design, Reliability. 
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ABSTRACT 
Reverse body biasing (RBB) is often used to reduce the leakage power of a device. However, 
recent research has shown that if this applied RBB is too high, the leakage power can actually 
increase due to the contribution of Band-to-Band Tunneling (BTBT) currents. Hence, there exists 
an optimal RBB value at which the leakage is minimum. This optimum point can vary with 
temperature and process variations. In this paper we show that it is desirable to operate at the 
optimal RBB point which minimizes total leakage. We present a scheme that monitors the total 
leakage current (the sum of the sub-threshold, BTBT and gate leakage) of an IC with a 
representative leaking device and, using this monitored value, automatically finds the optimum 
RBB value across temperature and process corners, using a self-adjusting circuit. Our approach 
has a modest placed-and-routed area utilization, and a low power consumption. 
Keywords: Leakage power, Body-biasing, Self-adjusting 
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Abstract 
Input vector control (IVC) technique utilizes the stack effect in CMOS circuit to apply the 
minimum leakage vector (MLV) to the circuit at the sleep mode to reduce leakage. Additional 
logic gates can be inserted as control points to make it more effective. In this paper, we propose a 
gate replacement technique that further enhances the leakage reduction. The basic idea is to 
replace a gate that is in its worst leakage state by another library gate while keeping the circuit’s 
correct functionality at the active mode. We also develop a divide-and-conquer approach that 
integrates a fast gate replacement heuristic, an optimal MLV search strategy for tree circuit, and 
a genetic algorithm to connect the tree circuits. We conduct experiments on the MCNC91 
benchmark circuits. The results reveal that our technique can reduce additional 10% to 24% 
leakage over the best known IVC methods and the optimal MLV with no delay penalty and little 
area increase. 
Keywords: Leakage reduction, gate replacement, MLV 
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ABSTRACT 
We present applications of a recently developed automated nonlinear macromodelling approach 
to the important problem of macromodelling high-speed output buffers/drivers. Good nonlinear 
macromodels of such drivers are essential for fast signal-integrity and timing analysis in high-
speed digital design. Unlike traditional black-box modelling techniques, our approach extracts 
nonlinear macromodels of digital drivers automatically from SPICE-level descriptions.  Thus it 
can naturally capture transistor-level nonlinearities in the macromodels, resulting in far more 
accurate signal integrity analysis, while retaining significant speedups. We demonstrate the 
technique by automatically extracting macromodels for two typical digital drivers. Using the 
macromodel, we obtain about 8× speedup in average with excellent accuracy in capturing 
different loading effects, crosstalk, simultaneous switching noise (SSN), etc.. 
Keywords: nonlinear macromodeling, I/O buffer macromodeling 
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ABSTRACT 
This paper presents a systematic methodology to create customized structural macromodels for a 
specific analog circuit.  The novel contributions of the method include definition of the building 
block behavioral concept and two original algorithms to generate structural models. Experiments 
are offered for two-stage opamp and operational transconductor amplifier (OTA) circuits. The 
automatically produced models are accurate, offer design insight, and require low modeling 
effort. 
Keywords: Analog circuits, Structural macromodel 
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ABSTRACT 
The need to reuse the performance macromodels of an analog circuit topology challenges 
existing regression based modeling techniques.  A model of good reusability should have a 
number of independent design parameters and each parameter can vary in a large numeric range. 
On the other hand, these requirements can cause a large percentage of functionally incorrect 
designs in the design space and thus results in a sparse feasible design space. They also 
complicate the mathematical relationship between the performance parameters and the design 
parameters. In order to tackle these challenges, this paper presents a combined feasibility and 
performance macromodel based on Support Vector Machines (SVMs). The feasibility model 
identifies the feasible designs that satisfy the design constraints. The performance macromodel is 
valid for feasible designs.  Feasibility macromodeling is formulated as a classification problem 
while performance macromeling as a regression problem.  An active learning scheme [5] has 
been applied to improve the accuracy of the feasibility model much faster than only using 
uniformly distributed designs in the entire design space. Our experiment shows that the 
performance macromodels in the feasible design space are more accurate and faster to construct 
and evaluate than performance macromodels in the entire design space without functional or 
performance constraints considered. 
Keywords: Performance macromodeling, feasibility models, active learning 
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PANEL SUMMARY 
Electronic System-Level design has arrived - but can ESL provide the bridge from systems to 
silicon? Comprised of real world designers, this DAC ESL panel will examine and debate what 
works, what doesn’t, and what the gaps are in the methodology and tool offerings. Panelists from 
a variety of industry segments, including Military/aerospace, storage area networks (SAN), 
wireless communications and consumer electronics, will share their experiences, lessons learned 
and further needs.   
 
Does ESL bridge the gap between systems to silicon? Hear from designers about their real world 
experience with ESL.  What worked according to expectations? What didn’t? What are  the gaps 
in the methodology and tool offerings that need to be filled, and why? 
 
This panel of ESL design methodology users will give us a “reality check” that will enable 
potential users to make an adoption decision, and enable ESL design tool suppliers to evaluate 
their product strategies against “big picture” requirements. 
 
Panelists will address primary areas of concern, such as: 
 
Methodology Usage: What do you use ESL design for? Is it for algorithm development alone? 
Are you using it for hardware/software partitioning? Have you used it for embedded system 
architecture development for performance optimization and/or for SoC platform development? 
Are you using ESL for embedded software development, using the system architecture  model as 
a development platform? Are you doing any highlevel synthesis of RTL? Did ESL help you with 
your system testbench development or HW/SW co-verification? 
 
Industry-Level Initiatives: How has language standardization, such as SystemC, impacted your 
design efforts? What other industry-level initiatives would be of use - standard TLM 
methodology, or other? 
 
Tools: Do you use commercial tools or open source software? What was your selection criteria? 
Do you use domain-specific tools for algorithm development and implementation? Did you 
develop your own tools - if so, why? Do your proprietary tools have specific attributes that you 
think can be incorporated into commercial tools? How do ESL tools compare with your original 
expectations? 
 
ROI: What was your overall payback in terms of time, effort and money consumption, re-
usability, risk management and overall success? How do these compare with your original 
expectations? 
Keywords: Electronic system-level design 
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ABSTRACT 
Variability of process parameters makes prediction of digital circuit timing characteristics an 
important and challenging problem in modern chip design. Recently, statistical static timing 
analysis (statistical STA) has been proposed as a solution.  Unfortunately, the existing 
approaches either do not consider explicit gate delay dependence on process parameters [3] - [6] 
or restrict analysis to linear Gaussian parameters only [1, [2]. Here we extend the capabilities of 
parameterized block-based statistical STA [1] to handle nonlinear function of delays and non-
Gaussian parameters, while retaining maximum efficiency of processing linear Gaussian 
parameters. Our novel technique improves accuracy in predicting circuit timing characteristics 
and retains such benefits of parameterized block-based statistical STA as an incremental mode of 
operation, computation of criticality probabilities and sensitivities to process parameter 
variations. We implemented our technique in an industrial statistical timing analysis tool. Our 
experiments with large digital blocks showed both efficiency and accuracy of the proposed 
technique. 
General Terms: Algorithms, performance, design. 
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ABSTRACT 
Process variations have a growing impact on circuit performance for today’s integrated circuit 
(IC) technologies. The Non-Gaussian delay distributions as well as the correlations among 
delays make statistical timing analysis more challenging than ever. In this paper, we present an 
efficient block-based statistical timing analysis approach with linear complexity with respect to 
the circuit size, which can accurately predict Non-Gaussian delay distributions from realistic 
nonlinear gate and interconnect delay models. This approach accounts for all correlations, from 
manufacturing process dependence, to re-convergent circuit paths to produce more accurate 
statistical timing predictions. With this approach, circuit designers can have increased confidence 
in the variation estimates, at a low additional computation cost. 
Keywords: Statistical timing, process variation 
 
REFERENCES 
[1] M. Orshansky and K. Keutzer, “A General Probabilistic Framework for Worst Case Timing Analysis”, Proc. 
DAC, pp 556-561, June 2002 
[2] J. A. G. Jess and K. Kalafala et al, “Statistical timing for parametric yield prediction of digital integrated 
circuits”, Proc. DAC, pp. 932-937, June 2003 
[3] A. Devgan and C. Kashyap, “Block-based Static Timing Analysis with Uncertainty”, IEEE ICCAD, pp. 607-
614, November 2003 
[4] A. Agarwal, D. Blaauw, V. Zolotov And S. B. K. Vrudhula, “Statistical Timing Analysis with Uncertainty”, 
DATE, pp. 62 - 67, 2003 
[5] H. Chang, S. S. Sapatnekar, “Statistical timing analysis considering spatial correlations using a single PERT-like 
traversal”, IEEE ICCAD, pp. 621-625 November 2003 
[6] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan, “First-Order Incremental Block-Based 
Statistical Timing Analysis”, Proc. 2004 DAC, pp. 331-336, June 2004 
[7] J. Le, X. Li, L. T. Pileggi, “STAC: Statistical Timing Analysis with Correlation”, Proc. DAC, pp. 343-348, June 
2004 
[8] D. F. Morrison, “Multivariate Statistical Methods”, New York: McGraw-Hill, 1976 
[9] S. R. Nassif, “Modeling and Analysis of Manufacturing Variations”, IEEE CICC, pp. 223-228, 2001 
[10] X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, “Asymptotic Probability Extraction for Non-Normal 
Distributions of Circuit Performance”, IEEE ICCAD, pp. 2-9, November 2004. 



DAC05, pages 83-88 
Correlation-Preserved Non-Gaussian Statistical Timing Analysis with Quadratic  

Timing Model 
 

Lizheng Zhang, Weijen Chen, Yuhen Hu, John A. Gubner, Charlie Chung-Ping Chen 
ECE Department,University of Wisconsin, Madison, WI, USA 

 
ABSTRACT 
Recent study shows that the existing first order canonical timing model is not sufficient to 
represent the dependency of the gate delay on the variation sources when processing and 
operational variations become more and more significant.  Due to the nonlinearity of the 
mapping from variation sources to the gate/wire delay, the distribution of the delay is no longer 
Gaussian even if the variation sources are normally distributed.  A novel quadratic timing model 
is proposed to capture the non-linearity of the dependency of gate/wire delays and arrival times 
on the variation sources. Systematic methodology is also developed to evaluate the correlation 
and distribution of the quadratic timing model. Based on these, a novel statistical timing analysis 
algorithm is propose which retains the complete correlation information during timing analysis 
and has the same computation complexity as the algorithm based on the canonical timing model. 
Tested on the ISCAS circuits, the proposed algorithm shows 10× accuracy improvement over the 
existing first order algorithm while no significant extra runtime is needed. 
General Terms: Algorithms, Performance, Verification 
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ABSTRACT 
The impact of parameter variations on timing due to process and environmental variations has 
become significant in recent years. With each new technology node this variability is becoming 
more prominent. In this work, we present a general Statistical Timing Analysis (STA) 
framework that captures spatial correlations between gate delays. Our technique does not make 
any assumption about the distributions of the parameter variations, gate delay and arrival times.  
We propose a Taylor-series expansion based polynomial representation of gate delays and arrival 
times which is able to effectively capture the non-linear dependencies that arise due to increasing 
parameter variations. In order to reduce the computational complexity introduced due to 
polynomial modeling during STA, we propose an efficient linear-modeling driven polynomial 
STA scheme. On an average the degree-2 polynomial scheme had a 7.3x speedup as compared to 
Monte Carlo with 0.049 units of rms error w.r.t Monte Carlo. Our technique is generic and can 
be applied to arbitrary variations in the underlying parameters. 
Keywords: Statistical timing, variability, correlation 
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ABSTRACT 
While the past research discussed several advantages of multiprocessor-system-on-a-chip 
(MPSOC) architectures from both area utilization and design verification perspectives over 
complex single core based systems, compilation issues for these architectures have relatively 
received less attention. Programming MPSOCs can be challenging as several potentially 
conflicting issues such as data locality, parallelism and load balance across processors should be 
considered simultaneously. Most of the compilation techniques discussed in the literature for 
parallel architectures (not necessarily for MPSOCs) are loop based, i.e., they consider each loop 
nest in isolation. However, one key problem associated with such loop based techniques is that 
they fail to capture the interactions between the different loop nests in the application. This paper 
takes a more global approach to the problem and proposes a compilerdriven data locality 
optimization strategy in the context of embedded MPSOCs. An important characteristic of the 
proposed approach is that, in deciding the workloads of the processors (i.e., in parallelizing the 
application) it considers all the loop nests in the application simultaneously. Our experimental 
evaluation with eight embedded applications shows that the global scheme brings significant 
power/performance benefits over the conventional loop based  scheme. 
Keywords: Data Locality, MPSoC 
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ABSTRACT 
Modern embedded applications usually have real-time constraints and they are implemented 
using heterogeneous multiprocessor systems-on-chip. Dimensioning a system requires accurate 
estimations of the worst-case execution time (WCET). Overestimation leads to over-
dimensioning. This paper introduces a method for automatic discovery of scenarios that 
incorporate correlations between different parts of applications. It is based on the application 
parameters with a large impact on the execution time. We show on a benchmark that, using 
scenarios, the estimated WCET may be reduced with 16%. 
Keywords: WCET, Real-Time, Scenarios 
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ABSTRACT 
In many of embedded systems, particularly for those with high data computations, the delay of 
memory access is one of the major bottlenecks in the system’s performance. It has been known 
that there are high variations in memory access delays depending on the ways of designing 
memory configurations and assigning arrays to memories.  Furthermore, embedded DRAM 
technology that provides efficient access modes is actively developed, possibly becoming a 
mainstream in future embedded system design. In that context, in this paper we propose an 
effective solution to the problem of (embedded DRAM) memory allocation and mapping in 
memory access code generation with the objective of minimizing the total memory access time. 
Specifically, the proposed approach, called MACCESS-opt, solves the three problems 
simultaneously: (i) determination of memories, (ii) mapping of arrays to memories, and (iii) 
scheduling of memory access operations, so that the use of DRAM access modes is maximized 
while satisfying the storage size constraint of embedded system. Experimental data on a set of 
benchmark designs are provided to show the effectiveness of the proposed integrated approach. 
In short, MACCESS-opt reduces the total memory access latency by over 18%, from which we 
found that our memory mapping and scheduling techniques in MACCESS-opt contribute about 
12% and 6% reductions of total memory access latency, respectively. 
Keywords: memory access, scheduling, binding 
 
REFERENCES 
[1] B. Prince, High Performance Memories, New Architecture DRAMs and SRAMs Evolution and Function, Wiley, 
West Sussex, 1996. 
[2] S. Przybylski, “Sorting out the new DRAMs”, In Hot Chips Tutorial, Stanford, CA, 1997. 
[3] H. Schmit and D. E. Thomas, “Array Mapping Behavioral Synthesis”, ISSS, 1995. 
[4] P. R. Panda, “Memory Bank Customization and Assignment in Behavioral Synthesis”, ICCAD, 1999. 
[5] P. R. Panda et al., “Incorporating DRAM Access Modes into High-level Synthesis”, IEEE TCAD, Vol. 17, 1998. 
[6] W. T. Shiue and C. Chakrabarti, “Memory Exploration for Low Power Embedded Systems”, DAC, 2001. 
[7] F. Balasa, et al., “Dataflow-driven Memory Allocation for Multi-dimensional Signal Processing Systems”, 
ICCAD, 1994. 
[8] J. Seo, et al., “An Integrated Algorithm for Memory Allocation and Assignment in High-level Synthesis”, DAC, 
2002. 
[9] S. Bakshi, and D. Gajski, “A Memory Selection Algorithm for High-Performance Pipelines” EDAC, 1995. 
[10] P. R. Panda, et al., “Data and Memory Optimization Techniques for Embedded Systems”, ACM TODAES, Vol. 
6, 2002. 
[11] I. Kadayif, et al., “Locality-Conscious Process Scheduling in Embedded Systems”, Proc. Symposium on 
HW/SW Codesign, 2002. 
[12] Y. Choi, T. Kim, “Memory Layout Techniques for Variables Utilizing Efficient DRAM Access Modes”, DAC, 
2003. 
[13] W-T. Shiue, et al., “Low Power Multi-Module, Multi-Port Memory Design for Embedded Systems”, Workshop 
on Signal Processing, 2000. 
[14] P. Grun, et al., “Memory Aware Compilation Through Accurate Timing Extraction”, DAC, 2000. 
[15] W. H. Press, et al., “Numerical Recipes in C”, Cambridge university press, 1992. 



DAC05, pages 111-116 
Dynamic Slack Reclamation with Procrastination Scheduling in Real-Time  

Embedded Systems 
 

Ravindra Jejurikar*, Rajesh Gupta** 
*Center for Embedded Computer Systems, University of California, Irvine, Irvine, CA 
**Department of Computer Science, University of California, San Diego, La Jolla, CA 

 
ABSTRACT 
Leakage energy consumption is an increasing concern in current and future CMOS technology 
generations. Procrastination scheduling, where task execution can be delayed to maximize the 
duration of idle intervals, has been proposed to minimize leakage energy drain. We address 
dynamic slack reclamation techniques under procrastination scheduling to minimize the static 
and dynamic energy consumption. In addition to dynamic task slowdown, we propose dynamic 
procrastination which seeks to extend idle intervals through slack reclamation. While using the 
entire slack for either slowdown or procrastination need not be the most energy efficient 
approach,we distribute the slack between slowdown and procrastination  to exploit maximum 
energy savings. Our simulation experiments show that dynamic slowdown results on an average 
10% energy gains over static slowdown. Dynamic procrastination extends the average sleep 
interval by 25% which reduces the idle energy consumption by 15%, while meeting all timing 
requirements. 
Keywords: dynamic slack reclamation, task procrastication, leakage power, critical speed, low 
power scheduling, real-time systems 
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ABSTRACT 
This paper presents a new test response compaction technique with any number of unknown 
logic values (X’s) in the test response bits. The technique leverages an X-tolerant response 
compactor (X-compact), and forces X’s that are not tolerated by X-Compact to known values. 
The data required to designate the X’s not tolerated by the X-compactor, also called mask data, is 
stored in a compressed format on the tester and decompressed onchip.  We applied this technique 
to four industrial designs and obtained 26-fold to 60-fold reduction in test response data volume 
with no impact on test quality. 
Keywords: VLSI Test, Compression, X-compact, LFSR, BIST 
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ABSTRACT 
This paper presents a new method for designing test wrappers for embedded cores with multiple 
clock domains. By exploiting the use of multiple shift frequencies, the proposed method 
improves upon a recent wrapper design method that requires a common shift frequency for the 
scan elements in the different clock domains. We present an integer linear programming (ILP) 
model that can be used to minimize the testing time for small problem instances. We also present 
an efficient heuristicmethod that is applicable to large problem instances, and which yields the 
same (optimal) testing time as ILP for small problem instances. Compared to recent work on 
wrapper design using a single shift frequency, we obtain lower testing  times and the reduction in 
testing time is especially significant under power constraints. 
Keywords: Wrapper Design, Multiple Clock Domains, Scan Control Unit 
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Abstract 
We study the quality of test sequences under a test application scheme called transparent-scan as 
n -detection test sequences. We obtain transparent-scan sequences from combinational test sets. 
We show that for the same number of clock cycles required to apply a compact single-detection 
combinational test set, a transparent-scan sequence detects faults more times than the 
combinational test set. We note that a transparent-scan sequence based on a combinational test 
set contains unspecified values.  We consider several procedures for specifying the unspecified 
values of the transparent-scan sequence, and study their effects. We also study the extension of a 
transparent-scan test sequence into an n -detection test sequence that detects every target fault at 
least n times. 
Keywords: n -detection test sets, scan design, test generation 
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ABSTRACT 
Scan-based Design-for-Test (DFT) is a powerful testing scheme, but it can be used to retrieve the 
secrets stored in a crypto chip thus compromising its security. On one hand, sacrificing security 
for testability by using traditional scan-based DFT restricts its use in privacy sensitive 
applications. On the other hand, sacrificing testability for security by abandoning scan-based 
DFT hurts product quality. The security of a crypto chip comes from the small secret key stored 
in a few registers and the testability of a crypto chip comes from the data path and control path 
implementing the crypto algorithm. Based on this key observation, we propose a novel scan DFT 
architecture called secure scan that maintains the high test quality of traditional scan DFT 
without compromising the security. We used a hardware implementation of the Advanced 
Encryption Standard (AES) to show that the traditional Scan DFT scheme can compromise the 
secret key. We then showed that by using secure scan DFT, neither the secret key nor the 
testability of the AES implementation is compromised. 
Keywords: Scan-based DFT, Testability, Security, Crypto Hardware 
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ABSTRACT 
This paper presents a new Green function-based approach for substrate parasitic extraction in 
substrates with inhomogeneous layers. This new formulation allows analysis of noise coupling 
with sinkers, trenches and wells, - a limitation in prior Green function-based extractors. 
Numerical examples for sinkers and trenches are provided and compared with the results from 
three-dimensional semiconductor device simulations. It is shown that the proposed method is 
accurate and computationally efficient. 
Keywords: Substrate noise, parasitic extraction, Green function 
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ABSTRACT 
An efficient approach to full-wave impedance extraction is developed that accounts for substrate 
effects through the use of two-layer media Green’s functions in a mixed-potential-integral-
equation (MPIE) solver. Particularly, the choice of implementation for the layered media Green’s 
functions motivates the development of accelerated techniques for both volume and surface 
integrations in the solver. Solver accuracy is validated against measurements taken on fabricated 
devices; solver efficiency is demonstrated by its 9.8X reduction in cost in comparison to the 
traditional integration approach. 
Keywords: Impedance extraction, Substrate modeling, Integral equation solver 
 
REFERENCES 
[1] K.A. Michalski. ”Electromagnetic Scattering and Radiation by Surfaces of Arbitrary Shape in Layered Media, 
Part I: Theory.” IEEE Trans. Antennas Propagat., Vol.38, No. 3, March 1990. 
[2] J.J. Yang, Y.L. Chow, D.G. Fang. ”Discrete Complex Images of a Three-dimensional Dipole Above and Within 
a Lossy Ground.” IEE PROC-H, Vol. 138, No. 4, Aug. 1991. 
[3] Y.L. Chow, J.J. Yang, and G.E. Howard. ”A Closed-Form Spatial Green’s Function for the Thick Microstrip 
Substrate.” IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, March 1991. 
[4] G. Dural and M.I. Aksun. ”Closed-Form Green’s Functions for General Sources and Stratified Media”. IEEE 
Trans. Microwave Theory Tech., Vol. 43, No. 7, July 1995. 
[5] M.I. Aksun. ”A Robust Approach for the Derivation of Closed-Form Green’s Functions.” IEEE Trans. 
Microwave Theory and Tech., Vol. 44, No. 5, May 1996. 
[6] N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y.L. Chow. ”Fast Computation of the Nonsymmetrical 
Components of the Green’s Function for Multilayer Media using Complex Images.” IEEE Trans. Antennas 
Propagat., Vol. 145, no.4, Aug. 1998. 
[7] D. Wilton, S.M. Rao, A.W. Glisson, etc. ”Potential Integrals for Uniform and Linear Source Distributions on 
Polygonal and Polyhedral Domains.” IEEE Trans. Antennas Propagat., Vol. AP 32, no.3, March, 1984. 
[8] J. Tan. ”Full Wave Analysis of Transmission Lines in a Multilayer Substrate with Heavy Dielectric Losses.” 
IEEE Trans. Components, Packaging and Manufacturing Technology, Vol. 19, No. 3, Aug. 1996 
[9] A. Polycarpou. ”The Finite-Element method for Modeling Circuits and Interconnects for Electronic Packaging.” 
IEEE Trans. Microwave Theory Tech., Vol. 45, No. 10, Oct. 1997. 
[10] A. Niknejad and R. Meyer. ”Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si 
RF IC’s.” IEEE J. Solid-State Circuits, Vol. 33, No. 10, Oct. 1998. 
[11] C. Chen, T. Lee, N.Murugesan and S. Hagness. ”Generalized FDTD-ADI: An Unconditionally Stable Full-
Wave Maxwell’s Equations Solver for VLSI  Interconnect Modeling.” Computer Aid Design, 2000. 
[12] J. Zheng, V. Tripathi, and A. Weisshaar. ”Characterization and Modeling of Multiple Coupled On-Chip 
Interconnects on Silicon Substrate.” IEEE Trans. Microwave Theory Tech., Vol. 49, No. 10, Oct. 2001. 
[13] H. Ymeri, B. Nauwelaers, K. Maex, S. Vandenberghe, and D. Roest. ”New Analytic Expressions for Mutual 
Inductance and Resistance of Coupled Interconnects on Lossy Silicon Substrate.” Si Monolithic Integrated Circuits 
in RF Systems, 2001. 
[14] J.Fan, J.L. Drewniak, H. Shi and J.L. Knighten. ”DC Power-Bus Modeling and Design With a Mixed-Potential 
Integral-Equation Formulation and Circuit Extraction.” IEEE Trans. Electromagnetic Compatibility, Vol. 43 , No. 4 
, Nov. 2001. 
[15] H. Lan. ”A CAD-Oriented Modeling Approach of Frequency-Dependent Behavior of Substrate Noise Coupling 
for Mixed-Signal IC Design.” Int. Symp. on Quality Electronic Design, 2003. 
[16] A. Weisshaar, H. Lan, and A. Luoh. ”Accurate Closed-form Expressions for the Frequency-Dependent Line 
Parameters of On-Chip Interconnects on Lossy Silicon Substrate.” IEEE Trans. on Advanced Packaging, vol. 25, 
No. 2, May 2002. 
[17] A.E. Ruehli. ”Equivalent Circuit Models for Three Dimensional Multiconductor Systems.” IEEE Trans. 
Microwave Theory Tech., Vol. 22, March 1974. 



[18] M. Kamon, N. Marques, and J.White. ”FastPep: A Fast parasitic Extraction Program for Complex Three-
Dimensional Geometries.” Proc. of the IEEE Conference on Computer-Aided Design, San Jose, Nov. 1997. 
[19] N. Marques, M. Kamon, J.K. White, and L.M. Silverira. ”A mixed nodal-mesh formulation for efficient 
extraction and passive reduced-order modeling of 3D interconnects.” Proc. of the IEEE/ACM DAC, San Francisco, 
CA, June 1998. 
[20] J. Peters. Design of High Quality Factor: Spiral Inductors in RF MCM-D. Master’s thesis, M.I.T. Sept. 2004 
[21] R.F. Harrington. Field Computation by Moment Methods. MacMillan, 1968. 
 



DAC05, pages 153-158 
Spatially Distributed 3D Circuit Models 

 
Michael Beattiea, Hui Zhengb, Anirudh Devganb and Byron Krautera

aElectronic Design Automation  bAustin Research Lab 

IBM Corporation, Austin, Texas 78758 
 
Abstract 
Spatially distributed 3D circuit models are extracted with a segment-to-segment BEM (Boundary 
Element Method) algorithm for both capacitance and inverse inductance couplings rather than 
using the traditional net-to-net approach. Critical issues regarding the extraction efficiency and 
accuracy of segment-to-segment BEM capacitance models are explored. An adaptive 
discretization scheme is developed for segment-to-segment capacitance extraction and also 
applied to segment-to-segment high-frequency inverse inductance  extraction. We demonstrate 
the limitations of the duality between capacitance and inverse inductance. Examples 
demonstrating the accuracy of these models are presented for real packaging cases. 
Keywords: Distributed Circuit Models, Boundary Element Method (BEM), Capacitance, Inverse 
Inductance 
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ABSTRACT 
Boundary element methods are being successfully used for modeling parasitic effects in cutting-
edge circuit design. The dense system matrix generated therein presents a time and memory 
bottleneck. Fast iterative solver techniques, developed to address the problem, suffer from 
convergence issues which become pronounced for large number of right hand sides as is the case 
for massively coupled systems. In this paper an iteration free solution scheme is presented. The 
dense matrix is rendered sparse by applying multilevel multipole expansions, and the resultant 
sparse matrix is solved by a traditional sparse matrix solver. The accuracy and time and memory 
requirements for the solver are compared against the regular methods. The advantage of the 
presented method over the corresponding iterative scheme is also demonstrated. 
Keywords: Parasitics, Multilevel, Multipole, Non-Iterative 
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ABSTRACT 
This paper presents an efficient hierarchical 3D capacitance extraction algorithm — ICCAP. 
Most previous capacitance extraction algorithms introduce intermediate variables to facilitate the 
hierarchical potential calculation but still preserve the leaf panels as the basis. In this paper, we 
discover that those intermediate variables are fundamentally much better basis than leaf panels. 
As a result, we are able to explicitly construct the sparse potential coefficient matrix and solve it 
with linear memory in linear runtime. Furthermore, the explicit sparse formulation not only 
enables the usage of preconditioned iterative Krylov subspace methods but also the reordering 
technique. A new reordering technique is proposed to further reduce over 20% of memory 
consumption and runtime in comparison to no reordering techniques applied. Experimental 
results demonstrate the superior runtime and memory consumption of ICCAP over previous 
approaches while achieving similar accuracy.  
Keywords: Boundary element method, capacitance, parasitic extraction, interconnect, iterative 
methods 
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Abstract 
Moving to new semiconductor technology nodes can dramatically impact the business 
performance of the SoC company, and its age-old design and manufacturing flows and 
methodologies. It can also significantly affect its choices of suppliers. This session will provide 
an overview of changing needs and corresponding management decision criteria to make the 
right choices from a pool of alternate options. 
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ABSTRACT 
For sub-100nm processes, predictions are putting initial process yields in the single digits. At the 
same time, at 130nm, we saw that two chips designed with the same methodology and same 
design rules could deliver completely different manufacturing yields. 
 
This panel will discuss the reasons for these phenomena and talk about future trends in DFM that 
will need to be addressed for success below 100nm. 
Keywords: Design for Manufacturability, Yield Optimization 
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ABSTRACT 
This paper proposes a fast decoupling capacitance (decap) allocation and budgeting algorithm for 
both early stage decap estimation and later stage decap minimization in today’s VLSI physical 
design. The new method is based on a sensitivity-based conjugate gradient (CG) approach. But it 
adopts several new techniques, which significantly improve the efficiency of the optimization  
process. First, the new approach applies the time-domain merged adjoint network method for fast 
sensitivity calculation. Second, an efficient search step scheme is proposed to replace the time-
consuming line search phase in conventional conjugate gradient method for decap budget 
optimization. Third, instead of optimizing an entire large circuit, we partition the circuit into a 
number of smaller sub-circuits and optimize them separately by exploiting the locality of adding 
decaps. Experimental results show that the proposed algorithm achieves at least 10X speed-up 
over the fastest decap allocation method reported so far with similar or even better budget quality 
and a power grid circuit with about one million nodes can be optimized using the new method in 
half an hour on the latest Linux workstations. 
Keywords: Decoupling Capacitor, IR drop, On-Chip Power/Grid Networks 
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ABSTRACT 
The progress of VLSI technology is facing two limiting factors: power and variation. Minimizing 
clock network size can lead to reduced power consumption, less power supply noise, less number 
of clock buffers and therefore less vulnerability to variations. Previous works on clock network 
minimization are mostly focused on clock routing and the improvements are often limited by the 
input register placement. In this work, we propose to navigate registers in cell placement for 
further clock network size reduction. To solve the conflict between clock network minimization 
and traditional placement goals, we suggest the following techniques in a quadratic placement 
framework: (1) Manhattan ring based register guidance; (2) center of gravity constraints for 
registers; (3) pseudo pin and net; (4) register cluster contraction. These techniques work for both 
zero skew and prescribed skew designs in both wirelength driven and timing driven placement. 
Experimental results show that our method can reduce clock net wirelength by 16%~33% with 
no more than 0.5% increase on signal net wirelength compared with conventional approaches. 
Keywords: Clock network, placement, low power, variation tolerance 
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ABSTRACT 
Although a lot of research efforts have been made in the minimization of the total power 
consumption caused by the clock tree, no attention has been paid to the minimization of the peak 
current caused by the clock tree. In this paper, we propose an opposite-phase scheme for peak 
current reduction. Our basic idea is to divide the clock buffers at each level of the clock tree into 
two sets: an half of clock buffers operate at the same phase of the clock source, and another half 
of clock buffers operate at the opposite phase of the clock source. Consequently, our approach 
can reduce the peak current of the clock tree nearly 50%. Experimental data consistently show 
that our approach works well in practice. 
Keywords: Physical design, Clock network synthesis, Low power 
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ABSTRACT 
We present a noise-driven effective capacitance method for estimating the combined propagation 
noise and crosstalk noise. Gate propagation noise rules are efficiently calculated inside the Ceff 
procedure to determine a linear Thevenin model of the victim driver. A voltage-dependent 
current source model [2, 6] of the driver, along with a load capacitor is analyzed to generate the 
gate output waveform, from which noise rules are directly extracted. This method removes 
potential errors introduced in traditional look-up table or fitted-equation based noise rules. The 
linear driver Thevenin model can then be employed to analyze the propagation noise, while the 
same Thevenin resistance can be used to analyze the crosstalk noise. The combined coupling and 
propagation noise can then be estimated using superposition. In this work, we extend the popular 
timing-driven effective capacitance method into the noise domain. Similar to the effective 
capacitance method in timing analysis, this technique can successfully separate the nonlinear 
driver analysis from the linear interconnect analysis. In addition, the linear driver model can 
significantly ease the task of finding the worst-case peak alignment among all the victim and 
aggressor noise sources. Experimental results on both RC and RLC nets from industry designs 
show both accuracy and efficiency compared to SPICE results. 
Keywords: Effective Capacitance, Glitch Propagation, Noise Analysis 
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ABSTRACT 
Reliability of nanometer circuits is becoming a major concern in today’s VLSI chip design due 
to interferences from multiple noise sources as well as radiation-induced soft errors. Traditional 
noise analysis/avoidance and manufacturing testing are no longer sufficient to handle the 
dynamic interactions between various noise sources and unpredictable operational variations. 
Therefore, “robustness insertion” has been adopted as the supplementary approach to ensure high 
circuit reliability through on-line protections. However, the related design overhead is not always 
acceptable, especially for cost/timing-sensitive designs. In this paper, we present a novel 
“constraint-aware robustness insertion” methodology protect the sequential elements in digital 
circuits against various noise effects. Based on a configurable hardening sequential cell design 
and an efficient sequential cell robustness estimation technique, an optimization algorithm is 
developed to search for the optimal protection scheme under given timing and area constraints. 
Experiment results demonstrate that the proposed methodology is able to achieve a high degree 
of noise-tolerance while keeping the protection cost within limit. 
Keywords: Nanometer circuits, Robustness calibration, Circuit hardening, Robustness insertion 
 
REFERENCES 
[1] Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2001 
[2] J. Cong, D. Z. Pan, and P. V. Srinivas, “Improved crosstalk modeling for noise constrained interconnect 
optimization,” Proc. ASP-DAC, pp. 373-378, 2001. 
[3] Shen Lin, Chang N., “Challenges in power-ground integrity,” Proc. ICCAD’01, pp. 651-644, 2001. 
[4] J.-J. Liou, A. Krstic, Y.-M. Jiang and K.-T. Cheng, "Modeling, Testing, and Analysis for Delay Defects and 
Noise Effects in Deep Submicron Devices," IEEE Trans. on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 22, no. 6, pp. 756-769, Jun. 2003. 
[5] Hess C, Stine BE, Weiland LH, Sawada K., “Logic characterization vehicle to determine process variation 
impact on yield and performance of digital circuits,” Intl. Conf. Microelectronic Test Structures, pp. 189-196, 2002. 
[6] Peter Hazucha, Christer Svensson, “Cosmic-Ray Soft Error Rate Characterization of a Standard 0.6-�m CMOS 
Process,” IEEE Jnl. Solid-State Circuits, vol. 35, no. 10, Oct. 2000. 
[7] Anghel, L., Nicolaidis, M., “Cost Reduction and Evaluation of a Temporary Faults Detecting Technique,” 
DATE’00, pp. 591-598, 2000. 
[8] E. Dupont, M. Nicolaidis, and P. Rohr, “Embedded Robustness Ips for Transient-Error-Free ICs,” IEEE Design 
& Test of Computers, pp.56-70, May-June, 2002. 
[9] Y. Zhao, S. Dey, “Separate Dual Transistor Register-an Circuit Solution for on-line Testing of Transient Errors 
in UDSM-IC,” Proc.IOLTS, 2003, pp.7-11, 2003. 
[10] C.Zhao, X. Bai, S.Dey, “A scalable soft spot analysis methodology for compound noise effects in nano-meter 
circuits,” in Proc. DAC’04, pp. 894-899, 2004. 
[11] C.Zhao, X. Bai, S.Dey, “A Static Noise-Impact-Analysis Methodology for Evaluating Transient Error Effects 
in Digital VLSI Circuits”, Research Report, http://esdat.ucsd.edu/~chong/nia.pdf. 
[12] T. C. Hu and M. T. Shing, Combinatorial Algorithms, Dover Publications, Inc., pp.111-113, 2002. 
[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to Algorithms”, Ch 15, McGraw-Hill, 
1990. 
[14] Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer technologies,” Proc. VTS, pp. 86-
94, 1999. 
[15] http://www.tensilica.com/xtensa_overview_handbook.pdf, XtensaTM Microprocessor Overview Handbook, 
Tensilica Inc, August 2001. 

http://www.tensilica.com/xtensa_overview_handbook.pdf


DAC05, pages 196-201 
Temperature-Aware Resource Allocation and Binding in High-Level Synthesis 

 
Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik 

Department of Electrical and Computer Engineering, Northwestern University, IL, USA 
 
ABSTRACT 
Physical phenomena such as temperature have an increasingly important role in performance and 
reliability of modern process technologies. This trend will only strengthen with future 
generations. Attempts to minimize the design effort required for reaching closure in reliability 
and performance constraints are agreeing on the fact that higher levels of design abstractions 
need to be made aware of lower level physical phenomena. In this paper, we investigated 
techniques to incorporate temperature-awareness into high-level synthesis. Specifically, we 
developed two temperature-aware resource allocation and binding algorithms that aim to 
minimize the maximum temperature that can be reached by a resource in a design. Such a control 
scheme will have an impact on the prevention of hot spots, which in turn is one of the major 
hurdles in front of reliability for future integrated circuits. Our algorithms are able to reduce the 
maximum attained temperature by any module in a design by up to 19.6oC compared to a 
binding that optimizes switching power. 
Keywords: Binding, Temperature, Switching, Leakage 
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ABSTRACT  
In this paper we address the problem of module selection during high-level synthesis. We present 
a heuristic algorithm for leakage power optimization based on the maximum weight independent 
set problem. A dual threshold voltage (Vth) technique is used to reduce leakage energy 
consumption in a data flow graph. Experiments are performed on a data-path dominated test 
suite of six benchmarks. Our approach achieves an average of 70.9% leakage power reduction, 
which is very close to the optimal results from an Integer Linear Programming approach.  
Keywords : Leakage Power, High-Level Synthesis, Dual-Vth, Optimization  
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ABSTRACT 
Achieving design closure is one of the biggest headaches for modern VLSI designers. This 
problem is exacerbated by high-level design automation tools that ignore increasingly important 
factors such as the impact of interconnect on the area and power consumption of integrated 
circuits. Bringing physical information up into the logic level or even behavioral-level stages of 
system design is essential to solve this problem. In this paper, we present an incremental 
floorplanning high-level synthesis system. This system integrates high-level and physical design 
algorithms to concurrently improve a system’s schedule, resource binding, and floorplan, thereby 
allowing the incremental exploration of the combined behavioral-level and physical-level design 
space. Compared with previous approaches that repeatedly call loosely coupled floorplanners for 
physical estimation, this approach has the benefit of efficiency, stability, and better quality of 
results. For designs containing functional units with non-unity aspect ratios, the average CPU 
time improved by 369 %, the area improved by 14.24%, and power improved by 4 %. 
Keywords: High-level Synthesis, Incremental, Floorplan 
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ABSTRACT 
This paper proposes a low power technique, called SBR (Sign Bit Reduction) which may reduce 
the switching activity in multipliers as well as data buses. Utilizing the multipliers based on this 
scheme, the dynamic power consumption of some digital systems such as digital filters based on 
CMOS logic system can be reduced considerably compared to those based on 2’s complement 
implementation. To verify the efficacy of the SBR, a 16-bit multiplier was implemented by this 
scheme. The results for voice data show an average of 29% to 35% switching reduction 
compared to the 2’s complement implementation. For 16-bit random data, this scheme decreases 
the switching of 16-bit multipliers by an average of 21%. Finally, the application of the 
technique to a 16-bit data bus leads up to 14.5% switching reduction on average. 
Keywords: Switching Activity, Low Power, Signed Multiplier, Bus Encoding, Sing Extension 
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ABSTRACT 
In this paper, we introduce a new watermarking system for IP protection on post-layout design 
phase. Firstly the copyright is encrypted by DES (Data Encryption Standard) and then embedded 
by using an incremental router into the layout design. This watermarking technique uniquely 
identifies the circuit origin, yet is difficult to be detected or fabricated. The incremental router 
consists of a rip-up and a special re-router that inserts redundant bends into wires probabilistic. 
We evaluated the technique on various generated benchmark circuits to validate the 
completeness of the procedure. The results show it achieves almost 100% success for embedding 
with no extra area cost on design performances. 
Keywords: Intellectual Property Protection (IPP), Post layout design, Incremental router, 
Watermarking 
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ABSTRACT 
Security ICs are vulnerable to side-channel attacks (SCAs) that find the secret key by monitoring 
the power consumption and other information that is leaked by the switching behavior of digital 
CMOS gates. This paper describes a side-channel attack resistant coprocessor IC and its design 
techniques. The IC has been fabricated in 0.18μm CMOS. The coprocessor, which is used for 
embedded cryptographic and biometric processing, consists of four components: an Advanced 
Encryption Standard (AES) based cryptographic engine, a fingerprint-matching oracle, a 
template storage, and an interface unit. Two functionally identical coprocessors have been 
fabricated on the same die. The first, ‘secure’, coprocessor is implemented using a logic style 
called Wave Dynamic Digital Logic (WDDL) and a layout technique called differential routing. 
The second, ‘insecure’, coprocessor is implemented using regular standard cells and regular 
routing techniques. Measurement-based experimental results show that a differential power 
analysis (DPA) attack on the insecure coprocessor requires only 8,000 acquisitions to disclose 
the entire 128b secret key. The same attack on the secure coprocessor still does not disclose the 
entire secret key at 1,500,000 acquisitions. This improvement in DPA resistance of at least 2 
orders of magnitude makes the attack de facto infeasible. The required number of measurements 
is larger than the lifetime of the secret key in most practical systems. 
Keywords: Countermeasure, Side-Channel Attack, Differential Power Analysis, Encryption, 
Smart Card, Security IC 
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ABSTRACT 
Small, embedded integrated circuits (ICs) such as smart cards are vulnerable to so-called side-
channel attacks (SCAs). The attacker can gain information by monitoring the power 
consumption, execution time, electromagnetic radiation and other information that is leaked by 
the switching behavior of digital CMOS gates. Ever since power attacks have been introduced in 
1999, many countermeasures have been proposed. Often a significant increase in security has 
been touted. We will show that in order to assess the effectiveness of a countermeasure, a correct 
simulation model of the side-channel information leaks is vital. We will show that seemingly 
correct approximations can lead to completely flawed results. 
Keywords: Simulation Model, Countermeasure, Side-Channel Attack, Differential Power 
Analysis, Encryption, Smart Card, Security IC 
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ABSTRACT 
It has been estimated that computer network worms and virus caused the loss of over $55B in 
2003. Network security system use techniques such as deep packet inspection to detect the 
harmful packets. While software intrusion detection system running on general purpose 
processors can be up-dated in response to new attacks. They lack the processing power to 
monitor gigabit networks. We present a high performance pattern matching co-processor 
architecture that can be used to monitor and identify a large number of intrusion signature. The 
design consists of a bank of pattern matchers that are used to implement a highly concurrent 
filter. The pattern matchers can be programmed to match multiple patterns of various lengths, 
and are able to leverage the existing databases of threat signatures. We have been able to 
program the filters to match all the payload patterns defined in the widely used Snort network 
intrusion detection system at a rate above 7 Gbps, with memory space left to accommodate threat 
signatures that become available in the future. 
Keywords: Network security, Intrusion, Pattern matching, Pattern search, Snort 
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ABSTRACT 
This paper presents two novel and high performance hardware architectures, implemented in 
FPGA technology, for the KASUMI block cipher; this algorithm lies at the core of the 
confidentiality and integrity algorithms defined for the Universal Mobile Telecommunication 
System (UMTS) standard. The first proposal is a pipelined design and the second implements an 
iterative approach. The throughput for these architectures turn out to be higher than the 
throughput achieved by other proposals. 
Keywords: 3G, UMTS Security Architecture, KASUMI, FPGA 
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ABSTRACT 
User authentication, which refers to the process of verifying the identity of a user, is becoming 
an important security requirement in various embedded systems. While conventional solutions 
for user authentication have relied on password-based mechanisms, they are increasingly being 
replaced by biometric technologies such as fingerprint, face, and voice recognition, which are 
known to provide higher levels of security for user authentication. This paper investigates the 
problem of supporting efficient fingerprint-based user authentication in embedded systems. For 
improving the performance of fingerprint-based authentication, we propose hardware/software 
enhancements that include a generic set of custom instruction extensions to an embedded 
processor’s instruction set architecture, a memory-aware software re-design, and fixed-point 
arithmetic. We believe that the custom instruction set extensions proposed in this work are 
generic enough to speed up many fingerprint matching algorithms and even other biometric 
algorithms. Our experiments with an open-source, high-fidelity fingerprint authentication 
algorithm and a testbed featuring a commercial extensible processor show that performance is 
improved by a factor of 10.4X when using the proposed enhancements, while incurring modest 
overheads. 
Keywords: User authentication, fingerprint, extensible processors 
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ABSTRACT 
System-level design methods specifically targeted towards multimedia applications have recently 
received a lot of attention. Multimedia workloads are known to have a high degree of variability. 
Therefore, designs based on a worst-case analysis of such workloads tend of be overly 
pessimistic. We address this issue by introducing a new concept called approximate variability 
characterization curves (or Approximate VCCs), to characterize the “average-case” behavior of 
multimedia workloads in a parameterized fashion. Since most multimedia applications only have 
soft real-time constraints, it is often possible to tolerate a small amount of performance 
degradation. By allowing such small degradations in the performance, large amounts of resource 
savings are possible. The concept of Approximate VCCs that we present in this paper allows a 
designer to quantitatively account for the performance degradation and the associated resource 
savings. We illustrate this using two typical system design cases. 
Keywords: Multimedia, Workload, System-level design 
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ABSTRACT 
This paper focuses on designing network processing software for embedded processors. Our 
design flow CRACC represents an efficient path to implementation based on a modular 
application description, while avoiding much of the overhead of existing component-based 
techniques. We illustrate results for a real-world application implementing a full IP-based DSL 
Access Multiplexer (IP-DSLAM) system. We quantify overhead and optimization potential 
incurred by our modular implementation. We also point out how CRACC can be deployed for 
HW-SW partitioning and design space exploration. 
Keywords: Software Development, Programmable Platforms, Design Space Exploration, 
DSLAM, Network Processing 
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ABSTRACT 
In the design of highly complex, heterogeneous, and concurrent systems, deadlock detection and 
resolution remains an important issue. In this paper, we systematically analyze the 
synchronization dependencies in concurrent systems modeled in the Metropolis design 
environment, where system functions, high level architectures and function-architecture 
mappings can be modeled and simulated. We propose a data structure called the dynamic 
synchronization dependency graph, which captures the runtime (blocking) dependencies. A loop-
detection algorithm is then used to detect deadlocks and help designers quickly isolate and 
identify modeling errors that cause the deadlock problems. We demonstrate our approach 
through a real world design example, which is a complex functional model for video processing 
and a high level model of function-architecture mapping. 
Keywords: simulation, deadlock, synchronization, cyclic dependency, system level, Metropolis 
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ABSTRACT 
As feature sizes shrink, transient failures of on-chip network links become a critical problem. At 
the same time, many applications require guarantees on both message arrival probability and 
response time. We address the problem of transient link failures by means of temporally and 
spatially redundant transmission of messages, such that designer-imposed message arrival 
probabilities are guaranteed. Response time minimisation is achieved by a heuristic that statically 
assigns multiple copies of each message to network links, intelligently combining temporal and 
spatial redundancy. Concerns regarding energy consumption are addressed in two ways. Firstly, 
we reduce the total amount of transmitted messages, and, secondly, we minimise the application 
response time such that the resulted time slack can be exploited for energy savings through 
voltage reduction. The advantages of the proposed approach are guaranteed message arrival 
probability and guaranteed worst case application response time. 
General Terms: Algorithms, Performance 
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ABSTRACT 
Device and interconnect fabrics at the nanoscale will have a density of defects and susceptibility 
to transient faults far exceeding those of current silicon technologies. In this paper we introduce a 
new performance optimization dimension at the microarchitecture level which can mitigate 
overheads introduced by fault tolerance. This is achieved by directly exposing reliability versus 
delay design trade-offs while incorporating novel forms of speculation which use faster but less 
reliable versions of a microarchitecture's performance critical components. Based on a 
parameterized microarchitecture, we exhibit the benefits of optimizing these tradeoffs.  
Keywords: Nanotechnologies, Fault Tolerant Microarchitectures, Performance Optimization, 
Reliability-Delay Trade-offs 
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Abstract 
Different applications for today's chips require different type of optimizations and thus the need 
to adopt emerging products and solutions to meet such requirements. Optimizing for low power, 
for high yield, for reduced soft error or minimal bring up time necessitate adequate trade-off 
analysis and technical/business decision making by management. The lead managers in this 
session will discuss today's emerging solutions and their economic impact. 
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ABSTRACT 
We investigate differences in power between application-specific integrated circuits (ASICs) and 
custom integrated circuits, with examples from 0.6um to 0.13um CMOS. A variety of factors 
cause synthesizable designs to consume ×3 to ×7 more power. We discuss the shortcomings of 
typical synthesis flows, and changes to tools and standard cell libraries needed to reduce power. 
Using these methods, we believe that the power gap between ASICs and custom circuits can be 
closed to within ×2. 
Keywords: ASIC, comparison, custom, energy, power, standard cell 
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ABSTRACT 
Power dissipation is now both a key constraint and an application driver in VLSI systems. For a 
specific application, the energy efficiency of different implementations can differ by multiple 
orders of magnitude. This work surveys a range of techniques available to improve energy 
efficiency and highlights their cumulative benefit. Understanding, adopting and adapting selected 
techniques from full-custom solutions can help bridge the efficiency gap for the ASIC designs. 
Architecture and microarchitecture choices yield multiple-order of magnitude improvements in 
power dissipation by matching the structure of the design to the structure of the application and 
by providing multiple operating and power-down modes. The combination of methodology and 
full-custom circuit techniques and libraries provide benefits primarily due to reduced parasitic 
loading enabling the improved performance to be translated into the potential for factor-of-3 to 
factor-of-10 improvements in power. 
Keywords: ASIC, Custom Circuits, EDA, Energy Efficiency, Low Power, Normalized Metrics, 
Technology Scaling 
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ABSTRACT 
With 90nm CMOS in production and 65nm testing in progress, power has been pushed to the 
forefront of design metrics. This paper will outline practical techniques that are used to reduce 
both leakage as well as active power in a standard-cell library based high-performance design 
flow. We will discuss the design and cost issues for using different power saving techniques such 
as: power gating to reduce leakage, multiple and hybrid threshold libraries for leakage reduction 
and multiple supply voltage based design. In addition techniques to reduce clock tree power will 
be presented as power consumed in clocks accounts for a significant portion of total chip power. 
Practical aspects of implementing these techniques will also be discussed. 
Keywords: Low power, High-Performance, VLSI Design 
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PANEL ABSTRACT 
Chip interfaces, including standards like PCI Express, are increasingly relying on high-speed 
serial technology. This move from MHz to GHz brings with it a myriad of chip design 
challenges that many designers have never faced before. This diverse panel of experts in chip 
and IP mixed-signal design will describe not only why you SHOULD be afraid (very afraid), but 
also what's being done to make this transition practical, including new design techniques and 
standards. 
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ABSTRACT 
The need for mass-produced inexpensive wireless devices operating under strict energy 
constraints poses new challenges in the system design methodology. This paper presents a 
methodology for designing wireless nodes in which a low cost, reliable antenna is realized by 
printed circuit traces. We show how to combine the analysis from 2.5D and 3D EM simulators 
with the PCB design tools to create predictable nodes with printed antennas that meet stringent 
power and data transmission range goals. The presented approach is applied to the design of a 
IEEE802.15.4 wireless node deployed in several indoor environments. 
Keywords: RF CAD, Printed Antenna, Antenna Design Methodology, Printed Circuit Board 
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ABSTRACT 
Channel estimation and multiuser detection are enabling technologies for future generations of 
wireless applications. However, sophisticated algorithms are required for accurate channel 
estimation and multiuser detection, and real-time implementation of these algorithms is difficult. 
This paper presents architectural design methods for wireless channel estimation which can be 
leveraged to enable real-time multiuser detection. We redesign the matching pursuit (MP) 
channel estimation algorithm to reduce the complexity while maintaining the estimation 
accuracy. Furthermore, we develop a parameterized intellectual property (IP) core, which 
provides a hardware implementation of the MP algorithm. Experimental results demonstrate the 
effectiveness and efficiency of the new algorithm and IP core for channel estimation. The 
implementation of our MP core on a modern, high performance reconfigurable system is about 
216 times faster than running the algorithm on a state of the art microprocessor. The MP core 
possesses the speed required for performing true multiuser detection, enabling future generations 
of wireless communication applications. 
Keywords: Channel estimation, matching pursuit algorithm, design space exploration 
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ABSTRACT 
During the last decade, wireless communication has seen a trend towards application 
diversification leading to a significant growth in users. With the availability of – however 
energy-limited – nomadic devices and real-time multimedia applications, user demand is shifting 
from simply asking for higher data rates to more complex requirements in terms of Quality of 
Service (QoS) and energy-efficiency. In this new context energy management is becoming a key 
success factor. Optimized energy-efficiency requires an energy management that continuously 
trades off QoS and energy adapting to varying user expectations and environment dynamics. But, 
QoS can only be evaluated on top of the whole protocol stack while energy consumption largely 
appears at the lower layers. To minimize overhead during the transitions between layers, we need 
to address the problem from a cross-layer perspective. We present a methodology that, based on 
systematic exploration, effective problem partitioning and minimal cross-layer interface, allows 
energy management in a cross-layer way, while maintaining efficient layered semantics. 
Different case studies in the context of wireless LAN (WLAN) for multimedia and data traffic 
transport are discussed, to show how cross-layer energy management can easily be included in 
systems running state-of-the-art protocols. 
Keywords: Cross-layer, Energy Management, Power-aware design 
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ABSTRACT 
Power minimization under variability is formulated as a rigorous statistical robust optimization 
program with a guarantee of power and timing yields. Both power and timing metrics are treated 
probabilistically. Power reduction is performed by simultaneous sizing and dual threshold 
voltage assignment. An extremely fast run-time is achieved by casting the problem as a second-
order conic problem and solving it using efficient interior-point optimization methods. When 
compared to the deterministic optimization, the new algorithm, on average, reduces static power 
by 31% and total power by 17% without the loss of parametric yield. The run time on a variety 
of public and industrial benchmarks is 30X faster than other known statistical power 
minimization algorithms. 
Keywords: Leakage, manufacturability, statistical optimization 
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ABSTRACT 
We present an efficient optimization scheme for gate sizing in the presence of process variations. 
Using a posynomial delay model, the delay constraints are modified to incorporate uncertainty in 
the transistor widths and effective channel lengths due to the process variations. An uncertainty 
ellipsoid method is used to model the random parameter variations. Spatial correlations of intra-
die width and channel length variations are incorporated in the optimization procedure. The 
resulting optimization problem is relaxed to be a Geometric Program and is efficiently solved 
using convex optimization tools. The effectiveness of our robust gate sizing scheme is 
demonstrated by applying the optimization on the ISCAS ’85 benchmark circuits and testing the 
optimized circuits by performing Monte Carlo simulations to model the process variations. By 
varying the size of the uncertainty ellipsoids, a trade-off between area and robustness is explored. 
Experimental results show that the timing yield of the robustly optimized circuits improves 
manifold over the traditional deterministically sized circuits. As compared to the worst-case 
design, the robust gate sizing solution having the same area, has fewer timing violations. 
Keywords: Geometric Program, posynomial, uncertainty ellipsoid 
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Abstract 
In this paper, we propose a new sensitivity based, statistical gate sizing method. Since circuit 
optimization effects the entire shape of the circuit delay distribution, it is difficult to capture the 
quality of a distribution with a single metric. Hence, we first introduce a new objective function 
that provides an effective measure for the quality of a delay distribution for both ASIC and high 
performance designs. We then propose an efficient and exact sensitivity based pruning algorithm 
based on a newly proposed theory of perturbation bounds. A heuristic approach for sensitivity 
computation which relies on efficient computation of statistical slack is then introduced. Finally, 
we show how the pruning and statistical slack based approaches can be combined to obtain 
nearly identical results compared with the brute-force approach but with an average run-time 
improvement of up to 89x. We also compare the optimization results against that of a 
deterministic optimizer and show an improvement up to 16% in the 99-percentile circuit delay 
and up to 31% in the standard deviation for the same circuit area. 
General Terms: Algorithms, performance, reliability, optimization 
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ABSTRACT 
As the process technology enters the nanometer era, reliability has become a major concern in 
the design and manufacturing of VLSI circuits. In this paper we focus on one reliability issue—
jumper insertion in routing trees for avoiding/fixing antenna effect violations at the routing/post-
layout stages. We formulate the jumper insertion for antenna avoidance/fixing as a tree-cutting 
problem. We show that the tree-cutting problem exhibits the properties of optimal substructures 
and greedy choices. With these properties, we present an O(V lg V )-time exact jumper insertion 
algorithm that uses the optimum number of jumpers to avoid/fix the antenna violations in a 
routing tree with V vertices. Experimental results show the superior effectiveness and efficiency 
of our algorithm.  
Keywords: Antenna Effect, Jumper Insertion 
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ABSTRACT 
Current Application Specific Instruction set Processor (ASIP) design methodologies are mostly 
based on iterative architecture exploration that uses Architecture Description Languages (ADLs) 
and retargetable software development tools. However, for improved design efficiency, 
additional pre-architecture exploration tools are required to help narrow-down the huge design 
space and making coarsegrained Instruction Set Architecture (ISA) decisions before detailed 
ADL modeling. Extensive application code profiling is the key in such early design stages. 
Based on a novel code instrumentation technology, we present a microprofiling approach that 
fills the current gap between sourcelevel and instruction-level profilers and combines their 
advantages w.r.t. speed and accuracy. We show how the microprofiler is embedded into an 
advanced ASIP design flow and justify its use in a case study to design an MP3 decoder ASIP. 
Keywords: Customizable Processors, ASIPs, Profiling, Codesign 
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ABSTRACT 
Many reconfigurable architectures offer partial dynamic configurability, but current system-level 
tools cannot guarantee feasible implementations when exploiting this feature. We present a 
physically aware hardware-software (HW-SW) scheme for minimizing application execution 
time under HW resource constraints, where the HW is a reconfigurable architecture with partial 
dynamic reconfiguration capability. Such architectures impose strict placement constraints that 
lead to implementation infeasibility of even optimal scheduling formulations that ignore the 
nature of these constraints. We propose an exact and a heuristic formulation that simultaneously 
partition, schedule, and do linear placement of tasks on such architectures. With our exact 
formulation, we prove the critical nature of placement constraints. We demonstrate that our 
heuristic generates high-quality schedules by comparing the results with the exact formulation 
for small tests and a popular, but placementuanaware scheduling heuristic for larger tests. With a 
case study, we demonstrate extension of our approach to handle heterogenous architectures with 
specialized resources distributed between general purpose programmable logic columns. The 
execution time of our heuristic is very reasonable- task graphs with hundreds of nodes are 
processed in a couple of minutes. 
Keywords: HW-SWpartitioning, partial dynamic reconfiguration, linear placement 
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ABSTRACT  
This paper proposes a rapid and accurate evaluation scheme for cycle counts of a pipelined 
processor using evaluation reuse technique. Since exploration of an optimal processor is a time-
consuming task due to large design space, fast evaluation methodology for an architecture is 
crucial. We introduce the performance simulation model which can evaluate the performance 
without considering the functional correctness. This model has an FSM-like form and can afford 
to take all hazard types of pipelined architectures into consideration. The proposed approach is 
based on the property that an application program, especially multimedia application, has many 
iterative loops in general. This property invokes many iterative operations in the simulation. 
Evaluation reuse scheme can alleviate redundantly iterative operations of conventional 
simulators in the loop. A performance simulator for the pipeline architecture has been developed 
through which greater speedup has been made compared with other approaches in the evaluation 
of cycle counts.  
Keywords: Retargetable simulation, compiled simulation, evaluation reuse, instruction set 
architecture, trace-driven simulation  
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ABSTRACT 
Poor performance of HW/SW cosimulation is mainly caused by synchronization requirement 
between component simulators. Virtual synchronization technique was proposed to remove the 
need of synchronization in cycle accurate cosimulation. But the previous execution-driven 
simulation based on virtual synchronization has limitations in the application area. In this paper, 
we propose a novel trace-driven HW/SW cosimulation using virtual synchronization technique. 
Through OS modeling and channel modeling, the proposed cosimulation technique could be 
applied more widely while improving the simulation performance further. Experiments with a 
DIVX player example prove the viability of the proposed technique. 
Keywords: Trace-driven cosimulation, virtual synchronization 
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Abstract 
We often hear about success stories in EDA. We are all justifiably proud of the impact we 
collectively make on the overall integrated circuit design and manufacturing machine. It is fair to 
say, however, the one learns far more from failure than one does from success. In this special 
session we found several brave practitioners who are willing to talk about problems in 
businessas-usual EDA. These problems include technology related issues; reliability related 
issues, power issues and even methodology issues – In short, covering a wide swatch of the EDA 
domain. 
 
Metal Variation-Induced Hold Time Failures 
Author: Paul S. Zuchowski - IBM, Burlington, VT 
 
Design for Reliability: acknowledging aging effects 
Authors: Claude Moughanni, Mohamed Moosa, Gary Anderson - Freescale, Austin, TX 
 
Bridging the Power Reduction & Estimation Gap in the Cell Processor Design 
Methodology 
Author: Stephen D Posluszny - IBM, Austin, TX 
 
A Series of Unfortunate Events 
Author: Ward Vercruysse - AMD, Austin, TX 
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PANEL SUMMARY 
In recent years, data communication has overtaken voice as the main force behind the growth in 
wireless. With this has come a proliferation of standards ranging from wide area networks at one 
end of the spectrum to personal area networks on the other end. The opportunities offered by this 
truly ubiquitous connectivity are tremendous, and are leading to revolutionary chances in the 
way computer, communication, and consumer systems operate and interact. 
 
Providing the necessary flexibility to seamlessly interact with the multitude of emerging network 
models, as well as the muscle to support the demanding multimedia functionality in a mobile 
environment, presents some huge challenges to the developer of the wireless implementation 
platforms. The power budget of the mobile terminal is typically fixed by size considerations and 
operation time. Cost considerations further constrain the solution space. 
 
In response to these challenges, many solutions have been floated and experimented with ranging 
from multi-processor architectures, advanced DSPs, reconfigurable solutions and hardwired 
accelerators. While these innovations break new ground in the world of embedded architectures, 
many questions emerge such as efficiency, flexibility and programming model. This panel will 
presents a “bake-off” between a number of solutions that have emerged over the recent years. 
Keywords: Wireless architectures, data communications, implementation platforms 
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ABSTRACT 
Implementing logic blocks in an integrated circuit in terms of repeating or regular geometry 
patterns [6,7] can provide significant advantages in terms of manufacturability and design cost 
[2]. Various forms of gate and logic arrays have been recently proposed that can offer such 
pattern regularity to reduce design risk and costs [2,4,9,11,12]. In this paper, we propose a full-
mask-set design methodology which provides the same physical design coherence as a 
configurable array, but with area and other design benefits comparable to standard cell ASICs. 
This methodology is based on a set of simple logic primitives that are mapped to a set of logic 
bricks that are defined by a restrictive set of RET(Resolution Enhancement Technique)-friendly 
geometry patterns. We propose a design methodology to explore trade-offs between the number 
of bricks and associated level of configurability versus the required silicon area. Results are 
shown to compare a design implemented with a small number of regular bricks to an 
implementation based on a full standard cell library in a 90nm CMOS technology. 
Keywords: Integrated Circuits, Regularity, Manufacturability, RET 
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ABSTRACT 
While performance specifications are verified before sign-off for a modern nanometer scale 
design, extensive application of optical proximity correction substantially alters the layout 
introducing systematic variations to the simulated and verified performance. As a result, actual 
on-silicon chip performance is quite different from sign-off expectations. This paper presents a 
new methodology to provide better estimates of on-silicon performance. The technique relies on 
the extraction of residual OPC errors from placed and routed full chip layouts to derive actual 
(i.e., calibrated to silicon) CD values that are then used in timing analysis and speed path 
characterization. This approach is applied to a state-of-the-art microprocessor and contrasted 
with traditional design flow practices where ideal (i.e., drawn) Lgate values are employed, 
leading to a subsequent lack of predictive power. We present a platform for diagnosing and 
improving OPC quality on gates with specific functionality such as critical gates or matching 
transistors. Furthermore, with more accurate timing analysis we highlight the necessity of a post-
OPC verification embedded design flow, by showing substantial differences in the Si-based 
timing simulations in terms of significant reordering of speed path criticality and a 36.4% 
increase in worst-case slack. Extensions of this methodology to multi-layer extraction and timing 
characterization are also proposed. 
Keywords: OPC, layout, process CD, design flow 
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ABSTRACT  
Process variations have become a bottleneck for predictable and high-yielding IC design and 
fabrication. Linewidth variation (ΔL) due to defocus in a chip is largely systematic after the 
layout is completed, i.e., dense lines “smile” through focus while isolated (iso) lines “frown”. In 
this paper, we propose a design flow that allows explicit compensation of focus variation, either 
within a cell (self-compensated cells) or across cells in a critical path (self-compensated design). 
Assuming that iso and dense variants are available for each library cell, we achieve designs that 
are more robust to focus variation. Design with a self-compensated cell library incurs ~11-12% 
area penalty while compensating for focus variation. Across-cell optimization with a mix of 
dense and iso cell variants incurs ~6-8% area overhead compared to the original cell library, 
while meeting timing constraints across a large range of focus variation (from 0 to 0.4um). A 
combination of original and iso cells provides an even better self-compensating design option, 
with only 1% area overhead. Circuit delay distributions are tighter with self-compensated cells 
and self-compensated design than with a conventional design methodology.  
Keywords: Variation, Layout, Focus, ACLV, Manufacturability, Compensation  
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ABSTRACT 
This paper attempts to reconcile the growing interdependency between nanometer lithography 
and physical design. We first introduce the concept of lithography hotspots and the edge 
placement error (EPE) map to measure the overall printability and manufacturing effort. We then 
adapt fast lithography simulation models to generate EPE map. Guided by EPE map, we develop 
effective RET-aware detailed routing (RADAR) techniques that can handle full-chip capacity to 
enhance the overall printability while maintaining other design closure. RADAR is implemented 
in an industry strength detailed router, and tested using some 65nm designs. Our experimental 
results show that we can achieve up to 40% EPE reduction with reasonable CPU time. 
Keywords: DFM, RET, OPC, detailed routing, lithography 
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ABSTRACT 
A multiple-output function can be represented by a binary decision diagram for characteristic 
function (BDD for CF). This paper presents a new method to represent multiple-output 
incompletely specified functions using BDD for CF. An algorithm to reduce the widths of BDD 
for CFs is presented. This method is useful for decomposition of incompletely specified 
multiple-output functions. Experimental results for radix converters, adders and a multiplier 
show that this method is useful for the synthesis of LUT cascades. This data structure is also 
useful to three-valued logic simulation. 
Keywords: Incompletely Specified Function, BDD, Characteristic function, Cascade, Code 
converter 
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Abstract  
An efficient and compact canonical form is proposed for the Boolean matching problem under 
permutation and complementation of variables. In addition an efficient algorithm for computing 
the proposed canonical form is provided. The efficiency of the algorithm allows it to be 
applicable to large complex Boolean functions with no limitation on the number of input 
variables as apposed to previous approaches, which are not capable of handling functions with 
more than seven inputs. Generalized signatures are used to define and compute the canonical 
form while symmetry of variables is used to minimize the computational complexity of the 
algorithm. Experimental results demonstrate the efficiency and applicability of the proposed 
canonical form. 
General Terms: Algorithms, Design, Verification 
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ABSTRACT 
Covering problems arise in many areas of electronic design automation such as logic 
minimization and technology mapping. An exact solution can critically impact both size and 
performance of the devices being designed. This paper introduces eclipse, a branch-and-bound 
solver that can solve many covering problems orders of magnitude faster than existing solvers. 
When used in place of the default covering engine of a well-known logic minimizer, eclipse 
makes it possible to find, in less than six minutes, true minima for three benchmark problems 
that have eluded exact solutions for more than a decade. 
Keywords: covering, branch and bound, satisfiability, unate, binate 
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ABSTRACT 
Linear periodically time-varying (LPTV) abstractions are useful for a variety of communication 
and computer subsystems. In this paper, we present a novel operator-based model-order 
reduction (MOR) algorithmfor reducing large LPTVsystems to smaller ones, a capability useful 
for system-level performance analysis. Our procedure is based on generalizing existing matrix-
based Krylov-subspace algorithms to arbitrary function-space operators. Practical benefits of our 
approach include significantly enhanced algorithm and code modularity, compared to previous 
LPTV-MOR approaches based on a-priori discretization. We demonstrate the use of the 
proposed technique on several circuit examples. 
Keywords: LPTV systems, model-order reduction, operator, modularity 
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ABSTRACT 
In this paper, we analyze the effect of jitter in track and hold circuits. The output spectrum is 
obtained in terms of the system function of the track and hold. It is a fairly general model in 
which the effect of input as well as clock jitter can be included. The clock can have an arbitrary 
duty cycle, so that the circuit could also approximate a sample and hold. Using this model, it is 
possible to simulate the effects of jitter in a track and hold using a standard circuit simulator. 
Three cases are analyzed - long term jitter, correlated jitter with exponential autocorrelation and 
white noise jitter. These results are verified using Monte Carlo simulations. 
Keywords: Jitter, Sampling circuits 
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ABSTRACT 
Trajectory methods sample the state trajectory of a circuit as it simulates in the time domain, and 
build macromodels by reducing and interpolating among the linearizations created at a suitably 
spaced subset of the time points visited during training simulations. Unfortunately, moving from 
simple to industrial circuits requires more extensive training, which creates models too large to 
interpolate efficiently. To make trajectory methods practical, we describe a scalable interpolation 
architecture, and the first implementation of a complete trajectory “infrastructure” inside a full 
SPICE engine. The approach supports arbitrarily large training runs, automatically prunes 
redundant trajectory samples, supports limited hierarchy, enables incremental macromodel 
updates, and gives 3-10X speedups for larger circuits. 
Keywords: Circuit, trajectory method, analog, macromodel, SPICE 
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ABSTRACT 
The cellular wireless market has begun the transition to data centric services including high 
speed internet access, video, high quality audio, and gaming. Communications technology can 
meet the need for very high data link speeds, and can also improve network throughput, but 
dramatically more spectrum will be needed to provide ubiquitous wireless data service. 
Cognitive radio is a new technology that allows spectrum to be dynamically shared between 
users. It offers the potential to dramatically change the way spectrum is used in systems and to 
substantially increase the amount of spectrum available for wireless communications. This paper 
introduces cognitive radio and explains the promise, possible operating modes, and benefits it 
may offer. 
Keywords: Cognitive radios, unlicensed spectrum, unlicensed wide area network 
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ABSTRACT 
This paper first gives a brief introduction to Multiple Input Multiple Output (MIMO) wireless 
communication systems. Various architectures of MIMO systems and corresponding features are 
discussed, including those proposed for the IEEE 802.11n standard. The impact on chip area and 
required data processing rates is then presented. 
Keywords: MIMO, 802.11n, Wireless, Networking 
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ABSTRACT 
Micromechanical (or “μmechanical”) communication circuits fabricated via IC-compatible 
MEMS technologies and capable of low-loss filtering, mixing, switching, and frequency 
generation, are described with the intent to miniaturize wireless transceivers. Possible MEMS-
based receiver front-end architectures are then presented that use these micromechanical circuits 
in large quantities to enhance robustness and substantially reduce power consumption. Among 
the more aggressive architectures proposed are one based on a μmechanical RF channel-selector 
and one featuring an all-MEMS RF front-end. 
Keywords: RF MEMS, quality factor, micromechanical circuit, RF front end, resonator, switch, 
inductor, capacitor 
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ABSTRACT 
This paper presents a novel synthesis algorithm that reduces the area needed for implementing 
multiplexers on an FPGA by an average of 18%. This is achieved by reducing the number of 
Lookup Tables (LUTs) needed to implement multiplexers. The algorithm relies on 
reimplementing 2:1 multiplexer trees using efficient 4:1 multiplexers. The key to the algorithm’s 
performance lies in exploiting the observation that most multiplexers occur in busses. New 
optimizations are employed which pay a small cost in logic that is shared across the bus to 
achieve a reduction in the logic required for every bit of the bus. 
Keywords: FPGA, Multiplexers, Restructuring, Recoding, Busses, Logic Optimization, 
Synthesis 
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ABSTRACT 
This paper attempts to quantify the optimality of FPGA technology mapping algorithms. We 
develop an algorithm, based on Boolean satisfiability (SAT), that is able to map a small 
subcircuit into the smallest possible number of lookup tables (LUTs) needed to realize its 
functionality. We iteratively apply this technique to small portions of circuits that have already 
been technology mapped by the best available mapping algorithms for FPGAs. In many cases, 
the optimal mapping of the subcircuit uses fewer LUTs than is obtained by the technology 
mapping algorithm. We show that for some circuits the total area improvement can be up to 
67%. 
Keywords: Boolean Satisfiability, Resynthesis, Optimization, Cone, FPGA, Lookup Table 
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ABSTRACT 
In this paper, we present a new linear-time retiming algorithm that produces near-optimal results. 
Our implementation is specifically targeted at Altera's Stratix [1] FPGA-based designs, although 
the techniques described are general enough for any implementation medium. The algorithm is 
able to handle the architectural constraints of the target device, multiple timing constraints 
assigned by the user and implicit legality constraints. It ensures that register moves do not create 
asynchonous problems such as creating a glitch on a clock/reset signal. 
Keywords: Retiming, Physical Synthesis, FPGA 
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ABSTRACT 
Previous research has shown both theoretically and practically that simulated annealing can 
greatly benefit from the incorporation of an adaptive range limiting window to control the 
acceptance ratio of swaps during placement. However, the implementation of such a system is 
not necessarily obvious. Existing range limiting techniques have several fundamental 
shortcomings when dealing with both standard island-style FPGAs and more exotic 
architectures. In this paper we discuss the nature of these problems and present a new algorithm 
that attempts to deal with these issues. 
Keywords: Reconfigurable logic, placement, simulated annealing, windowing, range limiting, 
architecture-adaptive 
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ABSTRACT 
Model checking techniques applied to large industrial circuits suffer from the state space 
explosion problem. A major technique to address this problem is abstraction. The most 
commonly used abstraction technique for hardware verification is localization reduction, which 
removes latches that are not relevant to the property. However, localization reduction fails to 
reduce the size of the model if the property actually depends on most of the latches. This paper 
proposes to use predicate abstraction for verifying RTL Verilog, a technique successfully used 
for software verification. The main challenge when using predicate abstraction is the discovery 
of suitable predicates. We propose to use weakest preconditions of Verilog statements in order to 
obtain new predicates during abstraction refinement. This technique has not been applied to 
circuits before. On benchmarks taken from an industrial microprocessor, we successfully verified 
safety properties with more than 32,000 latches in the cone of influence. We compare the 
performance of our technique with a modern model checker that implements localization 
reduction. 
Keywords: Predicate Abstraction, Verilog, SAT 
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ABSTRACT 
We present an efficient search strategy for satisfiability checking on circuits represented at the 
register-transfer-level (RTL). We use the RTL circuit structure by extending concepts from 
classic automatic test-pattern generation (ATPG) algorithms and interval-arithmetic to guide the 
search process. We extend the idea of Boolean recursive learning on predicate logic in the RTL 
using Boolean and interval constraint propagation in the control and data-path of the circuit. This 
is used as a pre-processing step to derive relations between predicate logic signals that are used 
to augment the search. We demonstrate experimentally that these methods provide significant 
improvement over current techniques on sample benchmarks.  
Keywords: Interval Arithmetic, Learning, Predicate Abstraction, Satisfiability 
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ABSTRACT 
We propose a normalization technique for verifying arithmetic circuits in a bounded model 
checking environment. Our technique operates on the arithmetic bit level (ABL) description of 
the arithmetic circuit parts and the property. The ABL description can easily be provided by the 
front-end of an RTL property checker. The proposed normalization greatly simplifies the SAT 
instances to be solved for arithmetic circuit verification. Our approach has been applied 
successfully to verify the integer pipeline of an industrial microprocessor with advanced DSP 
capabilities. 
Keywords: Property checking, arithmetic bit level normalization, SAT 
 
REFERENCES 
[1] Infineon TriCore 2 Architecural Manual. http://www.infineon.com/tricore. 
[2] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT-based approach for solving 
formulas over boolean and linear mathematical propositions. In Proc. Conference on Automated Deduction (CADE), 
pages 195–210, 2002. 
[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT procedures 
instead of BDDs. In Proc. Intl. Design Automation Conference (DAC-99), pages 317–320, June 1999. 
[4] R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear programming. In Proc. Asia and 
South Pacific Design Automation Conference (ASPDAC-02), Bangalore, India, 2002. 
[5] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. In Proc. Design Automation Conference 
(DAC-03), pages 830–835, 2003. 
[6] N. Een and N. S¨orensson. An extensible SAT-solver. In Proc. 6. Intl. Conf. on Theory and Applications of 
Satisfiability Testing(SAT 2003), May 2003. 
[7] F. Fallah, S. Devadas, and K. Keutzer. Functional vector generation for HDL models using linear programming 
and boolean satisfiability. IEEE Transactions on CAD, CAD-20(8), 2001. 
[8] P. Johannsen. BOOSTER: Speeding up RTL property checking of digital designs by word-level abstraction. In 
Proc.Intl. Conf. Computer Aided Verification(CAV-01), pages 373–377, July 2001. 
[9] P. Johannsen and R. Drechsler. Formal verification on the RT level computing one-to-one design abstractions by 
signal width reduction. In Proc. IFIP International Conference on Very Large Scale Integration(IFIP VLSI-SOC 
2001), Montpellier, France, 2001. 
[10] D. Stoffel and W. Kunz. Verification of integer multipliers on the arithmetic bit level. In Proc. International 
Conference on Computer-Aided Design (ICCAD-01), pages 183–189, San Jose, CA, November 2001. 
[11] M. Wedler, D. Stoffel, and W. Kunz. Arithemetik reasoning in DPLL-based SAT solving. In Proc. Conference 
on Design, Automation and Test in Europe (DATE-04), Paris, France, 2004. 
[12] K. Winkelmann, D. Stoffel, G. Fey, and H. Trylus. Cost-efficient block verification for a UMTS up-link chip-
rate coprocessor. In Proc. Conference on Design, Automation and Test in Europe (DATE-04), Paris, France, 2004. 
[13] Z. Zeng, M. Ciesielski, and B. Rouzeyre. Functional test generation using constraint logic programming. In 
Proc. IFIP International Conference on Very Large Scale Integration (IFIP VLSI-SOC 2001), Montpellier, France, 
2001. 
[14] Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A unified approach to RTL satisfiability. In Proc. Conference on 
Design, Automation and Test in Europe (DATE-01), Munich, Germany, 2001. 
 
 



DAC05, pages 463-466 
Exploiting Suspected Redundancy without Proving It 

 
Hari Mony1, Jason Baumgartner1, Viresh Paruthi1, Robert Kanzelman2

1IBM Systems Group, Austin, TX 
2IBM Engineering & Technology Services, Rochester, MN 

 
ABSTRACT 
We present several improvements to general-purpose sequential redundancy removal. (1) We 
propose using a robust variety of synergistic transformation and verification algorithms to 
process the individual proof obligations. This enables greater speed and scalability, and identifies 
a significantly greater degree of redundancy, than prior approaches. (2) We generalize upon 
traditional redundancy removal and utilize the speculatively-reduced model to enhance bounded 
search, without needing to complete any proofs. 
Keywords: sequential redundancy removal, sequential equivalence checking, correctness-
preserving transformations 
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ABSTRACT 
Partitioned BDD-based algorithms have been proposed in the literature to solve the memory 
explosion problem in BDD-based verification. Such algorithms can be at times ineffective as 
they suffer from the problem of scheduling the relative order in which the partitions are 
processed. In this paper we present a novel multi-threaded reachability algorithm that avoids this 
scheduling problem while increasing the latent parallelism in partitioned state space traversal. 
We show that in most cases our method is significantly faster than both the standard reachability 
algorithm as well as the existing partitioned approaches. The gains are further magnified when 
our threaded implementation is evaluated in the context of a parallel framework. 
Keywords: Reachability Analysis, Parallel, Multi-threaded 
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ABSTRACT 
This paper presents a parameterized soft core generator for the discrete Fourier transform (DFT). 
Reusable IPs of digital signal processing (DSP) kernels are important time-saving resources in 
DSP hardware development. Unfortunately, reusable IPs, however optimized, can introduce 
inefficiencies because they cannot fit the exact requirements of every application context. Given 
the well-understood and regular computation in DSP kernels, an automatic tool can generate 
high-quality ready-to-use IPs customized to user-specified cost/performance tradeoffs (beyond 
basic parameters such as input size and data format). The paper shows that the generated DFT 
cores can match closely the performance and cost of DFT cores from the Xilinx LogiCore 
library. Furthermore, the generator can yield DFT cores over a range of different 
performance/cost tradeoff points that are not available from the library. 
Keywords: Discrete Fourier transform, IP, design generator, FPGA 
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ABSTRACT 
The race conditions often limit the smallest feasible clock period that the optimal clock skew 
scheduling can achieve. Therefore, the combination of clock skew scheduling and delay insertion 
(for resolving the race conditions) may lead to further clock period reduction. However, the 
interactions between clock skew scheduling and delay insertion have not been well studied. In 
this paper, we provide a fresh viewpoint to look at this problem. A novel approach, called race-
condition-aware (RCA) clock skew scheduling, is proposed to determine the clock skew 
schedule by taking the race conditions into account. Our objective is not only to optimize the 
clock period, but also to heuristically minimize the required inserted delay. Compared with 
previous work, our approach has significant improvement in the time complexity. 
Keywords: High performance, Sequential circuits, Timing optimization 
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Abstract: 
Due to exponential increase in subthreshold leakage with technology scaling and temperature 
increase, leakage power is becoming a major fraction of total power in the active mode. We 
present a novel low-cost design methodology with associated synthesis flow for reducing both 
switching and active leakage power using dynamic supply gating. A logic synthesis approach 
based on Shannon expansion is proposed that dynamically applies supply gating to idle parts of 
general logic circuits even when they are performing useful computation. Experimental results 
on a set of MCNC benchmark circuits in a predictive 70nm process exhibits improvements of 
15% to 88% in total active power compared to the results obtained by a conventional 
optimization flow. 
General Terms: Algorithms, Design, Performance 
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ABSTRACT 
As Si CMOS devices are scaled down into the nanoscale regime, current computer architecture 
approaches are reaching their practical limits. Future nano-architectures will confront devices 
and interconnections with a large number of inherent defects, which motivates the search for new 
architectural paradigms. In this paper, we examine probabilistic-based design methodologies for 
nanoscale computer architectures based onMarkov random fields (MRF). The MRF approach 
can express arbitrary logic circuits and the logic operation is achieved by maximizing the 
probability of correct state configurations in the logic network depending on the interaction of 
neighboring circuit nodes. The computation proceeds via probabilistic propagation of states 
through the circuit. Crucially, the MRF logic can be implemented in modified CMOS-based 
circuitry that trades off circuit area and operation speed for the crucial fault tolerance and noise 
immunity. This paper builds on the recent demonstration that significant immunity to faulty 
individual devices or dynamically occurring signal errors can be achieved by the propagation of 
state probabilities over an MRF network. In particular, we are interested in CMOS-based circuits 
that work reliably at very low supply voltages (VDD = 0.1–0.2 V), where standard CMOS would 
fail due to thermal and crosstalk noise, and transistor threshold variation. In this paper, we 
present results for simulated probabilistic test circuits for elementary logic components and well 
as small circuits taken from the MCNC91 benchmark suite and we show greatly improved noise 
immunity operating at very low VDD. The MRF framework extends to all levels of a design, 
where formally optimum probabilistic computation can be implemented as a natural element of 
the processing structure. 
Keywords: noise immunity, reliability, subthreshold operation, probabilistic computing, Markov 
random fields, nanodevices 
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ABSTRACT 
This paper presents a unifying framework for the modeling of asynchronous pipeline circuits. A 
pipeline protocol is captured in a graph-based model which defines the partial ordering of both 
its control and data events. The relationship between an entire space of different protocols is then 
captured in a semi-lattice, which has well-defined top and bottom elements, corresponding to the 
most concurrent and least concurrent protocol variants, respectively. This framework also 
provides a set of correct-by-construction transformation rules which allows for the systematic 
exploration of the entire design space by their successive application. To the best of our 
knowledge, this is the first formal framework for asynchronous pipelines which can capture 
protocols from a variety of logic style families, including both dynamic and static. It is also the 
first to provide a formal foundation for the design-space exploration of asynchronous pipelines. 
Keywords: pipeline, framework, asynchronous, digital design, protocols 
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ABSTRACT 
This paper presents the first in-depth study on applying dual Vdd buffers to buffer insertion and 
multi-sink buffered tree construction for power minimization under delay constraint. To tackle 
the problem of dramatic complexity increment due to simultaneous delay and power 
consideration and increased buffer choices, we develop a sampling-based sub-solutions (i.e. 
options) propagation method and a balanced search tree-based data structure for option pruning. 
We obtain 17x speedup with little loss of optimality compared to the exact option propagation. 
Moreover, compared to buffer insertion with single Vdd buffers, dual-Vdd buffers reduce power 
by 23% at the minimum delay specification. In addition, compared to the delay-optimal tree 
using single Vdd buffers, our power-optimal buffered tree reduces power by 7% and 18% at the 
minimum delay specification when single Vdd and dual Vdd buffers are used respectively. 
Keywords: Low power, buffer insertion, detail routing 
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ABSTRACT 
We demonstrate how to use placement to ameliorate the predicted repeater explosion problem 
caused by poor interconnect scaling. We achieve repeater count reduction by dynamically 
modifying net weights in a context-sensitive manner during global placement and coarse 
legalization. Our scheme, which models layer assignment as well as valid inter-repeater distance 
ranges, can decrease the repeater counts significantly with minimal impact on wirelength. 
Keywords: Placement, Net weighting, Force-directed placement, Repeater, Buffering, Scaling, 
Interconnect 
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ABSTRACT 
Along with the progress of VLSI technology, buffer insertion plays an increasingly critical role 
on affecting circuit design and performance. Traditional buffer insertion algorithms are mostly 
net based and therefore often result in sub-optimal delay or unnecessary buffer expense due to 
the lack of global view. In this paper, we propose a novel path based buffer insertion scheme 
which can overcome the weakness of the net based approaches. We also discuss some potential 
difficulties of the path based buffer insertion approach and propose solutions to them. A fast 
estimation on buffered delay is employed to improve the solution quality. Gate sizing is also 
considered at the same time. Experimental results show that our method can efficiently reduce 
buffer/gate cost significantly (by 71% on average) when compared to traditional net based 
approaches. To the best of our knowledge, this is the first work on path based buffer insertion 
and simultaneous gate sizing. 
Keywords: Buffer Insertion, Interconnect Synthesis, PowerMinimization, Global Routing, 
Layout, Physical Design 
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ABSTRACT 
Placement migration is the movement of cells within an existing placement to address a variety 
of post-placement design closure issues, such as timing, routing congestion, signal integrity, and 
heat distribution. To fix a design problem, one would like to perturb the design as little as 
possible while preserving the integrity of the original placement. This work presents a new 
diffusion-based placement method based on a discrete approximation to a closed-form solution 
of the continuous diffusion equation. It has the advantage of smooth spreading, which helps 
preserve neighborhood characteristics of the original placement. Applying this technique to 
placement legalization demonstrates significant improvements in wire length and timing 
compared to other commonly used techniques. 
Keywords: Placement Migration, Diffusion, Legalization 
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PANEL SUMMARY 
Few would disagree that verification takes the lion’s share of today’s project resources. If we 
examine the available research, we quickly discover that verification is a significant pain point 
that consumes massive amounts of time and resources across a multitude of market segments. 
Per Gary Smith at Gartner Dataquest, verification consumes 30% to 70% of total schedule, 
depending on design size. According to Collett International Research, Inc., a majority of ASICs 
and integrated circuits (ICs) require at least one respin with 71% of respins are due to functional 
bugs “verification should have caught”.  
 
With such statistics, it is easy to understand why many contend that the verification challenge is 
growing at a double exponential rate (that is, exponential with respect to Moore’s law). Given 
verification’s importance and its significant impact on fundamental design quality and time-to-
market demands, what is our industry doing in response? This panel explores where the 
methodology highway is taking us - is the destination heaven or just another level of Dante’s 
inferno?  
 
Respected authors and experts in verification methodology will share their insights and opinions 
of the two methodologies used today: verify-after-the-fact (traditional) and verify-as-you-design 
(emerging). For decades, simulation has necessitated a verifyafter-the-fact methodology and yet 
we can see from the industry research that a high percentage of silicon requires respins. With the 
latest advances in simulation testbenches and languages, can the verify-after-the-fact approach 
scale? Or, is it time for a move to a higher level of abstraction that enables a verify-as-you-
design methodology? 
 
Industry leading chip and systems companies will discuss the methodologies they employ today 
to address the enormous challenge of functional verification. Questions to be addressed by our 
esteemed panelists include: How can we bring in schedules? What can we do to increase design 
quality? What cultural and organizational changes have to take place to bring quality back to the 
forefront of design? Where is the measurable proof of quality? What are the questions that 
managers should be asking themselves? What are the engines being used? What formal 
techniques deliver the greatest success? How important is HW/SW verification? What are the 
processes or methodologies being used to overcome tool or technology limitations? What is the 
value of assertions? How does a geographically dispersed engineering team impact design 
quality? What are the metrics being used to measure progress and success? And how do you 
know when you are done? 
 
Today we currently don’t design quality in – we TEST it in (using simulation). But, what would 
happen if quality was designed in from the beginning? How much could we improve the overall 
quality level and reduce verification time, and what would this take to do it? Finally, can 
migration to a new methodology be the highway out of verification hell?  
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ABSTRACT 
In this paper, we present a method for analyzing the leakage current, and hence the leakage 
power, of a circuit under process parameter variations that can include spatial correlations due to 
intra-chip variation. A lognormal distribution is used to approximate the leakage current of each 
gate and the total chip leakage is determined by summing up the lognormals. In this work, Both 
subthreshold leakage and gate tunneling leakage are considered. The proposed method is shown 
to be effective in predicting the CDF/PDF of the total chip leakage. The average errors for mean 
and sigma values are –1.3% and –4.1%. 
General Terms: Algorithm, Design, Performance, Reliability 
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ABSTRACT 
We present a new methodology which takes into consideration the effect of Within-Die (WID) 
process variations on a low-voltage parallel system. We show that in the presence of process 
variations one should use a higher supply voltage than would otherwise be predicted to minimize 
the power consumption of a parallel systems. Previous analyses, which ignored WID process 
variations, provide a lower non-optimal supply voltage which can underestimate the 
energy/operation by 8.2X. We also present a novel technique to limit the effect of temperature 
variations in a parallel system. As temperatures increases, the scheme reduces the power increase 
by 43% allowing the system to remain at it’s optimal supply voltage across different 
temperatures. 
Keywords: Process Variations, Parallel Systems, Low-Voltage 
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Abstract 
Increasing levels of process variation in current technologies have a major impact on power and 
performance, and result in parametric yield loss. In this work we develop an efficient gate-level 
approach to accurately estimate the parametric yield defined by leakage power and delay 
constraints, by finding the joint probability distribution function (jpdf) for delay and leakage 
power. We consider inter-die variations as well as intra-die variations with correlated and 
random components. The correlation between power and performance arise due to their 
dependence on common process parameters and is shown to have a significant impact on yield in 
high-frequency bins. We also propose a method to estimate parametric yield given the 
power/delay jpdf that is much faster than numerical integration with good accuracy. The 
proposed approach is implemented and compared with Monte Carlo simulations and shows high 
accuracy, with the yield estimates achieving an average error of 2%. 
Keywords: Yield, Variability, Leakage, Correlation 
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ABSTRACT 
This paper presents a novel gate sizing methodology to minimize the leakage power in the 
presence of process variations. The leakage and delay are modeled as posynomials functions to 
formulate a geometric programming problem. The existing statistical leakage model of [18] is 
extended to include the variations in gate sizes as well as systematic variations. We propose 
techniques to efficiently evaluate constraints on the α-percentile of the path delays without 
enumerating the paths in the circuit. The complexity of evaluating the objective function is 
O(|N|2) and that of evaluating the delay constraints is O(|N| + |E|) for a circuit with |N| gates and 
|E| wires. The optimization problem is then solved using a convex optimization algorithm that 
gives an exact solution.  
Keywords: Leakage, Statistical, Optimization, Geometric Programming 
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ABSTRACT  
A DVB-S2 compliant codec is implemented in both 130nm-8M and 90nm-7M low-leakage 
CMOS technologies. The system includes encoders and decoders for both Low-Density Parity 
Check (LDPC) codes and serially concatenated BCH codes. All requirements of the DVB-S2 
standard are supported including code rates between 1/4 and 9/10, block sizes of either 16,200 
bits or 64,800 bits, and four digital modulation options. The 130nm core design occupies 
49.6mm2 and operates at 200MHz, while the 90nm core design occupies 15.8mm2 and operates 
at 300MHz.  
Keywords: DVB-S2, LDPC, FEC (forward error correction)  
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ABSTRACT 
Methodology, EDA Flow, scripts, and documentation plays a tremendous role in the deployment 
and standardization of advanced design techniques. In this paper we focus not only on leakage 
reduction techniques but also on their deployment as a worldwide infrastructure as the added-
value resides not only in the techniques themselves but also in the way they are implemented to 
build an efficient, re-usable, robust, low cost and portable platform. Techniques have been 
silicon proven on the 90-nm TI CMOS technology and is commonly used to design SoC with 
complexities over 100 Million transistors 
Keywords: SoC Design, Leakage Power Management, Wireless Application processor 
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ABSTRACT 
A fully-integrated 4-element phased array transmitter at 24 GHz with on-chip PAs is 
demonstrated in 0.18μm CMOS. It has a beam-forming resolution of 10°, a peak-to-null ratio of 
23 dB, and 28 dB isolation between paths. Each PA can deliver up to +14 dBm into 50 Ω in 
saturation. The die size is 6.8mm x 2.1mm. The transmitter bandwidth is more than 400MHz and 
supports up to 1Gbit/s QPSK, facilitating a Gigabit wireless LAN solution. 
Keywords: Wireless, Transmitters, Phased-Array, 24GHz, CMOS, IC 
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ABSTRACT 
We propose two novel integration techniques -- bypass and bookkeeping -- in the memory 
controller to address the cache coherence compatibility issue of a non-shared bus heterogeneous 
MPSoC. The bypass approach is an inexpensive and efficient solution for computation-bound 
applications while the bookkeeping approach eliminating unnecessary forwarding traffic offers 
an alternative for bandwidth-limited applications. Our RTOS kernel simulations show up to 
6.65x speedup over the conventional software solution. 
Keywords: Cache coherence, Inter-processor communication, Heterogeneous MPSoC, Real-
time and embedded systems 
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ABSTRACT 
The increased deployment of System-on-Chip designs has drawn attention to the limitations of 
on-chip interconnects. As a potential solution to these limitations, Networks-on-Chip (NoC) have 
been proposed. The NoC routing algorithm significantly influences the performance and energy 
consumption of the chip. We propose a router architecture which utilizes adaptive routing while 
maintaining low latency. The two-stage pipelined architecture uses look ahead routing, 
speculative allocation, and optimal output path selection concurrently. The routing algorithm 
benefits from congestion-aware flow control, making better routing decisions. We simulate and 
evaluate the proposed architecture in terms of network latency and energy consumption. Our 
results indicate that the architecture is effective in balancing the performance and energy of NoC 
designs. 
Keywords: Networks-On-Chip, Adaptive Routing, Interconnection Networks 
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ABSTRACT 
As System-on-Chip (SoC) designs become more complex, it is becoming harder to design 
communication architectures to handle the ever increasing volumes of inter-component 
communication. Manual traversal of the vast communication design space to synthesize a 
communication architecture that meets performance requirements becomes infeasible. In this 
paper, we address this problem by proposing an automated approach for synthesizing cost-
effective, bus-based communication architectures that satisfy the performance constraints in a 
design. Our synthesis flow also incorporates a high-level floorplanning and wire delay estimation 
engine to evaluate the feasibility of the synthesized bus architecture and detect timing violations 
early in the design flow. We present case studies of network communication SoC subsystems for 
which we synthesized bus architectures, detected timing violations and generated core 
placements in a matter of hours instead of several days it took for a manual effort. 
Keywords: Communication Synthesis, Systems-on-Chip 
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ABSTRACT 
In this paper, we describe FLEXBUS, a flexible, high-performance on-chip communication 
architecture featuring a dynamically configurable topology. FLEXBUS is designed to detect run-
time variations in communication traffic characteristics, and efficiently adapt the topology of the 
communication architecture, both at the system-level, through dynamic bridge by-pass, as well 
as at the component-level, using component re-mapping. We describe the FLEXBUS 
architecture in detail and present techniques for its run-time configuration based on the 
characteristics of the on-chip communication traffic. The techniques underlying FLEXBUS can 
be used in the context of a variety of on-chip communication architectures. In particular, we 
demonstrate its application to AMBA AHB, a popular commercial on-chip bus. Detailed 
experiments conducted on the FLEXBUS architecture using a commercial design flow, and its 
application to an IEEE 802.11 MAC processor design, demonstrate that it can provide significant 
performance gains as compared to conventional architectures (up to 31.5% in our experiments), 
with negligible hardware overhead. 
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ABSTRACT 
Today high-end video and multimedia processing applications require huge amounts of memory. 
For cost reasons, the usage of conventional dynamic RAM (SDRAM) is preferred. However, 
SDRAM access optimization is a complex task, especially if multi-stream access with different 
QoS requirements is involved. In [8], a multi-stream DDR-SDRAM controller IP covering 
combinations of low latency requirements for processor cache access, hard realtime constraints 
for periodic video signals and hard real-time bursty accesses for video coprocessors was 
described. To handle these contradictory QoS requirements at high system performance, a 
combination of a 2-stage scheduling algorithm and static priorities were used. This paper 
describes an additional flow control which enhances the overall performance. Experiments with 
an FPGA based high-end video platform demonstrate the superiority of this architecture. 
Keywords: SDRAM, memory access, QoS, trafffic shaping, priorities, flow control, FPGA 
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ABSTRACT 
Since across-chip interconnect delays can exceed a clock cycle in nanometer technologies, it has 
become essential in high performance designs to add flip-flops on wires with multi-cycle delays. 
Although such a wire pipelining strategy allows higher operating frequencies, it can reduce the 
delivered performance of a microarchitecture, since the extra flip-flops inserted may increase the 
operation latencies and stall cycles. Moreover, the addition of latencies on some wires can have a 
large impact on the overall performance while other wires are relatively insensitive to additional 
latencies. This varying sensitivity suggests the need for a throughput-aware strategy for 
pipelining the interconnects that interacts closely with the physical design step, which determines 
the lengths of these multicycle wires. We use a statistical design of experiments strategy based 
on a multifactorial design, which intelligently uses a limited number of simulations to rank the 
importance of the wires. When applied at the floorplanning level, our results show improvements 
both in the overall system performance and in the total wire length when compared with an 
existing technique. 
Keywords: Wire pipelining, Microarchitecture, Floorplanning 
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Abstract 
Grid-warping is a recent placement strategy based on a novel physical analogy: rather than move 
the gates to optimize their location, it elastically deforms a model of the 2-D chip surface on 
which the gates have been coarsely placed via a standard quadratic solve. In this paper, we 
introduce a timing-driven grid-warping formulation that incorporates slack-sensitivity-based net 
weighting. Given inevitable concerns about wirelength and runtime degradation in any timing-
driven scheme, we also incorporate a more efficient net model and an integrated local 
improvement (“rewarping”) step. An implementation of these ideas, WARP2, can improve 
worst-case negative slack by 37% on average, with very modest increases in wirelength and 
runtime. 
Keywords: Algorithms, Placement 
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ABSTRACT 
We present BonnPlace, a new VLSI placement algorithm that combines the advantages of 
analytical and partitioning-based placers. Based on (non-disjoint) placements minimizing the 
total quadratic netlength, we partition the chip area into regions and assign the circuits to them 
(meeting capacity constraints) such that the placement is changed as little as possible. The core 
routine of our placer is a new algorithm for the Transportation Problem that allows to compute 
efficiently the circuit assignments to the regions. We test our algorithm on a set of industrial 
designs with up to 3.6 millions of movable objects and two sets of artificial benchmarks showing 
that it produces excellent results. In terms of wirelength, we can improve the results of leading-
edge placement tools by about 5 %. 
Keywords: VLSI-Placement, Global Placement, Transportation Problem 
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ABSTRACT 
As technology advances into the nanometer territory, the interconnect delay has become a first-
order effect on chip performance. To handle this effect, the X-architecture has been proposed for 
high-performance integrated circuits. The X-architecture presents a new way of orienting a 
chip’s microscopic interconnect wires with the pervasive use of diagonal routes. It can reduce the 
wirelength and via count, and thus improve performance and routability. Furthermore, the 
continuous increase of the problem size of IC routing is also a great challenge to existing routing 
algorithms. In this paper, we present the first multilevel framework for full-chip routing using the 
X-architecture. To take full advantage of the X-architecture, we explore the optimal routing for 
three-terminal nets on the X-architecture and develop a general X-Steiner tree algorithm based 
on the delaunay triangulation approach for the X-architecture. The multilevel routing framework 
adopts a two-stage technique of coarsening followed by uncoarsening, with a trapezoid-shaped 
track assignment embedded between the two stages to assign long, straight diagonal segments for 
wirelength reduction. Compared with the state-of-the-art multilevel routing for the Manhattan 
architecture, experimental results show that our approach reduced wirelength by 18.7% and 
average delay by 8.8% with similar routing completion rates and via counts. 
Keywords: Physical design, routing, multilevel optimization, Xarchitecture 
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ABSTRACT 
The purpose of this paper is to present the required tools for the development, testing and 
verification of DSP software in Matlab. The paper motivates a DSP Simulator concept that can 
be combined with the MATLAB executable interface to develop, evaluate and test DSP software 
within a single environment. Programming guidelines and optimization results are also provided 
to demonstrate the effectiveness of the intrinsics software development approach. 
Keywords: C Intrinsics, Matlab, DSP Software, Optimization, Verification 
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ABSTRACT 
In this paper we discuss an efficient design flow from Matlab® to FPGA. Employing Matlab for 
algorithm research and as system level language allows efficient transition from algorithm 
development to implementation. We show that integrating Matlab with HDL design tools such as 
HDL designer® and Precision-C®, an efficient design flow, suitable for rapid prototyping, can 
be obtained. The design flow accelerates process of algorithm development and simplifies test-
bench formulation and verification process. The overall development time thus can be 
significantly reduced. We elaborate on the advantages and disadvantages of the design flow. It 
will be shown that Matlab based design flow generates functional specifications that are useful 
for RTL development. 
Keywords: System Design Flows, Rapid Prototyping 
 
REFERENCES 
[1] http://www.mathworks.com/products/fixed/ 
[2] http://www.catalyticinc.com/deltafx.html 
[3] Guo, Y., Xu, G., McCain, D and Cavallaro, J. R. Rapid Scheduling of Efficient FPGA Architectures for Next-
Generation HSDPA Wireless System Using Precision C Synthesizer. IEEE International Workshop on Rapid 
Systems Prototyping, pp. 179-185, San Diego, CA, (June 2003). 
[4] 3GPP, Technical Specification, 25.211, v5.5.0, 2003-09. 
[5] Zhang, J. Bhatt, T. and Mandyam, G., Efficient Linear Equalization for High Data Rate Downlink CDMA 
Signaling. 37th IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 141 - 145, vol. 1, Monterey, 
CA, (Nov. 2003). 
[6] http://www.mathworks.com/products/modelsim/ 
 
 



DAC05, page 611 
Should Our Power Approach Be Current? 

 
Chair:  Tim Fox - Deutsche Bank Equity Research 
Panelists: David Heacock - Texas Instruments, Inc., Dallas, TX 

Ed Huijbregts - Magma Design Automation, Inc., Santa Clara, CA 
Vess Johnson - Nascentric, Inc., Austin, TX 
Avner Kornfeld - Intel Corp., Santa Clara, CA 
Andrew Yang - Apache Design Solutions, Inc., Mountain View, CA 
Paul Zuchowski - IBM Corp., Armonk, NY 
 

Abstract 
In the past, power consumption was of little concern to the IC designer. Time-to-market drove 
the design deadlines, and power consumption was a secondary, if not tertiary, concern. If there 
were power issues, they could typically be accounted for by tweaking the fabrication process, 
redesigning after the initial design ship, or even just waiting for the next process change from the 
fab. 
 
Today power has become one of the sign-off qualifiers prior to fabrication, and the metric for 
success has changed from performance and area to power consumption in nanometer SoC 
designs, especially in the huge market for handheld/wireless consumer electronics. Although 
“power” is often the stated concern, current is the real issue. This fundamental paradigm shift 
requires changes to both the design flow and the tools used for electrical sign-off. 
Keywords: Low-power design, power analysis, leakage current, energy consumption, static 
power, dynamic power 
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Abstract  
This paper proposes an approach for pixel transformation of the displayed image to increase the 
potential energy saving of the backlight scaling method. The proposed approach takes advantage 
of human visual system characteristics and tries to minimize distortion between the perceived 
brightness values of the individual pixels in the original image and those of the backlight-scaled 
image. This is in contrast to previous backlight scaling approaches which simply match the 
luminance values of the individual pixels in the original and backlight-scaled images. Moreover, 
the proposed dynamic backlight scaling approach, which is based on tone mapping, is amenable 
to highly efficient hardware realization because it does not need information about the histogram 
of the displayed image. Experimental results show that the dynamic tone mapping for backlight 
scaling method results in about 35% power saving with an effective distortion rate of 5% and 
55% power saving for a 20% distortion rate. 
Keywords: LCDs, Backlight-scaling, Power Management 
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ABSTRACT 
Embedded systems are being built with renewable power sources such as solar cells to replenish 
the energy of batteries. The renewable power sources have a wide range of efficiency levels that 
depend on environment parameters and the current drawn from the circuit. Unlike low-power 
designs whose goal is to minimize energy consumption, systems with renewable power sources 
should maximize the efficiency of the sources by load matching. To match the wide dynamic 
range of solar output, it is necessary to exploit multiple power “knobs” simultaneously. This 
paper combines computation vs. communication trade-offs, algorithm selection, scheduling and 
dynamic voltage scaling to maximize the dynamic range of the load over time. Experimental 
results show one to two orders of magnitude performance improvement for a wireless handheld 
system running image compression applications. 
Keywords: power management, renewable power source, power utilization, load matching, 
architectural optimization 
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ABSTRACT 
Power has become a critical concern for battery-driven computing systems, on which many 
applications that are run are interactive. System-level voltage scaling techniques, such as 
dynamic voltage scaling (DVS) and adaptive body biasing (ABB), have been shown to reduce 
energy consumption effectively. Previous works on DVS and ABB exploit low CPU utilization 
of the processor to drive voltage scaling. This has become inadequate for modern interactive 
applications involving high CPU usage. In this work, we target computer responsiveness during 
voltage scaling to exploit more opportunities for energy reduction. Instead of CPU utilization, we 
use the user-perceived latency, the delay between user input and computer response, to drive 
voltage scaling. Considering the tradeoff between energy consumption and computer 
responsiveness during voltage scaling not only reduces energy consumption effectively, but also 
ensures good computer responsiveness for interactive applications. Experimental results show 
that for the 70nm technology, during the execution of seven commonly-used interactive 
applications, the energy consumption of the processor using userperceived latency driven DVS is 
reduced by an average of 37.3%, and the user-perceived latency by an average of 18.3%, 
compared to CPU utilization driven DVS. If both DVS and ABB are performed simultaneously 
based on the user-perceived latency, then the energy consumption is reduced by another 38.9% 
compared to when DVS is performed alone, while maintaining a similar computer 
responsiveness level. We have implemented user-perceived latency driven voltage scaling under 
Linux with X Window system. However, the methodology is extensible to other operating 
systems as well. 
Keywords: Adaptive body biasing, computer responsiveness, dynamic voltage scaling, power 
consumption 
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ABSTRACT 
Dynamic voltage scaling (DVS) is a well-known low power design technique that reduces the 
processor energy by slowing down the DVS processor and stretching the task execution time. 
But in a DVS system consisting of a DVS processor and multiple devices, slowing down the 
processor increases the device energy consumption and thereby the system-level energy 
consumption. In this paper, we present dynamic task scheduling algorithms for periodic tasks  
that minimize the system-level energy (CPU energy + device standby energy). The algorithms 
use a combination of (i) optimal speed setting, which is the speed that minimizes the system 
energy for a specific task, and (ii) limited preemption which reduces the numbers of possible 
preemptions. For the case when the CPU power and device power are comparable, these 
algorithms achieve up to 43% energy savings compared to [1], but only up to 12% over the non-
DVS scheduling. If the device power is large compared to the CPU power, we show that DVS 
should not be employed. 
Keywords: Dynamic task scheduling, energy minimization, optimal scaling point, DVS system, 
real-time 
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ABSTRACT 
As the design- anufacturing interface becomes increasingly complicated with IC technology 
scaling, the corresponding process variability poses great challenges for nanoscale analog/RF 
design. Design optimization based on the enumeration of process corners has been widely used, 
but can suffer from inefficiency and overdesign. In this paper we propose to formu ate the analog 
and RF design with variability problem as a special type of robust optimization problem, namely 
robust geometric programming. The statistical variations in both the process parameters and 
design variables are captured by a pre-specified confidence ellipsoid. Using such optimization 
with ellipsoidal uncertainty approach, robust design can be obtained with guaranteed yield bound 
and lower design cost, and most importantly, the problem size grows linearly with number of 
uncertain parameters. Numerical examples demonstrate the efficiency and reveal the trade-off 
between the design cost versus the yield requirement. We will also demonstrate significant 
improvement in the design cost using this approach compared with corner-enumeration 
optimization. 
Keywords: Statistical optimization 
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ABSTRACT 
We present a novel method for jointly optimizing FIR filters for pre-equalization, decision 
feedback equalization, and near-end crosstalk cancellation. The unified optimization problem is a 
linear program, and we describe sparse matrix techniques for its efficient solution. We illustrate 
our approach with uni- and bi-directional buses using differential signaling in both intra-board 
and cross-backplane scenarios. 
Keywords: crosstalk, equalizing filters, linear programming, optimal synthesis 
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ABSTRACT 
Layout parasitics have great impact on analog circuit performance. This paper presents an 
algorithm for explicit parasitic control during layout retargeting of analog integrated circuits. In 
order to ensure desired circuit performance, bounds on layout parasitics’ magnitudes are 
determined first. Then, graph techniques are coupled with mathematical programming to 
constrain layout geometry based on these parasitic bounds. The algorithm has been demonstrated 
to ensure desired circuit performance during technology migration and performance specification 
changes. 
Keywords: Analog Layout Automation, Parasitics, Sensitivity, Optimization 
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ABSTRACT 
The efficient optimization of integrated spiral inductors remains a fundamental barrier to the 
realization of effiective analog and mixed-signal design automation. In this paper, we develop a 
scalable multi-level optimization methodology for spiral inductors that integrates the exibility of 
constrained global optimization using Mesh-Adaptive Direct Search (MADS) algorithms with 
the rapid convergence of local nonlinear convex optimization techniques. Experimental results 
indicate that our methodology locates optimal spiral inductor geometries with significantly fewer 
function evaluations than current techniques. 
Keywords: Spiral Inductor, Inductor Optimization, Analog Synthesis 
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Abstract 
With an increasing trend in the variation of the primary parameters affecting circuit performance, 
the need for statistical static timing analysis (SSTA) has been firmly established in the last few 
years. While it is generally accepted that a timing analysis tool should handle parameter 
variations, the benefits of advanced SSTA algorithms are still questioned by the designer 
community because of their significant impact on complexity of STA flows. In this paper, we 
present convincing evidence that a path-based SSTA approach implemented as a post-processing 
step captures the effect of parameter variations on circuit performance fairly accurately. On a 
microprocessor block implemented in 90nm technology, the error in estimating the standard 
deviation of the timing margin at the inputs of sequential elements is at most 0.066 FO4 delays, 
which translates in to only 0.31% of worst case path delay. 
Keywords: Statistical Static Timing Analysis (SSTA), Process Variations 
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ABSTRACT 
A physical yet compact gate delay model is developed integrating short-channel effects and the 
Alpha-power law based timing model. This analytical approach accurately predicts both nominal 
delay and delay variability over a wide range of bias conditions, including sub-threshold. 
Excellent model scalability enables efficient mapping between process variations and delay 
variability at the circuit level. Based on this model, relative importance of physical effects on 
delay variability has been identified. While effective channel length variation is the leading 
source for variability at current 90nm node, performance variability is actually more sensitive to 
threshold variation at the sub-threshold region. Furthermore, this model is applied to investigate 
the limitation of low power design techniques in the presence of process variations, particularly 
dual Vth and L biasing. Due to excessive variability under low VDD, these techniques become 
ineffective. 
Keywords: Process Variations, Delay, Variability 
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ABSTRACT 
On-chip supply networks are playing an increasingly important role for modern nanometer-scale 
designs. However, the ever growing sizes of power grids make the analysis problem extremely 
difficult thereby introducing severe challenges in design and optimization. The inherent analysis 
complexity calls for innovations in simulation techniques that must provide appropriate 
accuracy, efficiency as well as the tradeoff thereof to aid design verification and optimization. In 
this paper, we first present a sampling-based sensitivity analysis by employing the notation of 
importance sampling in a Monte Carlo based circuit simulation framework. This technique 
allows the extraction of multiparameter sensitivities for the node voltages of interest in the same 
Monte Carlo runs that are used for computing the nominal voltage values. For more efficient 
nonstructured whole-grid solution approaches, we further introduce a new direct solution method 
by embedding symbolic relaxation steps in a hierarchical fashion. As a direct method, the 
proposed hierarchical symbolic relaxation is suitable to both dc and transient analyses. Circuit 
examples are included to demonstrate the efficacy of the proposed techniques. 
Keywords: Power grids, sensitivity and hierarchical analysis 
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ABSTRACT 
In this paper, I describe a methodology and tool flow for using formal verification effectively to 
reduce the verification burden in large custom ASIC designs. 
Keywords: Formal verification 
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ABSTRACT 
This paper presents an efficient hardware architecture of an on-chip logic minimization 
coprocessor. The proposed architecture employs TCAM cells to provide fastest and memory 
efficient implementation suitable for emerging on-chip minimization applications. The paper 
presents a detailed design of the on-chip minimizer and shows that it requires very little 
hardware resources to achieve acceptable quality of minimization. An incremental insertion and 
bulk deletion is achieved in 0.25 μs and 3.8 ms respectively and a compaction of 100000 entries 
in 25 ms using just 300 TCAM entries. 
Keywords: TCAM, Logic Minimization,On-Chip 
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ABSTRACT 
We propose a system architecture for real-time hardware speech recognition on low-cost, power-
constrained devices. The system is intended to support real-time speech-based user interfaces as 
part of an effort to bring Information and Communication Technologies (ICTs) to 
underdeveloped regions of the world. Our system architecture exploits a shared infrastructure 
model. The computationally intensive task of speech model training and retraining is performed 
offine by shared servers, while the actual recognition of speech is conducted on low-cost hand-
held devices using custom hardware. The recognizer is extremely exible and can support 
multiple languages or dialects with speaker-independent recognition.Dynamic loading of speech 
models is used for changing language grammar and retraining, while reprogramming is used to 
support evolution of recognition algorithms. The focus on small sets of words (at one time) 
reduces the complexity, cost and power consumption. We design the speech decoder, the central 
component of the recognizer, and we validate it via a prototype FPGA implementation. We then 
use ASIC synthesis to estimate power and size for the design. Our evaluations demonstrate an 
order of magnitude improvement in power compared with optimized recognition software 
running on a low-power embedded general-purpose processor of the same technology and of 
similar capabilities. The synthesis also estimates the area of the design to be about 2.5mm2, 
showing potential for lower cost. In designing and testing our recognizer we use datasets in both 
English and Tamil languages. 
Keywords: Speech recognition, low power, ASIC, tamil, TIER 
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ABSTRACT 
Dual-execution/checkpointing based transient error tolerance techniques have been widely used 
in the high-end mission critical systems. These techniques, however, are not very attractive for 
cost-sensitive embedded systems because they require extra resources (e.g., large memory, 
special hardware, etc), and thus increase overall cost of the system. In this paper, we propose a 
transient error tolerant Java Virtual Machine (JVM) implementation for embedded systems. Our 
JVM uses dual-execution and checkpointing to detect and recover from transient errors. 
However, our technique does not require any special hardware support (except for the memory 
page protection mechanism, which is commonly available in modern embedded processors), and 
the memory space overhead it incurs is not excessive. Therefore, it is suitable for memory-
constrained embedded systems. We implemented our approach and performed experiments with 
seven embedded Java applications. 
Keywords: Java Virtual Machine, dual execution, transient error 
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ABSTRACT 
Multiprocessor embedded systems often have processor-local caches and a shared memory. If 
the system’s code is available at design time we can maximize cache hits by rearranging code in 
memory so that frequently executed tasks reside in reserved areas of the caches and are not 
overwritten by less frequent tasks. 
Keywords: Embedded Systems, Multiprocessors, Caching, Memory, Code Placement, Frequent 
Code 
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ABSTRACT 
In this work, we propose a new paradigm called power emulation, which exploits hardware 
acceleration to drastically speedup power estimation. Power emulation is based on the 
observation that most power estimation tools typically perform the following sequence of 
operations: simulating the circuit to obtain value traces or statistics for the inputs of its 
constituent components, evaluating power models for each circuit component based on the input 
values seen during simulation, and aggregating the power consumption of individual components 
to compute the circuit's power consumption. We further recognize that the steps involved in 
power estimation (power model evaluation, aggregation) can themselves be thought of as 
synthesizable functions and implemented as hardware circuits. Thus, any given design can be 
enhanced by adding to it .power estimation hardware., and the resulting power model enhanced 
circuit can be mapped onto a hardware prototyping platform. While drastic speedups in power 
estimation (orders of magnitude) are possible using this approach, a significant challenge arises 
due to the increase in circuit size as a result of adding power estimation hardware. We propose a 
systematic methodology to reduce the size of the power model enhanced circuit through a suite 
of techniques, including power model reuse across different circuit components, regulating the 
granularity of components for power modeling, exploiting inter-component power correlations, 
resource sharing for power model computations, and the use of block memories for efficient 
storage within power models. We demonstrate the benefits of the proposed power emulation 
paradigm by applying it to register-transfer level (RTL) power estimation for industrial designs, 
resulting in speedups from around 10X to over 500X compared to state-of-the-art commercial 
power estimation tools. 
Keywords: Power Estimation, Emulation, Design, Design Methodologies, Macromodels, FPGA, 
Hardware Acceleration, Register-Transfer Level, Simulation 
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Abstract 
Configurable processors enable dramatic gains in energy efficiency, relative to traditional fixed 
instruction-set processors. This energy advantage comes from three improvements. First, 
configuration of the instruction set permits a much closer fit of the processor to the target 
applications, reducing the number of execution cycles required. Second, configuring the 
processor removes unneeded features, reducing power and area overhead. Third, automatic 
processor generation tools enable logic optimization, signal switching reductions, and seamless 
mapping into low-voltage circuits and processes, for very low-power operation. The first 
improvement has been well-studied. Analysis of the second and third improvements requires 
detailed circuit and layout experiments, which is the primary focus of this paper.  
 
Starting from a range of existing available power saving options, this work explores the tradeoff 
and analyzes the results: the design priority tradeoff, the process technology impact, and 
implementing low-power configurable processor using commercial scaled-VDD cell libraries 
compatible with mainstream SOC practices. These real processor designs can achieve power 
dissipation approaching 20μW/MHz at 0.8V and close to 10μW/MHz at 0.6V, using production 
0.13um libraries. Finally, this work quantifies the dramatic process, voltage and temperature 
dependence in post-layout leakage power for small processor designs. 
Keywords: Configurable embedded processor, SOC (system on chip), PVT (process, voltage, 
temperature), Low-power, Leakage Power, Dynamic Power, Dynamic power efficiency, Scaled 
VDD 
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ABSTRACT 
Network processors (NPs) have emerged as successful platforms to providing both high 
performance and flexibility in building powerful routers. Typical NPs incorporate 
multiprocessing and multi-threading to achieve maximum parallel processing capabilities. We 
observed that under low incoming traffic rates, most processing elements (PEs) in NPs are nearly 
idle and yet still consume dynamic power. This paper develops a low power technique to reduce 
the activities of PEs according to the varying traffic volume. We propose to monitor the average 
number of idle threads in a time window, and gate off the clock network of unused PEs when a 
subset of PEs is enough to handle the network traffic. We show that our technique brings 
significant reduction in power consumption (up to 30%) of NPs with no packet loss and little 
impact to the overall throughput. 
Keywords: Network Processors, Low Power 
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ABSTRACT 
Due to their extreme low power consumption, sub-threshold design approaches are appealing for 
a widening class of applications which demand low power consumption and can tolerate larger 
circuit delays. However, sub-threshold circuits are extremely sensitive to variations in supply, 
temperature and processing factors. In this paper, we present a sub-threshold design 
methodology which dynamically self-adjusts for inter and intra-die process, supply voltage and 
temperature (PVT) variations. This adjustment is achieved by performing bulk voltage 
adjustments in a closed-loop fashion, using a charge pump and a phase-detector. 
Keywords: Sub-threshold, Body-biasing, Self-adjusting, Variation-tolerant 
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ABSTRACT 
To reduce power, Vdd programmability has been proposed recently to select Vdd-level for 
interconnects and to powergate unused interconnects. However, Vdd-level converters used in the 
Vdd-programmable method consume a large amount of leakage. In this paper, we develop chip-
level dual-Vdd assignment algorithms to guarantee that no low-Vdd interconnect switch drives 
high-Vdd interconnect switches. This removes the need of Vdd-level converters and reduces 
interconnect leakage and interconnect device area by 91.78% and 25.48%, respectively. The 
assignment algorithms include power sensitivity based heuristics with implicit time slack 
allocation and a linear programming (LP) based method with explicit time slack allocation. Both 
first allocate time slack to interconnects with higher transition density and assign low-Vdd to 
them for more power reduction. Compared to the aforementioned Vdd-programmable method 
using Vdd-level converters, the LP based algorithm reduces interconnect power by 65.13% 
without performance loss for the MCNC benchmark circuits. Compared to the LP based 
algorithm, the sensitivity based heuristics can obtain slightly smaller power reduction but run 4X 
faster. 
Keywords: FPGA, low power, time slack, programmable-Vdd 
 
REFERENCES 
[1] K. Poon, A. Yan, and S. Wilton, “A flexible power model for FPGAs,” in Proc. of 12th International conference 
on Field-Programmable Logic and Applications, Sep 2002. 
[2] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for power-efficient FPGAs,” in Proc. ACM Intl. 
Symp. Field-Programmable Gate Arrays, Feb 2003. 
[3] J. H. Anderson, F. N. Najm, and T. Tuan, “Active leakage power optimization for FPGAs,” in Proc. ACM Intl. 
Symp. Field-Programmable Gate Arrays, Februray 2004. 
[4] J. Lamoureux and S. J. Wilton, “On the interaction between power-aware FPGA CAD algorithms,” in Proc. Intl. 
Conf. Computer-Aided Design, pp. 701–708, November 2003. 
[5] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan, “Reducing leakage energy in 
FPGAs using region-constrained placement,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays, February 
2004. 
[6] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined dual-vdd/dual-vt fabrics,” in Proc. ACM 
Intl. Symp. Field-Programmable Gate Arrays, Februray 2004. 
[7] F. Li, Y. Lin, and L. He, “FPGA power reduction using configurable dual-vdd,” in Proc. Design Automation 
Conf., June 2004. 
[8] Fei Li and Yan Lin and Lei He, “Vdd programmability to reduce FPGA interconnect power,” in Proc. Intl. Conf. 
Computer-Aided Design, November 2004. 
[9] Jason H. Anderson and Farid N. Najm, “Low-power programmable routing circuitry for FPGAs,” in Proc. Intl. 
Conf. Computer-Aided Design, November 2004. 
[10] Y. Lin, F. Li, and L. He, “Power modeling and architecture evaluation for FPGA with novel circuits for vdd 
programmability,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays, Februray 2005. 
[11] Y. Lin and L. He, “Leakage efficient chip-level dual-vdd assignment with time slack allocation for FPGA 
power reduction,” Tech. Rep. 05-257, UCLA Engr., available at http://eda.ee.ucla.edu 
[12] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic 
Publishers, Feb 1999. 
[13] M Berkelaar, lp-solver 3.2: a public domain (MI)LP solver. ftp://ftp.ics.ele.tue.nl/pub/lp solve/. 



DAC05, pages726-731 
Logic Block Clustering of Large Designs for Channel-Width Constrained FPGAs 

 
Marvin Tom, Guy Lemieux 

Dept of ECE, University of British Columbia, Vancouver, BC, Canada 
 
ABSTRACT 
In this paper we present a system level technique for mapping large, multiple-IP-block designs to 
channel-width constrained FPGAs. Most FPGA clustering tools [2, 3, 11] aim to reduce the 
amount of inter-cluster connections, hence reducing channel width needs. However, if this 
exceeds the FPGA's channel width (a hard constraint), then the circuit still cannot be routed. 
Previous work [11, 12] depopulates logic clusters (CLBs) to reduce channel width. By 
depopulating non-uniformly, i.e. depopulate more in hard-to-route regions, we show a graceful 
trade-off between channel width and CLB count. This makes it possible to target specific 
channel-width constraints during clustering with minimal CLB inflation. Results show channel 
width decreases of up to 20% with a 5% increase in area. Further decreases of nearly 50% are 
possible at 3.3 times the original area. Despite the area increase, this technique creates routable 
solutions from otherwise-unroutable circuits. 
Keywords: Field-Programmable Gate Arrays (FPGA), Clustering, Packing, Channel Width 
Constraints 
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ABSTRACT 
In this paper we present the impact of dynamically translating any sequence of instructions into 
combinational logic. The proposed approach combines a reconfigurable architecture with a 
binary translation mechanism, being totally transparent for the software designer. Besides 
ensuring software compatibility, the technique allows porting the same code for different 
machines tracking technological evolutions. The target processor is a Java machine able to 
execute Java bytecodes. Experimental results show that even code without any available 
parallelism can benefit from the proposed approach. Algorithms used in the embedded systems 
domain were accelerated 4.6 times in the mean, while spending 10.89 times less energy in the 
average. We present results regarding the impact of area and power, and compare the proposed 
approach with other Java machines, including a VLIW one. 
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ABSTRACT 
Model checking of safety properties has taken a significant lead over non-safety properties in 
recent years. To bridge the gap, we propose dedicated SAT-based model checking algorithms for 
properties beyond safety. Previous bounded model checking (BMC) approaches have relied on 
either converting such properties to safety checking, or finding proofs by deriving termination 
criteria using loop-free path analysis. Instead, our approach uses a customized SAT-based 
formulation for bounded model checking of non-safety properties, and determines the 
completeness bounds for liveness using unbounded SAT-based analysis. Our main contributions 
are: 1) Customized property translations for LTL formulas for BMC, with novel features that 
utilize partitioning, learning, and incremental formulation. Customized translations not only 
improve the BMC performance significantly in comparison to standard monolithic LTL 
translations, but also allow efficient derivation and use of completeness bounds. Though we 
discuss the translation schemas for liveness, they can be easily extended to handle other LTL 
properties as well. 2) Customized formulations for determining completeness bounds for liveness 
using SAT-based unbounded model checking (UMC) rather than using loop-free path analysis. 
These formulations comprise greatest fixed-point and least fixed-point computations to 
efficiently handle nested properties using SAT-based quantification approaches. We show the 
effectiveness of our overall approach for checking liveness on public benchmarks and several 
industry designs. 
Keywords: Formal verification, bounded model checking, unbounded model checking, LTL, 
liveness, SAT, circuit cofactoring 
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ABSTRACT 
SAT (Boolean satisfiability) has become the primary Boolean reasoning engine for many EDA 
applications, so the efficiency of SAT solving is of great practical importance. Recently, 
Goldberg et al. introduced supercubing, a different approach to search-space pruning, based on a 
theory that unifies many existing methods. Their implementation reduced the number of 
decisions, but no speedup was obtained. In this paper, we generalize beyond supercubes, creating 
a theory we call B-cubing, and show how to implement B-cubing in a practical solver. On 
extensive benchmark runs, using both real problems and synthetic benchmarks, the new 
technique is competitive on average with the newest version of ZChaff, is much faster in some 
cases, and is more robust. Categories and Subject Descriptors 
Keywords: SAT, formal verification, learning, search space pruning 
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Abstract 
Finding all satisfying assignments of a propositional formula has many applications in the design 
of hardware and software. An approach to this problem augments a clause-recording 
propositional satisfiability solver with the ability to add blocking clauses, which prevent the 
solver from visiting the same solution more than once. One generates a blocking clause from a 
satisfying assignment by taking its complement. In this paper, we present an improved algorithm 
for finding all satisfying assignments for a generic Boolean circuit. An optimization based on 
lifting—which generates minimal satisfying assignments—yields prime blocking clauses. 
Thanks to the primality of the blocking clauses, the derived conflict clauses usually prune both 
satisfiable and unsatisfiable points at once. The efficiency of our new algorithm is demonstrated 
by our preliminary results on SAT-based unbounded model checking. 
Keywords: SAT, CNF, AllSAT, minimal satisfying assignment 
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ABSTRACT 
We propose a new dynamic method of abstraction, which can be applied during successive steps 
of the model checking algorithm to further reduce the model produced by traditional static 
abstraction methods. This is facilitated by information gathered from an analysis of the proof of 
unsatisfiability of SAT-based bounded model checking problems formulated on the original 
design. The dynamic abstraction effectively allows the model checker to work with smaller 
abstract models. Experiments on several industrial benchmarks demonstrate that dynamic 
abstraction can significantly improve both the performance and the capacity of typical 
abstraction refinement flows. 
Keywords: Abstraction Refinement, Model Checking, SAT 
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Abstract 
Historically, Back End of Line (BEOL) or interconnect resistance and capacitance have been 
viewed as parasitic components. They have now become key parameters with significant impact 
on circuit performance and signal integrity. This paper examines the types of BEOL variations 
and their impact on RC extraction. The importance of modeling systematic effects in RC 
extraction is discussed. The need for minimizing the computational error in RC extraction before 
incorporating random process variations is emphasized. 
Keywords: Process variation, Interconnect, Extraction 
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ABSTRACT 
Die-to-die and within-die variations impact the frequency and power of fabricated dies, affecting 
functionality, performance, and revenue. Variation-tolerant circuits and post-silicon tuning 
techniques are important for minimizing the impacts of these variations. This paper describes 
several circuit techniques that can be employed to ensure efficient circuit operation in the 
presence of ever-increasing variations. 
Keywords: Parameter variation, high-performance design, body bias 
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ABSTRACT 
Traditional corner analysis fails to guarantee a target yield for a given performance metric. 
However, recently proposed solutions, in the form of statistical timing analysis, which work by 
propagating delay distributions, do not conform to modern design methodology. Instead, new 
statistical techniques are needed to modify corner analysis in ways that overcome its weaknesses 
without violating usage models of timing tools in modern flows. 
Keywords: Variability, Statistical timing analysis 
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ABSTRACT 
Process variability greatly affects power and timing of nanometer scale CMOS circuits, leading 
to parametric yield loss due to both timing and power constraint violations. This parametric yield 
loss will continue to worsen in future technologies as a result of increasing process variations [1] 
and the increased importance of leakage power. Hence, statistical techniques are required to 
maximize parametric yield under given power and frequency constraints. Recently, much 
progress has been reported in the area of statistical modeling of leakage power [6] and circuit 
timing [2-5]. These techniques are useful in analyzing the impact of process variations on 
performance and power in nanometer CMOS designs. In this extended abstract, we outline the 
need for statistical optimization methods. 
Keywords: Yield, Variability, Design Flows 
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ABSTRACT 
A fabless company perspective is presented on the roles of the foundries, design entities and 
EDA providers in the DFM arena, and the requirements for measurement of the economic 
benefits of DFM 
Keywords: DFM, Design for Manufacturability, Foundries, Fabless 
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ABSTRACT 
Modern microprocessors share several common types of microarchitectural building blocks. The 
rising complexity of the microarchitecture increases the risk of bugs and the difficulty of 
achieving comprehensive verification. We propose a methodology to exploit the commonality in 
the different microprocessors to create a design-independent micro-architectural test plan. Our 
method allows the testing of the huge micro-architectural test space by using systematic 
partitioning, which offers a high level of comprehensiveness of the tested behaviors. We show 
how this method was used to find bugs during verification of an actual high-end microprocessor. 
Our results show the advantages of this approach over the more traditional test methods that use 
design specific test plans or that use tools with little micro-architectural knowledge for covering 
micro-architectural aspects of the design. 
Keywords: Micro-architecture, Coverage, Generic Test Plan, Dynamic Verification, Test 
Generation 
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ABSTRACT 
We describe IODINE, a tool to automatically extract likely design properties using dynamic 
analysis. A practical bottleneck in the formal verification of hardware designs is the need to 
manually specify design-specific properties. IODINE presents a way to automatically extract 
properties such as state machine protocols, request-acknowledge pairs, and mutual exclusion 
between signals from design simulations. We show that dynamic invariant detection for 
hardware designs can infer relevant and accurate properties. 
Keywords: Dynamic Invariants, Dynamic Analysis, Formal Specification 
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ABSTRACT 
Parallelism in processor architecture and design imposes a verification challenge as the 
exponential growth in the number of execution combinations becomes unwieldy. In this paper 
we report on the verification of a Very Large Instruction Word processor. The verification team 
used a sophisticated test program generator that modeled the parallel aspects as sequential 
constraints, and augmented the tool with manually written test templates. The system created 
large numbers of legal stimuli, however the quality of the tests was proved insufficient by several 
post silicon bugs. We analyze this experience and suggest an alternative, parallel generation 
technique. We show through experiments the feasibility of the new technique and its superior 
quality along several dimensions. We claim that the results apply to other parallel architectures 
and verification environments. 
Keywords: Functional verification, Processor verification, Test generation, VLIW, Parallelism 
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ABSTRACT 
The challenge of verifying a modern microprocessor design is an overwhelming one: 
Increasingly complex micro-architectures combined with heavy time-to-market pressure have 
forced microprocessor vendors to employ immense verification teams in the hope of finding the 
most critical bugs in a timely manner. Unfortunately, too often size doesn’t seem to matter for 
verification teams, as design schedules continue to slip and microprocessors find their way to the 
marketplace with design errors. In this paper, we describe a simulation-based random test 
generation tool, called StressTest, that provides assistance in locating hard-to-find corner-case 
design bugs and performance problems. StressTest is based on a Markov-model-driven random 
instruction generator with activity monitors. The model is generated from the user-specified 
template programs and is used to generate the instructions sent to the design under test (DUT). In 
addition, the user specifies key activity points within the design that should be stressed and 
monitored throughout the simulation. The StressTest engine then uses closed-loop feedback 
techniques to transform the Markov model into one that effectively stresses the points of interest. 
In parallel, StressTest monitors the correctness of the DUT response to the supplied stimuli, and 
if the design behaves unexpectedly, a bug and a trace that leads to it are reported. Using two 
micro-architectures as example testbeds, we demonstrate that StressTest finds more bugs with 
less effort than open-loop random instruction test generation techniques. 
Keywords: Architectural simulation, High-performance simulation, Directed-random simulation 
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ABSTRACT 
This paper describes a novel technique called Embedded Test-bench Control (ETC), extensively 
used in the verification of Tensilica’s latest configurable processor. Conventional simulation-
based verification methodologies that employ assembly programs for testing cannot easily link 
the diagnostic program to the test-bench for interactive control, consequently resulting in weaker 
coverage. ETC links the diagnostic program execution and the test-bench functions, thereby 
increasing the flexibility and power of the diagnostics to create more complex corner cases in 
fewer simulation cycles and with smaller code size. This method also enables dynamic self-
checking and dynamic coverage analysis by either passing or failing the diagnostic based on the 
coverage goal, or terminating runaway random diagnostics much earlier. The presented 
simulation results show that ETC augments verification in two major areas: the creation of more 
maintainable, efficient, and smart diagnostics, and the reduction of the regression time. Some of 
the techniques presented in this paper can apply to non-processor verification methodologies as 
well. 
Keywords: Functional Verification, Configurable Processors, Embedded Test-bench Control, 
Diagnostics, Coverage 
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ABSTRACT 
Lowering power is one of the greatest challenges facing the IC industry today. We present a 
power-aware placement method that simultaneously performs (1) activity-based register 
clustering that reduces clock power by placing registers in the same leaf cluster of the clock trees 
in a smaller area and (2) activity-based net weighting that reduces net switching power by 
assigning a combination of activity and timing weights to the nets with higher switching rates or 
more critical timing. The method applies to designs with multiple clocks and gated clocks. We 
implemented the method and obtained experimental results on 8 real-world designs after 
placement, routing, extraction and analysis. The power-aware placement method achieved on 
average 25.3% and 11.4% reduction in net switching power and total power respectively, with 
2.0% timing, 1.2% cell area and 11.5% runtime impact. This method has been incorporated into 
a commercial physical design tool. 
Keywords: Net Switching Power, Clock Tree, Dynamic Power 
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ABSTRACT 
This paper presents a novel placement algorithm for timing optimization based on a new and 
powerful concept, which we term differential timing analysis. Recognizing that accurate 
optimization requires timing information from a signoff static timing analyzer, we propose an 
incremental placement algorithm that uses timing information from a signoff static timing 
engine. We propose a set of differential timing analysis equations that accurately capture the 
effect of placement perturbations on changes in timing from the signoff timer. We have 
formulated an incremental placement optimization problem based on differential timing analysis 
as a single linear programming (LP) problem which is solved to generate the new timing-
optimized placement. 
 
Our experiments show that the worst negative slack (WNS) improves by an average of 30% and 
the total negative slack (TNS) improves by 33% on average for a set of circuits from a 3.0 GHz 
microprocessor that were already synthesized and placed by a leading industrial physical 
synthesis tool. We also show that multiple iterations of our engine give further TNS 
improvements – an average improvement of 51%, which implies that our placer will significantly 
speed up timing convergence. 
Keywords: Timing-driven placement, static timing analysis, linear programming, differential 
timing analysis 
 
REFERENCES 
[1] W. C. Elmore, “The transient response of Damped Linear network with particular regard to wideband amplifier”, 
Journal of Applied Physics, pp.55-63, 1948. 
[2] ILOG, ILOG CPLEX 8.0 User’s Manual. ILOG, 2002. 
[3] B. Halpin, C. Y. R. Chen, N. Sehgal, “Timing driven placement using physical net constraints”, Proc. Design 
Automation Conf., pp. 780-783, 2001. 
[4] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, B. Halpin, “Force directed timing driven 
placement with physical net constraints”, Proc. Intl Symp. on Physical Design, pp. 147-152, 2003. 
[5] A.H. Ajami, M. Pedram, “Post-layout timing driven cell placement using an accurate net length model”, Proc. 
Design Automation Conf., pp. 595-600, 2001. 
[6] A. B. Kahng, S. Mantik, I. L. Markov, “Min-max placement for large-scale timing optimization'', Proc. Intl. 
Symp. of Physical Design, pp. 143-148, 2002. 
[7] W.Choi, K.Bazargan, “Incremental Placement for Timing Optimization”, Proc. Intl Conf. on CAD, 2003. 
[8] C.-C. Chang, J.Cong, M. Xie, “Optimality and scalability study of existing placement algorithms”, Proc. of the 
ASPDAC, Jan. 2003. 
 
 



DAC05, pages 807-812 
Efficient and Accurate Gate Sizing with Piecewise Convex Delay Models 

 
Hiran Tennakoon and Carl Sechen 

Department of Electrical Engineering, University of Washington, Seattle WA 
 
ABSTRACT 
We present an efficient and accurate gate sizing tool that employs a novel piecewise convex 
delay model, handling both rise and fall delays, for static CMOS gates. The delay model is used 
in a new version of a gate-sizing tool called Forge, which not only exhibits optimality, but also 
efficiently produces the area versus delay trade-off curve for a block in one step. Forge includes 
a realistic delay propagation scheme that combines arrival times and slew-rates. Forge is 6.4X 
faster than a commercial transistor sizing tool, while achieving better delay targets and uses 28% 
less transistor area for specific delay targets, on average. 
Keywords: Delay modeling, gate sizing, Lagrangian relaxation, piecewise convex, optimization 
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ABSTRACT 
This paper presents a novel repeater insertion algorithm for the power minimization of realistic 
interconnect trees under given timing budgets. Our algorithm judiciously combines a local 
optimizer based on the dynamic programming technique and a global search engine using the 
ellipsoid method. As a result, our approach is capable of producing high-quality solutions at a 
very fast speed. Furthermore, our scheme is robust and does not need any manual tuning of the 
iteration-control parameters. We have developed a repeater insertion tool, called FREEZE, using 
the proposed algorithm and applied it to various interconnect trees with different timing targets. 
Experimental results demonstrate the high effectiveness of our approach. In comparison with the 
state-of-the-art low-power repeater insertion schemes, FREEZE requires 5.8 times fewer 
iterations on the average, achieving up to 27 times speedup with even better power savings. 
When compared with a dynamic programming based scheme, which guarantees the optimal 
solution, our tool delivers up to 50 times speedup with 0.9% power increase on the average. 
Keywords: Interconnect, Repeater Insertion, Low Power 
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ABSTRACT 
Signal processing and multimedia applications are often implemented on resource constrained 
embedded systems. It is therefore important to find implementations that use as little resources as 
possible. These applications are frequently specified as synchronous dataow graphs. 
Communication between actors of these graphs requires storage capacity. In this paper, we 
present an exact method to determine the minimum storage capacity required to execute the 
graph using model-checking techniques. This can be done for different measures of storage 
capacity. The problem is known to be NP-complete and because of this, existing buffer 
minimisation techniques are heuristics and hence not exact. Modern model-checking tools are 
quite efficient and they have been successfully applied to scheduling-related problems. We study 
the feasibility of this approach with examples.  
Keywords: Synchronous Dataow, buffering, model-checking, optimization 
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ABSTRACT 
Microfluidic biochips promise to revolutionize biosensing and clinical diagnostics. As more 
bioassays are executed concurrently on a biochip, system integration and design complexity are 
expected to increase dramatically. This problem is also identified by the 2003 ITRS document as 
a major system-level design challenge beyond 2009. We focus here on the automated design of 
droplet-based microfluidic biochips. We present a synthesis methodology that unifies operation 
scheduling, resource binding, and module placement for such “digital” biochips. The proposed 
technique, which is based on parallel recombinative simulated annealing, can also be used after 
fabrication to bypass defective cells in the microfluidic array. A real-life protein assay is used to 
evaluate the synthesis methodology. 
Keywords: Synthesis, placement, defect tolerance, microfluidics, biochip 
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ABSTRACT 
Pointer analysis, a classic problem in software program analysis, has emerged as an important 
problem to solve in design automation, at a time when complex designs, specified in the form of 
C code, need to be synthesized or verified. However, precise pointer analysis algorithms that are 
both context and flow sensitive (FSCS), have not been shown to scale. In this paper, we report a 
new solution for FSCS analysis, which can evaluate the program states of all program points 
under billions of different calling paths. Our solution extends the recently proposed symbolic 
pointer analysis (SPA) technology, which exploits the efficiency of Binary Decision Diagrams 
(BDDs). With our new strategy of problem solving, called superposed symbolic computation, 
and its application on our generic pointer analysis framework, we are able to report the first 
result on all SPEC2000 benchmarks that completes context sensitive, flow insensitive analysis in 
seconds, and context sensitive, flow sensitive analysis in minutes. 
Keywords: Pointer analysis, binary decision diagrams, High-level synthesis 
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ABSTRACT 
MiniBit, our automated approach for optimizing bit-widths of fixed-point designs is based on 
static analysis via affine arithmetic. We describe methods to minimize both the integer and 
fraction parts of fixed-point signals with the aim of minimizing circuit area. Our range analysis 
technique identifies the number of integer bits required. For precision analysis, we employ a 
semi-analytical approach with analytical error models in conjunction with adaptive simulated 
annealing to find the optimum number of fraction bits. Improvements for a given design reduce 
area and latency by up to 20% and 12% respectively, over optimum uniform fraction bit-widths 
on a Xilinx Virtex-4 FPGA. 
Keywords: Affine Arithmetic, Bit-Width, Fixed-Point, FPGA, Simulated Annealing 
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ABSTRACT 
It has been widely recognized that the dynamic range information of an application can be 
exploited to reduce the datapath bitwidth of either processors or ASICs, and therefore the overall 
circuit area, delay, and power consumption. Recent advances in analytical dynamic range 
estimation methods indicate that by systematically decomposing the system inputs into 
orthonormal random variables using a mathematical procedure called polynomial chaos 
expansion (PCE), output statistics of interest can be obtained for both linear and nonlinear 
systems. Despite its power for capturing both spatial and temporal correlation, the application of 
this method has been limited only to near-Gaussian inputs. In this paper, we propose the first 
algorithm with the capacity of handling both near-Gaussian and non-Gaussian input signals. Our 
method is based on the use of independent component analysis (ICA). Our experiments show 
that the new algorithm can reduce the original relative errors of 2nd order moments from 25% − 
65% to 1% − 2%. 
Keywords: Dynamic range estimation, Non-Gaussian, Nonlinear, Independent component 
analysis, Non-parametric 
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ABSTRACT 
In this paper we propose a test compaction method for path delay faults in a logic circuit. The 
method generates a compact set of two-pattern tests for faults on long paths selected with a 
criterion. While the proposed method generates each two-pattern test for more than one fault in 
the target fault list as well as ordinary test compaction methods, secondary target faults are 
selected from the fault list such that many other faults, which may not be included in the fault 
list, are detected by the test pattern. Even if faults on long paths in a manufactured circuit are not 
included in the fault list due to a process variation or noise, the compact test set would detect the 
longer untargeted faults, i.e., the test set has a noise or variation tolerant nature. Experimental 
results show that the proposed method can generate a compact test set and it detects longer 
untargeted path delay faults efficiently. 
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Abstract 
A design for test (DFT) hardware is proposed to increase the controllability of a thermometer 
coded current steering digital to analog converter. A procedure is introduced to reduce the 
diagnosis and structural test time from quadratic to linear using the proposed DFT hardware. To 
evaluate the applicability of the proposed technique, principal component analysis is used to 
create virtual process variations to simulate in lieu of semiconductor fabrication data. An 
architecture specific soft fault model is suggested for the diagnosis problem. Random errors 
according to the fault model are introduced in the virtual test environment on top of the process 
variations and it is shown that diagnosis of a fault is possible with high accuracy with the 
proposed method. The same technique employing principal component analysis is furthermore 
used to provide process variation-aware reference test comparison values for a structural test of 
the DAC. The structural test provides a mechanism to test for even unmodeled manufacturing 
faults. The process variation-aware test values help detect defects even under process variations. 
The proposed DFT hardware and method are low cost and quite suitable for a built-in self 
diagnosis and test implementation. 
Keywords: DFT, BIST, CS-DAC, current steering, test, process variation-aware test, diagnosis 
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ABSTRACT 
Resistive-open defects appear more and more frequently in VDSM technologies. In this paper we 
present a study concerning resistive-open defects in the core-cell of SRAM memories. The first 
target of this work is a comparison of the effect produced by resistive-open defects in the 0.13 
μm and 90 nm core-cell. We show that the 90 nm core-cell is more robust than the 0.13 μm core-
cell in presence of resistive-open defects. On the other hand we show that dynamic faults are 
most likely to occur in the 90 nm than in 0.13 μm core-cell. Finally we propose a unique March 
test solution that ensures the complete coverage of all the extracted fault models for both 
technologies. 
Keywords SRAM Memories, Core-cell, Dynamic Faults, March Test 
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ABSTRACT1 
This paper presents a transient faults sensitivity evaluation for Quasi Delay Insensitive (QDI) 
asynchronous circuits. Because of their specific architecture, asynchronous circuits have a very 
different behavior than synchronous circuits in the presence of faults. We address the effects of 
transient faults in QDI circuits and describe the causes that lead the faults to be memorized into 
one or more soft errors. Therefore, a refined fault sensitivity criterion is defined for this class of 
circuits. This methodology enables us to point out the weak parts of a circuit. An analysis tool is 
implemented to support this evaluation. This tool provides a quantitative study of the fault 
sensitivity, and enables us to compare the robustness of different architectures of a circuit along 
the steps of its design flow. The objective of this work is to evaluate the circuits robustness 
against natural faults (single fault model) and intentional fault injection (multiple faults model). 
Keywords: Asynchronous circuits, Quasi Delay Insensitive, transient fault, fault model, 
simulation 
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ABSTRACT 
Performance space exploration (PSE) determines the range of feasible performance values of a 
circuit block for a given topology and technology. In this paper, we present two deterministic 
approaches for PSE. One approximates the feasible performance space based on linearized 
circuit models and is suitable for investigating a large number of performances. The other one 
computes discretizations of the Pareto front of competing performances. In addition, a 
motivation and application of PSE using a hierarchical design example is presented. 
Keywords: Performance Space Exploration, Analog Integrated Circuits, Pareto Optimization, 
Fourier Motzkin Elimination 
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ABSTRACT 
We propose a hierarchical mixed signal design methodology based on the principles of Platform-
Based Design (PBD). The methodology is a meet-in-the-middle approach where design 
components are modeled bottom-up at various abstraction levels and performance constraints are 
mapped top-down to select among the available components the ones that best meet the 
constraints. The design methodology can seamlessly operate on both analog and digital designs, 
thus dealing with mixed signal designs in a consistent way. We demonstrate the effectiveness of 
the approach optimizing an 80 MS/s 14 bit pipelined Analog-to-Digital Converter (ADC) 
including digital calibration, yielding 64% power reduction compared to the original hand 
optimized design. 
General Terms: Algorithms 
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ABSTRACT 
Automated analog sizing is becoming an unavoidable solution for increasing analog design 
productivity. The complexity of typical analog SoC subsystems however calls for efficient 
methods that can handle design hierarchy, in terms of both performance estimation and 
hierarchical design optimization method. This paper discusses and compares recent 
developments in this area, with special emphasis on automated modeling and on multi–objective 
bottom–up hierarchical design. 
Keywords: Hierarchical Synthesis 
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Abstract 
Moore’s law delivers higher performance and lower cost for FPGAs and ASICs alike, but at the 
90nm process node and below, design schedules using the traditional cell-based ASIC design 
methodology hit a wall of uncertainty. At 90nm and below an emerging alternative ASIC design 
platform is either Platform ASIC or FPGAs. Which way will the cell-based ASIC designer turn 
for their next design? 
 
Over time, FPGAs and structured/platform ASICs are together poised to replace today’s cell-
based ASIC market, but which is the real answer to future digital design? Can companies really 
use these platforms to achieve the system cost reduction and functionality that they need to stay 
competitive? Which applications will migrate to these platforms the fastest? Is it possible to just 
tweak the existing cell-based methodology to more efficiently reach the benefits of 90nm process 
nodes and below? This lively panel will discuss whether it is FPGAs, structured/platform ASICs, 
or something else that stand to gain the most ground from the projected $25B ASIC market, and 
why. 
Keywords: Digital Design and Programmable ASIC Platforms 
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ABSTRACT 
There exist real-time systems for which it is possible to trade off precision for timeliness. In 
these cases, a function assigns reward to the application depending on the amount of 
computation allotted to it. At the same time, many such applications run on battery-powered 
devices with stringent energy constraints. This paper addresses the problem of maximizing 
rewards subject to time and energy constraints. We propose a quasi-static approach where the 
problem is solved in two steps: first, at design-time, a number of solutions are computed and 
stored (off-line phase); second, one of the precomputed solutions is selected at run-time based on 
actual values of time and energy (on-line phase). Thus our approach is able to exploit, with low 
on-line overhead, the dynamic slack caused by tasks executing less number of cycles than in the 
worst case. We conduct numerous experiments in order to show the advantages of our approach. 
Keywords: Quasi-Static, Dynamic Voltage Scaling 
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ABSTRACT 
Most digital systems are equipped with DC-DC converters to supply various levels of voltages 
from batteries to logic devices. DC-DC converters maintain legal voltage ranges regardless of the 
load current variation as well as battery voltage drop. Although the efficiency of DC-DC 
converters is changed by the output voltage level and the load current, most existing power 
management techniques simply ignore the efficiency variation of DC-DC converters. However, 
without a careful consideration of the efficiency variation of DC-DC converters, finding a true 
optimal power management will be impossible. In this work, we solve the problem of energy 
minimization with the consideration of the characteristics of power consumption of DC-DC 
converter. Specifically, the contributions of our work are: (1) We analyze the effects of the 
efficiency variation of DC-DC converters on a single task execution in DVS (dynamic voltage 
scaling) scheme, and propose a technique, called DC DVS, of DC-DC converter-aware energy-
minimal DVS; (2) DC DVS is then extended to combine the effects of DC-DC converters with 
the procedures of general DVS techniques with multiple tasks; (3) Conversely, we propose a 
technique, called DC CONF, of generating a DC-DC converter that is best suited, in terms of 
total energy efficiency, to the intended application, and (4) finally, we complete our integrated 
framework DC-lp, which is based on DC DVS and DC CONF, that attempts to solve the DC-DC 
converter configuration selection problem and the DVS problem simultaneously. To show the 
effectiveness of the proposed techniques, a set of experimental results is provided. In summary, 
it is shown that DC-lp is able to save 16.0%»22.1% of energy on the average, which otherwise 
was dissipated in the previous power management schemes with no consideration of DC-DC 
converter efficiency variation. 
Keywords: Low power, DC-DC converter, Voltage scaling 
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ABSTRACT 
We obtain analytically, the energy optimal speed profile of a generic multi-speed device with a 
discrete set of speeds, to execute a given task within a given time. Current implementations of 
energy efficient speed control policies (including DVFS) almost exclusively use the minimum 
feasible speed pair, which has been shown before to be suboptimal. Unlike previous works, ours 
does not require an explicit functional relationship between the device’s power and speed (e.g. 
the CMOS power model), but only assumes that the power-speed relationship is a W-convex (a 
discrete equivalent of a convex) function. This assumption allowed us to show that the optimal 
speed profile uses at most two speeds, and that all the essential characteristics of the power-speed 
relationship can be encapsulated within a single speed, wu. The latter speed is intrinsic to the 
device (i.e. task independent) and can be readily computed from its power-speed values (without 
any curve fit). Further, wu is also the speed at which the the device consumes the least energy 
per unit work done. The problem formulation reduces to a linear program in the number of 
supported speeds, which in general, is difficult to solve analytically. However, the optimum 
solution has a very simple form – it is either wu, or the minimum feasible speed pair for the 
given task. We verified that a number of commercial DVFS processors, and other devices like 
disk drives satisfied our model of the W-convex power-speed relationship. 
Keywords: voltage scaling, frequency scaling, speed control, low-power, convex functions, 
energy optimization 
 
REFERENCES  
[1] Advanced Micro Devices. AMD Athlon 64 Processor Power and Thermal Data Sheet. 
[2] M. S. Bazaara, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms. John Wiley 
and Sons, second edition, 1993. 
[3] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli. Policy optimization for dynamic power 
management. IEEE Trans. CAD, 18(6):813–833, June 1999. 
[4] N. Chang, I. Choi, and H. Shim. DLS: Dynamic backlight luminance scaling of liquid crystal display. IEEE 
Trans. VLSI Sys., 12(8):837–846, August 2004. 
[5] M. Fleischmann. Longrun power managementTM: Dynamic power management for CrusoeTMprocessors. 
[6] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. Reducing disk power consumption in servers 
with DRPM. IEEE Computer, 36(12):59–66, December 2003. 
[7] Intel Corp. Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor. 
[8] Intel Corp. Intel Pentium M Processor on 90nm Process with 2-MB L2 Cache.  
[9] Intel Corp. Intel PXA26x Processor Family : Electrical, Mechanical, and Thermal Specification. 
[10] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proc. ACM-SIAM Symposium on Discrete 
Algorithms, pages 37–46, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics. 
[11] S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management in systems with multiple 
power-saving states. ACM Trans. Embedded Computing Sys. (TECS), 2(3):325–346, 2003. 
[12] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage processors. In Proc. 
Intl’ Symp. Low Power Electronics and Design (ISLPED), pages 197–202, 1998. 
[13] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time embedded systems. 
In Proc. Design Automation Conf. (DAC), pages 275–280, 2004. 
[14] J. R. Lorch and A. J. Smith. PACE: A new approach to dynamic voltage scaling. IEEE Trans. Computers, 
53(7):856–869, July 2004. 
[15] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage scaling and adaptive body 
biasing for lower power microprocessors under dynamic workloads. In Proc. ICCAD, pages 721–725, 2002. 



[16] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Critical power slope: 
Understanding the runtime effects of frequency scaling. In Proc. Intl’ Conf. Supercomputing (ICS), pages 35–44, 
2002. 
[17] K. Okada, N. Kojima, and K. Yamashita. A novel drive architecture of HDD: “multimode hard disc drive”. In 
Proc. Intl’ Conf. Consumer Electroncis (ICCE), pages 92–93. IEEE Press, 2000. 
[18] J. Pouwelse, K. Langendoen, and H. Sips. Application-directed voltage scaling. IEEE Trans. VLSI Sys., 
11(5):812–826, October 2003. 
[19] Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of a power-managed system-construction and 
optimization. IEEE Trans. CAD, 20(10):1200–1217, October 2001. 
[20] R. Rao. Energy optimal speed control for components of portable systems. Master’s thesis, University of 
Arizona, Tucson, 2004. 
[21] R. Rao and S. Vrudhula. Energy optimization for a two-device data flow chain. In Proc. Intl’ Conf. Computer-
Aided Design (ICCAD), pages 268–274, November 2004. 
[22] R. Rao, S. Vrudhula, and M. S. Krishnan. Disk drive energy optimization for audio-video applications. In Proc. 
Conf. Compilers, Arch., Synth. Emb. Sys. (CASES), pages 93–103, September 2004. 
[23] C. Schurgers, O. Aberthorne, and M. Srivastava. Modulation scaling for energy aware communication systems. 
In Proc. Intl’ Symp. Low Power Electronics and Design (ISLPED), pages 96–99. ACM Press, 2001. 
[24] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In Proc. Symp. 
Operating Sys. Design and Implementation (OSDI), pages 13–23, 1994. 
 
 



DAC05, pages 905-908 
Optimal Procrastinating Voltage Scheduling for Hard Real-Time Systems 

 
Yan Zhang, Zhijian Lu, John Lach, Kevin Skadron, Mircea R. Stan 

University of Virginia, Charlottesville, VA, U.S.A. 
 
ABSTRACT 
This paper presents an optimal procrastinating voltage scheduling (OP-DVS) for hard real-time 
systems using stochastic workload information. Algorithms are presented for both single-task 
and multi-task workloads. Offline calculations provide real-time guarantees for worst-case 
execution, and online scheduling reclaims slack time and schedules tasks accordingly. The 
OPDVS algorithm is provably optimal in terms of energy minimization with no deadline misses. 
Simulation results show up to 30% energy savings for single-task workloads and 74% for multi-
task workloads compared to using a constant worst-case execution voltage. The complexity of 
the algorithm for multi-task workloads is linear to the number of tasks involved. 
Keywords: Power Management, Dynamic Voltage Scaling, Real-time Scheduling, Optimization 
Algorithm 
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ABSTRACT 
ASIC provides more than an order of magnitude advantage in terms of density, speed, and power 
requirement per gate. However, economic (cost of masks) and technological (deep micron 
manufacturability) trends favor FPGA as an implementation platform. In order to combine the 
advantages of both platforms and alleviate their disadvantages, recently a number of approaches, 
such as structured ASIC/regular fabrics, have been proposed. Our goal is to introduce an 
approach that has the same objective, but is orthogonal to those already proposed. The idea is to 
implement several ASIC designs in such a way that they share the datapath, memory structure, 
and several bottom layers of interconnect, while each design has only a few unique metal layers. 
We identified and addressed two main problems in our quest to develop a CAD flow for 
realization of such designs. They are: (i) the creation of the datapath, and (ii) the identification of 
common and unique interconnects for each design. Both problems are solved optimally using 
ILP formulations. We assembled a design flow platform using two new programs and the 
Trimaran and Shade tools. We quantitatively analyzed the advantages and disadvantages of the 
approach using the Mediabench benchmark suite. 
Keywords: ASIC, interconnect, optimization 
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ABSTRACT 
Device optimization considering supply voltage Vdd and threshold voltage Vt tuning does not 
increase chip area but has a great impact on power and performance in the nanometer 
technology. This paper studies the simultaneous evaluation of device and architecture 
optimization for FPGA. We first develop an efficient yet accurate timing and power evaluation 
method, called trace-based model. By collecting trace information from cycle-accurate 
simulation of placed and routed FPGA benchmark circuits and re-using the trace for different 
Vdd and Vt, we enable the device and architecture co-optimization for hundreds of 
combinations. Compared to the baseline FPGA which has the architecture same as the 
commercial FPGA used by Xilinx, and has Vdd suggested by ITRS but Vt optimized by our 
device optimization, architecture and device co-optimization can reduce energy-delay product by 
20.5% without any chip area increase compared to the conventional FPGA architecture. 
Furthermore, considering power-gating of unused logic blocks and interconnect switches, our co-
optimization method reduces energy-delay product by 54.7% and chip area by 8.3%. To the best 
of our knowledge, this is the first in-depth study on architecture and device co-optimization for 
FPGAs. 
Keywords: FPGA, low power, powergating, Ptrace, Psim 
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ABSTRACT 
Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular. With their regular 
structures, they are particularly amenable to scaling to smaller technologies. On the other hand, 
there have been significant advances in nano-electronics fabrication over the past few years. In 
this paper we explore FPGA devices of the next decade using nano-wires and molecular switches 
for programmable interconnect, and compare them to traditional SRAM-based FPGAs that use 
pass transistors as switches (scaled to 22nm). We show that by using nano-wires and molecular 
switches, it is possible to reduce the area of the FPGA by 70% and improve performance. 
Keywords: FPGA, nanotechnology, nanoelectronics, interconnect 
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ABSTRACT 
Capturing RLCK circuit responses accurately with existing model order reduction (MOR) 
techniques is very expensive. Direct metrics for fast analysis of RC circuits exist but there is no 
such technique for RLCK circuits. This paper introduces a new family of MOR techniques based 
on piece-wise functions to capture RLCK circuit responses accurately using only four or five 
moments. The time-domain response is approximated using a piece-wise function whose pieces 
are simple polynomials. The proposed method is fast and guaranteed stable and it avoids the 
calculation of poles and residues associated with existing model order reduction techniques. 
Results for many different industrial netlists indicate that delay and transition time can be 
captured within 5% error using only four moments. To the authors’ knowledge, there is no 
existing method that can extract as much information about RLCK circuits with only four or five 
moments. 
Keywords: Interconnect timing analysis, moments, RC, RLC, RLCK circuits 
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ABSTRACT 
In this paper an optimization based model order reduction (MOR) framework is proposed. The 
method involves setting up a quasiconvex program that explicitly minimizes a relaxation of the 
optimal H∞norm MOR problem. The method generates guaranteed stable and passive reduced 
models and it is very flexible in imposing additional constraints. The proposed optimization 
approach is also extended to parameterized model reduction problem (PMOR). The proposed 
method is compared to existing moment matching and optimization based MOR methods in 
several examples. A PMOR model for a large RF inductor is also constructed. 
Keywords: parameterized model order reduction, quasi-convex optimization, ellipsoid 
algorithm, RF inductor 
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ABSTRACT 
A rational Arnoldi method for passivity-preserving model-order reduction (MOR) with implicit 
multi-point moment matching for systems with frequency-dependent interconnects is described. 
The structure H(s) = sE − A − K√f, which arises from frequencydependent effects in high speed 
interconnects, is preserved by the proposed MOR technique. Moment matching using 
congruence transforms and based on two types of moments that are derivatives of the transfer 
function w.r.t s and √f is described. Simulation results show that the proposed approach can 
significantly reduce the complexity of systems with frequency-dependent elements, while 
retaining high accuracy in comparison to the original system in both the time and frequency 
domains. 
Keywords: Model-order reduction, skin effect, interconnect 
 
REFERENCES 
[1] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing analysis,” IEEE Trans. CAD, Vol. 
9, pp. 352–366, Apr. 1990. 
[2] A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced-order interconnect macromodeling 
algorithm,” IEEE Trans. CAD, Vol. 17, pp. 645–654, Aug. 1998. 
[3] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Padé approximation via the Lanczos 
process,” IEEE Trans. CAD, Vol. 14, pp. 639–649, May 1995. 
[4] A. C. Antoulas, “A new result on passivity preserving model reduction,” Systems and Control Letters, Vol. 54, 
pp. 361–374, Apr. 2005. 
[5] H. Zheng and L. T. Pileggi, “Robust and passive model order reduction for circuits containing susceptance 
elements,” Proc. ICCAD, pp. 761–766, 2002. 
[6] R. W. Freund, “SPRIM: Structure-preserving reduced-order interconnect macromodeling,” Proc. ICCAD, pp. 
80–87, 2004. 
[7] Y. Su, et al., “SAPOR: Second-order Arnoldi method for passive order reduction of RCS circuits,” Proc. 
ICCAD, pp. 74–79, 2004. 
[8] S. Mei, C. Amin, and Y. Ismail, “Efficient model-order reduction including skin effect,” Proc. DAC, pp. 232–
237, 2003. 
[9] R. Achar, M. S. Nakhla, and Q. Zhang, “Full-wave analysis of high-speed interconnects using complex 
frequency hopping,” IEEE Trans. CAD, Vol. 17, pp. 997–1016, Oct. 1998. 
[10] J. M. Wang, et al., “On projection-based algorithms for model-order reduction of interconnects,” IEEE Trans. 
Circuits and Systems–I, Vol. 49, pp. 1563–1585, Nov. 2002. 
[11] I. M. Elfadel and D. D. Ling, “A block rational Arnoldi algorithm for multi-point passive model-order 
reduction of multiport RLC networks,” Proc. ICCAD, pp. 66–71, 1997. 
[12] E. J. Grimme, “Krylov projection methods for model reduction,” Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1997. 
[13] R. W. Freund, “Passive reduced-order models for interconnect simulation and their computation via Krylov-
subspace algorithms,” Proc. DAC, pp. 195–200, 1999. 
 
 



DAC05, pages 943-946 
Segregation by Primary Phase Factors: A Full-wave Algorithm for Model Order Reduction 

 
Thomas J. Klemas, Luca Daniel, Jacob K. White 

Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge MA 
 
ABSTRACT 
Existing Full-wave Model Order Reduction (FMOR) approaches are based on Expanded Taylor 
Series Approximations (ETAS) of the oscillatory full-wave system matrix. The accuracy of such 
approaches hinges on the worst case interaction distances, producing accurate models over a very 
narrow band of frequencies. In this paper we present Segregation by Primary Phase Factors 
(SPPF), a novel algorithm for FMOR enabling wideband interconnect impedance analysis. SPPF 
extracts exponential terms (primary phase factors) and then approximates the smoother 
remainder with an ETAS, thus resulting in good accuracies over a very wide band of frequencies. 
We also present a technique to improve conditioning for the required computation. Example 
results are given for simple interconnect structures modeled using a discretized mixed potential 
integral equation formulation. 
Keywords: Full-wave Impedance Extraction, Model Order Reduction 
 
REFERENCES 
[1] C. P. Coelho, J. Phillips, and L. M. Silveira. A convex programming approach for generating guaranteed passive 
approximations to tabulated frequency-data. IEEE Transactions CAD on Integrated Circuits and Systems, 
23(2):293–301, Feb 2004. 
[2] P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximations via the Lanczos process. 
In EURO-DAC’94 with EURO-VHDL’94, September 1994. 
[3] E. Grimme. Krylov Projection Methods for Model Reduction. PhD thesis, Coordinated-Science Laboratory, 
University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 1997. 
[4] R. F. Harrington. Field Computation by Moment Methods. MacMillan, New York, 1968. 
[5] H. Heeb and A. E. Ruehli. Three-dimensional interconnect analysis using partial element equivalent circuits. 
IEEE Trans. On Circuits and Systems I: Fundamental Theory and Applications, 39(11):974–982, November 1992. 
[6] M. Kamon, N. Marques, and J. K. White. FastPep: a fast parasitic extraction program for complex three-
dimensional geometries. In Proc. of the IEEE/ACM International Conference on Computer-Aided Design, pages 
456–460, San Jose, CA, Nov. 1997. 
[7] S. Kapur and D. E. Long. Ies3: efficient electrostatic and electromagnetic simulation. Computational Science 
and Engineering, IEEE, 5(4):60–67, Oct-Dec 1998. 
[8] T. J. Klemas, L. Daniel, and J. White. A fast full-wave algorithm to generate low order electromagnetic 
scattering models. In Proceedings IEEE APS-URSI Symposium. IEEE Antennas and Propagation Society/URSI, July 
2005. 
[9] K.Willcox and J.Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 
40(11):2323–2330, November 2002. 
[10] K. Nabors and J. K. White. FastCap: a multipole accelerated 3-d capacitance extraction program. IEEE Trans. 
on Computer-Aided Design of Integrated Circuits and Systems, 10(11):1447–59, Nov. 1991. 
[11] J. R. Phillips, E. Chiprout, and D. D. Ling. Efficient full-wave electromagnetic analysis via model-order 
reduction of fast integral transforms. In Proceedings 33rd Design Automation Conference, Las Vegas, Nevada, June 
1996. 
[12] J. R. Phillips and J. K. White. A Precorrected-FFT method for electrostatic analysis of complicated 3-D 
structures. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 16(10):1059–1072, Oct. 
1997. 
[13] J. C. Rautio and R. F. Harrington. An electromagnetic time-harmonic analysis of shielded microstrip circuit. 
IEEE Trans. Microwave Theory Tech., MTT-35:726–730, 1987. 
[14] A. E. Ruehli. Equivalent Circuit Models for Three-Dimensional Multiconductor Systems. IEEE Transactions 
on Microwave Theory and Techniques, MTT-22(3):216–221, March 1974. 
[15] L. M. Silveira, M. Kamon, and J. K. White. Direct computation of reduced-order models for circuit simulation 
of 3-d interconnect structures. In Proceedings of the 3rd Topical Meeting on Electrical Performance of Electronic 
Packaging, pages 254–248, Monterey, California, November 1994. 



[16] Z. Zhu, J. Huang, B. Song, and J. K. White. Algorithms in fastimp: a fast and wideband impedance extraction 
program for complicated 3-d geometries. In Proc. of the IEEE/ACM Design Automation Conference, Los Angeles, 
CA, June 2003. 
 
 
 
 
 
 
 
 
 


	Logic Soft Errors in Sub-65nm Technologies Design and CAD Challenges 
	Subhasish Mitra, Tanay Karnik, Norbert Seifert, Ming Zhang 
	ABSTRACT 
	SEU Tolerant Device, Circuit and Processor Design 
	Variability and Energy Awareness: A Microarchitecture-Level Perspective 
	Peter Petrov*, Daniel Tracy**, Alex Orailoglu** 


	ABSTRACT 
	Abstract 
	Cooperative Multithreading on Embedded Multiprocessor Architectures Enables  
	Feng Gao and John P. Hayes 
	Afshin Abdollahi*, Farzan Fallah**, Massoud Pedram* 

	Enhanced Leakage Reduction Technique by Gate Replacement 
	Lin Yuan and Gang Qu 
	Ning Dong, Jaijeet Roychowdhury 
	Ying Wei, Alex Doboli 


	ABSTRACT 
	Mengmeng Ding, Ranga Vemuri 
	ESL: Tales from the Trenches 
	Correlation-Preserved Non-Gaussian Statistical Timing Analysis with Quadratic  
	Lizheng Zhang, Weijen Chen, Yuhen Hu, John A. Gubner, Charlie Chung-Ping Chen 
	Vishal Khandelwal, Ankur Srivastava 
	Feihui Li and Mahmut Kandemir 
	Stefan Valentin Gheorghita, Sander Stuijk, Twan Basten and Henk Corporaal 

	Jungeun Kim*, Taewhan Kim** 

	Dynamic Slack Reclamation with Procrastination Scheduling in Real-Time  
	Ravindra Jejurikar*, Rajesh Gupta** 


	REFERENCES 
	Qiang Xu*, Nicola Nicolici*, Krishnendu Chakrabarty** 
	Irith Pomeranz 
	Bo Yang*, Kaijie Wu**, Ramesh Karri* 
	References 


	Xin Hu, Jung Hoon Lee, Jacob White, Luca Daniel 
	Dipanjan Gope, Indranil Chowdhury, Vikram Jandhyala 
	Choosing Flows and Methodologies for SoC Design 


	DFM Rules! 

	ABSTRACT 
	ABSTRACT 
	Haihua Su, David Widiger, Chandramouli Kashyap, Frank Liu, Byron Krauter 
	Chong Zhao, Yi Zhao, Sujit Dey 
	Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik 
	Zhenyu (Peter) Gu, Jia Wang, Robert P. Dick, Hai Zhou 


	ABSTRACT 
	REFERENCES 
	M. Saneei*, A. Afzali-Kusha*, Z. Navabi** 

	ABSTRACT 
	Tingyuan Nie, Tomoo Kisaka, Masahiko Toyonaga 
	REFERENCES 
	Young H. Cho and William H. Mangione-Smith 


	ABSTRACT 
	Tomás Balderas-Contreras, René Cumplido 
	Approximate VCCs: A New Characterization of Multimedia 
	Yanhong Liu, Samarjit Chakraborty, Wei Tsang Ooi 
	Christian Sauer, Matthias Gries, Sören Sonntag 


	ABSTRACT 
	Andrey V. Zykov, Elias Mizan, Margarida F. Jacome, Gustavo de Veciana, Ajay Subramanian 

	ABSTRACT 
	How to Determine the Necessity for Emerging Solutions 
	D. G. Chinnery and K. Keutzer 

	ABSTRACT 
	Ruchir Puri*, Leon Stok**, Subhrajit Bhattacharya* 
	Adam Healey - Agere Systems, Inc., Allentown, PA 
	Boris Litinsky - RF Micro Devices, Inc., San Jose, CA 
	John Stonick - Synopsys, Inc., Hillsboro, OR 
	Joe Abler - IBM Corp., Research Triangle Park, NC 


	ABSTRACT 
	Yan Meng, Andrew P. Brown, Ronald A. Iltis, Timothy Sherwood, Hua Lee, Ryan Kastner 

	ABSTRACT 
	Wolfgang Eberle, Bruno Bougard, Sofie Pollin, Francky Catthoor 
	Jaskirat Singh, Vidyasagar Nookala, Zhi-Quan Luo, Sachin Sapatnekar 
	Aseem Agarwal*, Kaviraj Chopra*, David Blaauw*, Vladimir Zolotov** 

	Bor-Yiing Su*, Yao-Wen Chang** 
	Sudarshan Banerjee, Elaheh Bozorgzadeh, Nikil Dutt 

	Dohyung Kim, Youngmin Yi, Soonhoi Ha 

	Wireless Platforms: GOPS for Cents and MilliWatts 
	V. Kheterpal, V. Rovner, T.G. Hersan, D. Motiani, Y. Takegawa, A.J. Strojwas, L. Pileggi 


	ABSTRACT 
	Joydeep Mitra, Peng Yu, David Z. Pan 
	Tsutomu Sasao and Munehiro Matsuura 


	ABSTRACT 
	REFERENCES 
	Afshin Abdollahi, Massoud Pedram 

	Abstract  
	Yayun Wan, Jaijeet Roychowdhury 
	V.Vasudevan 
	Saurabh K Tiwary, Rob A Rutenbar 
	William Krenik and Anuj Batra 
	Jeffrey M. Gilbert, Won-Joon Choi, Qinfang Sun 


	RF MEMS in Wireless Architectures 
	Clark T.-C. Nguyen 
	Paul Metzgen, Dominic Nancekievill 
	Deshanand P. Singh, Valavan Manohararajah, Stephen D. Brown 


	REFERENCES 
	Ken Eguro, Scott Hauck, Akshay Sharma 
	G. Parthasarathy, M. K. Iyer, K.T. Cheng, F. Brewer 


	ABSTRACT 
	REFERENCES 
	Markus Wedler, Dominik Stoffel, Wolfgang Kunz 
	Grace Nordin, Peter A. Milder, James C. Hoe, and Markus Püschel 
	Shih-Hsu Huang, Yow-Tyng Nieh, Feng-Pin Lu 
	Swarup Bhunia, Nilanjan Banerjee, Qikai Chen, Hamid Mahmoodi, and Kaushik Roy 
	K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky 


	ABSTRACT 
	REFERENCES 
	Peggy B. McGee, Steven M. Nowick 
	King Ho Tam and Lei He 
	Brent Goplen*, Prashant Saxena**, Sachin Sapatnekar* 

	Is Methodology the Highway Out of Verification Hell? 
	Hongliang Chang, Sachin S. Sapatnekar 
	Sarvesh Bhardwaj, Sarma B.K.Vrudhula 


	ABSTRACT 
	REFERENCES 
	ABSTRACT  
	REFERENCES  
	A Design Platform for 90-nm Leakage Reduction Techniques 
	Arun Natarajan, Abbas Komijani, and Ali Hajimiri 
	Taeweon Suh*, Daehyun Kim**, Hsien­Hsin S. Lee* 
	Jongman Kim, Dongkook Park, T. Theocharides, N. Vijaykrishnan and Chita R. Das 
	Sven Heithecker, Rolf Ernst 


	ABSTRACT 
	Vidyasagar Nookala, Ying Chen, David J. Lilja, Sachin S. Sapatnekar 
	Zhong Xiu, Rob A. Rutenbar 
	Ulrich Brenner, Markus Struzyna 
	Tsung-Yi Ho*, Chen-Fong Chang*, Yao-Wen Chang**, Sao-Jie Chen** 


	Matlab Extensions for the Development, Testing 
	David P. Magee 
	Tejas M. Bhatt, Dennis McCain 

	Should Our Power Approach Be Current? 
	Ali Iranli, Massoud Pedram 


	Abstract  
	Dexin Li and Pai H. Chou 

	ABSTRACT 
	REFERENCES 
	Le Yan, Lin Zhong, Niraj K. Jha 

	ABSTRACT 
	Jianli Zhuo, Chaitali Chakrabarti 

	OPERA: Optimization with Ellipsoidal uncertainty for Robust Analog IC design 
	ABSTRACT 
	REFERENCES 
	Jihong Ren and Mark Greenstreet 
	Sambuddha Bhattacharya, Nuttorn Jangkrajarng and C-J. Richard Shi 


	ABSTRACT 
	Arthur Nieuwoudt and Yehia Massoud 
	Yu Cao, Lawrence T. Clark 


	ABSTRACT 
	Peng Li 

	ABSTRACT 
	Yaron Wolfsthal*, Rebecca M. Gott** 
	Umberto Rossi 
	Prosenjit Chatterjee 
	Seraj Ahmad, Rabi Mahapatra 
	Sergiu Nedevschi, Rabin K. Patra, Eric A. Brewer 


	REFERENCES 
	Guangyu Chen and Mahmut Kandemir 
	Corey Goldfeder 
	Joel Coburn, Srivaths Ravi, and Anand Raghunathan 
	John Wei and Chris Rowen 
	Yan Luo, Jia Yu, Jun Yang, Laxmi Bhuyan 
	Nikhil Jayakumar, Sunil P. Khatri 
	Yan Lin and Lei He 
	Marvin Tom, Guy Lemieux 
	Antonio Carlos S. Beck, Luigi Carro 


	Beyond Safety: Customized SAT-based Model Checking 
	Malay K Ganai, Aarti Gupta and Pranav Ashar 

	REFERENCES 
	ABSTRACT 
	REFERENCES 
	HoonSang Jin, Fabio Somenzi 

	ABSTRACT 
	REFERENCES 
	Carlo Guardiani, Massimo Bertoletti, Nicola Dragone, Marco Malcotti, and Patrick McNamara 
	Jim Tschanz, Keith Bowman, Vivek De 
	Farid N. Najm 
	David Blaauw and Kaviraj Chopra 
	Matt Nowak*, Riko Radojcic** 
	Allon Adir, Hezi Azatchi, Eyal Bin, Ofer Peled, Kirill Shoikhet 
	Sudheendra Hangal*, Naveen Chandra*, Sridhar Narayanan**, Sandeep Chakravorty* 
	Ilya Wagner, Valeria Bertacco, Todd Austin 
	Sadik Ezer, Scott Johnson 
	Hiran Tennakoon and Carl Sechen 
	Yuantao Peng, Xun Liu 
	Marc Geilen, Twan Basten and Sander Stuijk 
	Fei Su and Krishnendu Chakrabarty 
	Jianwen Zhu 


	MiniBit: Bit-Width Optimization via Affine Arithmetic 
	Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer and Wayne Luk 
	Bin Wu, Jianwen Zhu, Farid N. Najm 
	ABSTRACT 

	Rasit Onur Topaloglu and Alex Orailoglu 
	L. Dilillo*, P. Girard*, S. Pravossoudovitch*, A. Virazel*, M. Bastian** 
	Daniel Mueller, Guido Stehr, Helmut Graeb, Ulf Schlichtmann 
	Georges Gielen, Trent McConaghy, Tom Eeckelaert 


	Structured/Platform ASIC Apprentices Which Platform Will Survive Your Board Room? 
	ABSTRACT 
	Ravishankar Rao and Sarma Vrudhula 

	ABSTRACT 
	REFERENCES  
	Yan Zhang, Zhijian Lu, John Lach, Kevin Skadron, Mircea R. Stan 
	Jennifer L. Wong*, Farinaz Kourshanfar**, Miodrag Potkonjak* 
	Lerong Cheng, Phoebe Wong, Fei Li, Yan Lin, and Lei He 
	Aman Gayasen, N. Vijaykrishnan, M. J. Irwin 
	Chirayu S. Amin*, Yehea I. Ismail*, Florentin Dartu** 
	Kin Cheong Sou, Alexandre Megretski, Luca Daniel 
	Quming Zhou, Kartik Mohanram, Athanasios C. Antoulas 





