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Abstract 

 
As the use of wireless sensor networks (WSNs) 

becomes widespread, node density tends to increase. 
This poses a new challenge for Medium Access Control 
(MAC) protocol design. Although traditional MAC 
protocols achieve low-power operation, they use only a 
single channel which limits their performance. Several 
multi-channel MAC protocols for WSNs have been 
recently proposed. One of the key observations is that 
these protocols are less energy efficient than single-
channel MAC protocols under light traffic conditions. 
In this paper, we propose an energy efficient multi-
channel MAC protocol, Y-MAC, for WSNs. Our goal is 
to achieve both high performance and energy 
efficiency under diverse traffic conditions. In contrast 
to most of previous multi-channel MAC protocols for 
WSNs, we implemented Y-MAC on a real sensor node 
platform and conducted extensive experiments to 
evaluate its performance. Experimental results show 
that Y-MAC is energy efficient and maintains high 
performance under high-traffic conditions.  
 
 
1. Introduction 
 

Sensor nodes are typically battery powered and 
operate in unattended environments. Therefore, 
maximizing the energy efficiency of the nodes is 
important in order to prolong network lifetimes. Since 
the radio module is a major energy consumer in a 
sensor node, much research has been devoted to 
designing energy efficient MAC protocols.  

S-MAC [1] uses several techniques to reduce 
energy consumption of sensor nodes. Neighboring 
nodes form a virtual cluster to auto-synchronize their 
sleep schedules. Nodes periodically sleep and wake up 
to reduce idle listening overhead. S-MAC also 

implements RTS/CTS in order to reduce collisions and 
avoid overhearing. 

Low Power Listening (LPL) [2] combines the low-
level carrier sense technique with CSMA, and 
Preamble Sampling [3] also proposes a similar 
algorithm. Nodes are duty-cycled through periodic 
channel sampling. By stretching the preamble of a 
message so that it is longer than the sleep interval, 
senders are able to wake up receivers. WiseMAC [4] 
and B-MAC [5] are advanced versions of LPL. 
WiseMAC avoids long preambles by learning the 
sampling schedule of neighboring nodes. B-MAC 
supports run-time reconfiguration to reduce duty cycle 
and minimize idle listening. In order to save energy at 
non-target receiver nodes, X-MAC [6] uses a series of 
short preamble packets containing target address 
information. To shorten the preamble length, the 
receiver sends an early acknowledgement to the sender, 
in the short pause time between preamble packets. 
These contention-based MAC protocols can flexibly 
adapt to diverse traffic conditions by adjusting the duty 
cycle. However, they sacrifice energy during in the 
contention period. 

To guarantee collision-free communication, several 
TDMA-based MAC protocols have been proposed. 
PEDAMACS [7] uses an access point to schedule node 
transmission and reception. The access point explicitly 
schedules all the nodes, based on its knowledge of the 
topology of the whole network. LMAC [8] uses a 
distributed time slot selection mechanism. Each node is 
able to send out a message collision-free since it owns 
an exclusive time slot in a two-hop neighborhood. 
However, all the nodes have to wake up at every time 
slot in order not to miss incoming messages. While 
LMAC schedules senders, Crankshaft [9] schedules 
receivers, allocating time slots to the nodes for data 
reception. Because each node wakes up for data 
reception at a different offset from the start of the super 
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frame, the number of nodes overhearing unrelated 
messages is reduced. 

Since the aforementioned MAC protocols focus on 
the efficient use of energy, they have difficulties in 
handling bursty traffic. Typical sensor applications, 
such as habitat/environmental monitoring and 
infrastructure diagnostics, require low data rates and 
their communication patterns are periodic. With the 
widespread use of sensor applications, however, the 
node density in WSNs becomes higher. Moreover, 
some of latest operating systems for WSNs enable 
sensor nodes to run multiple applications. This leads to 
higher packet density on the network, and thus 
handling bursty traffic has become a major issue in 
MAC design. To address this issue, Funneling-MAC 
[10] and Z-MAC [11] propose hybrid approaches, 
combining the advantages of contention-based 
protocols and time-slotted protocols. SCP-MAC [12] 
suggests not only synchronous channel polling to 
reduce energy wastage, but also a multi-hop streaming 
scheme to handle bursty traffic towards base stations.  

Recently, several researchers have explored the 
possibility of using multiple channels to overcome the 
limitations of single channel MAC protocols. Ansari, 
Zhang and Maሷhoሷnen [13] propose a multi-radio MAC 
protocol running on a sensor node platform equipped 
with two radio transceivers. This approach is not an 
economical solution for WSNs, hence devising a multi-
channel MAC protocol using a single radio transceiver 
would be a better solution. Most commercial radio 
devices, such as the CC1000 [14] and CC2420 [15], 
already provide the basic functions required to support 
multiple channels. 

This paper proposes an energy-efficient multi-
channel MAC protocol, Y-MAC, for wireless sensor 
networks. The protocol fully describes our previous 
demonstration [16]. The main contributions of this 
paper are as follows: 

 
• We propose a light-weight channel hopping 

mechanism. Y-MAC avoids redundant channel 
assignment by not allocating fixed channels to 
the nodes. Initially, messages are exchanged on 
the base channel. When a traffic burst occurs, a 
receiver and potential senders hop to one of the 
other available channels, according to the 
hopping sequence. Since these messages are 
carried over additional channels, each node is 
guaranteed to receive at least one message on the 
base channel. 
 

• Most of the abovementioned multi-channel MAC 
protocols for WSNs have only been evaluated 
through simulation experiments. To validate the 
practicality of the proposed algorithm, we 

implemented Y-MAC in the RETOS operating 
system [17], and compared it with other 
published MAC protocols using a set of 
TmoteSky [18] sensor nodes. 

 
The rest of this paper is organized as follows. In 

Section 2, we discuss related research. Section 3 
describes the design of Y-MAC. Section 4 details its 
practical implementation and some related issues. In 
section 5, we evaluate Y-MAC through extensive 
experiments. We conclude the paper in Section 6. 

 
2. Related work 
 

Several multi-channel MAC protocols have been 
studied for general ad-hoc networks [19] [20] [21] [22]. 
The protocols are, however, not suitable for WSNs 
because of their limitations in terms of resources, 
computing power and cost. Recently, a few multi-
channel MAC protocols for WSNs have been proposed. 

MMSN [23] is the first multi-channel MAC 
protocol which takes into account the restrictions 
imposed by WSNs. The protocol suggests four 
strategies for assigning different frequencies to the 
nodes. Each node is assigned a physical frequency for 
data reception. With the assigned frequencies, nodes 
cooperate to maximize parallel transmission among 
neighboring space.. Although MMSN achieves 
increased network throughput, the fixed channel 
allocations limit channel utilization. In general, the 
amount of data passing through a node changes 
depending on its current position in the routing path. 
Moreover, the routing topology varies dynamically 
because WSNs are susceptible to changes in the 
surrounding environment. Therefore, MAC protocols 
for WSNs should flexibly allocate network resources, 
such as frequencies and time slots, to the nodes in the 
network. In order to avoid static channel assignment, 
Xun et. al. [24] did not allocate a fixed channel to each 
node, and assumed all the nodes in the network to be 
clustered. In their protocol the cluster head collects 
request messages from the cluster members, and then 
distributes channels to both the source and the 
destination nodes. After receiving a schedule from the 
cluster head, node pairs communicate on the 
designated channels. Although this coordinator-based 
mechanism is able to increase the total sleep time of 
the nodes, the maximum network throughput of the 
cluster is limited by the number of request packets 
which can be managed by the cluster head. Moreover, 
cluster heads consume more energy than standard 
nodes, which can be a serious problem if all the nodes 
are physically homogeneous. Durmaz Incel, Dulman, 
and Jansen [25] propose a multi-channel MAC 
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protocol based on LMAC. Nodes communicate on the 
basic channel at first, and once all the time slots on the 
basic channel are exhausted, new channels are 
introduced. Since nodes are scattered over several 
channels, they are linked through bridge nodes. One 
disadvantage of this protocol is that if two nodes 
positioned within a one-hop distance are located on 
different channels, they still have to communicate via a 
bridge node. This results in increasing packet latency 
and additional energy consumption by bridge nodes. 

While these multi-channel MAC protocols were 
evaluated only through theoretical analysis and 
simulation results, McMAC [22] has been evaluated by 
implementing a simplified version of the protocol on a 
general sensor node platform. McMAC pairs a random 
channel hopping algorithm with a rendezvous scheme. 
However, its performance in WSNs is in doubt because 
the scheme was originally designed for general 
wireless networks, such as 802.11a/b/g. 
 
3. The Y-MAC protocol 
 

This section describes the detailed design of Y-
MAC, and related issues. 

 
3.1. Frame architecture 

 
Y-MAC is a TDMA-based multi-channel MAC 

protocol. In general, TDMA-based MAC protocols 
allocate a time slot to each node in the network. The 
allocated time slot is used for data transmission or data 
reception according to the protocol. We define a time 
slot for data transmission as a send time slot, and a 
receive time slot is defined accordingly.  

If each node has an exclusive send time slot in two-
hop neighborhood, collision-free access to the medium 
is guaranteed. Such a scheme is thus able to reduce 
energy wasted by contention and collisions. However, 
all nodes must wake up at every time slot so as not to 
miss incoming messages. This results in energy 
wastage due to idle listening and overhearing. In the 
case of the latest commercial radio transceivers for 
WSNs, energy consumption while receiving is even 
greater than while transmitting  due to the sophisticated 
de-spreading and error correction techniques [26]. 
Therefore, scheduling receivers is more energy 
efficient than scheduling senders under light traffic 
conditions, because each node samples the medium 
only in its own receive time slot. Although potential 
senders compete to seize the medium in a CSMA 
fashion, the contention level is relatively low since 
contention among senders which have different 
destination nodes is eliminated. To achieve low energy 

consumption under light traffic conditions, we adapted 
this scheme. 

Figure 1 illustrates the frame architecture of Y-
MAC. Time is divided into several fixed-length frames, 
and each frame is composed of a broadcast period and 
a unicast period. Since the wake up times for nodes are 
dispersed, every node must wake up at the start of the 
broadcast period to exchange broadcast messages. If 
there are no incoming broadcast messages, each node 
turns off its radio until its own receive time slot to save 
energy. Determining the number of time slots is 
important because there is a tradeoff between the 
number of time slots and the delivery latency. The 
more time slots we have, the more nodes we can 
allocate exclusive time slots to, but delivery latency 
increases due to the prolonged length of the frame 
period. One alternative approach is to increase the 
number of possible time slots using multiple channels. 
This requires complex operations.  
 
3.2. Time synchronization 
 

Since several channels are available, a sender and a 
receiver have to agree on the communication channel 
as well as the transmission timing. This necessitates 
time synchronization algorithms for typical multi-
channel MAC protocols. Although some time 
synchronization techniques are available [27] [28] [29] 
[30], we use a simple time synchronization technique 
to decrease synchronization overhead. In our protocol, 
sensor nodes synchronize their upcoming timer events 
by exchanging the time remaining in the current 
superframe period, not just agree on a common clock. 
This scheme can be easily implemented by adjusting 
the expiration times of timer events.  

 
3.2.1. Initial time synchronization. Time 
synchronized nodes periodically broadcast the 
information required for time synchronization. This 
consists of the time remaining to the start of the next 
frame period, and the sequence number originated 
from the sink node. We assume that there is only one 
sink node in the network to simplify the explanation. 
Our protocol is able to accommodate several sink 
nodes if additional memory space is allocated. 

Figure 1. Frame architecture of Y-MAC 
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The sink node starts normal operation soon after 

being booted, and periodically broadcasts control 
messages to initiate the network. A node which is 
trying to join the network turns on its radio transceiver 
to receive this timing information. We set a wait time 
equivalent to the time interval between control 
messages. Once a node receives the first control 
message, it sets its time remaining to the next frame 
period to equal that of the sender. This aligns the 
superframe periods of the two nodes. 
 
3.2.2. Error compensation. Since the crystal clocks 
used for general sensor node platforms are typically 
cheap and inaccurate, all nodes have to communicate 
periodically in order to compensate for time 
synchronization errors resulting from clock drift. An 
example of error compensation is shown in Figure 2. 
T1 and T2 represent the time remaining to the next 
frame period for node 1 and node 2. When node 2 
receives the time synchronization information from 
node 1, it averages the time remaining and adjusts the 
expiration time of its timer event. As a result, the 
starting points  for the next frame period of these two 
nodes get closer. To lessen the control overhead for 
time synchronization, the timing information is 
included in control messages that every node 
periodically broadcasts to maintain network 
connectivity. 
 
3.2.3. Network partition detection and reassociation. 
Ad-hoc wireless networks are often partitioned. This 
can be caused by a number of factors, including node 
failure, flat batteries, and the presence of obstacles. If a 
node has not received any control messages with fresh 
sequence numbers during a predefined time, it is 
considered to be detached from the network. The 
waiting time for such control messages should be 
carefully determined, since reliable broadcasting is 
hard to achieve in WSNs. Our protocol separates 
broadcast traffic from unicast traffic. This makes 
broadcasting is more reliable than in the other MAC 
protocols that do not separate different types of traffic. 
In our implementation, the wait time is three times as 

large as the control message interval. This empirical 
value was sufficient to detect a network partition in our 
implementation.  

If a node detects a network partition, it goes into the 
sleep mode to save energy. To reassociate with the 
network, the radio is periodically turned on to perform 
the bootstrap phase described earlier. Unless it receives 
any control messages, the radio is turned off again. 
Initially, the sleep interval is short. Whenever a node 
wakes but fails to rejoin the network, the interval 
doubles to save energy consumption from periodic 
listening. However, a maximum value for the sleep 
interval is defined to guarantee a reasonable 
reassociation time. 
 
3.3. Time slot assignment and retrieval 

 
Time slot assignment algorithms are classified as 

either coordinated methods or distributed methods. To 
distribute control overhead evenly, we adapted a 
distributed method based on algorithms proposed in 
LMAC [8] and MMSN [23]. Every node maintains a 
slot allocation vector, storing occupied time slots 
within its own one-hop neighborhood including itself. 
Each bit in the slot allocation vector is set if the time 
slot at the same position is occupied. This information 
about time slot assignment is broadcast with the 
control messages. After completing its initial time 
synchronization, each node collects information about 
occupied time slots in its two-hop neighborhood by 
OR-ing slot allocation vectors upon receiving a control 
message. The collection time must be greater than the 
control message interval to allow for the possible loss 
of control messages. If there are many available time 
slots, one of them is randomly selected, otherwise 
several nodes should share the same time slot. The 
total number of time slots should therefore be 
determined considering the estimated node density. 

The next issue to be considered is node removal. If 
a node runs out of battery, or is removed from the 
network, the time slot that has been used by that node 
must be released for the future use. A node is 
considered to have been removed when its control 
message has not arrived during a predefined time. 
Neighboring nodes update their slot allocation vectors 
once the removal of the node is noticed.  

Figure 3 shows the structure of the control message 
used in Y-MAC. The message consists of a node 

Figure 3. Control message in Y-MAC 

Figure 2. Time synchronization technique 
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address, its own time slot, a slot allocation vector, a 
sequence number originated from the sink node, and 
information for time synchronization. 
 
3.4. Medium access design 
 

The medium access design of Y-MAC is based on 
synchronous low power listening. We define the time 
slot length to be long enough to receive one message. 
Therefore, only the contention winner can transmit a 
message to the destination node. Contention between 
potential senders is resolved in the contention window. 
The node wishing to send a packet sets a random back-
off value within the contention window. When the 
back-off timer is fired, the node wakes up and checks 
the medium for a certain amount of time. If the channel 
is clear, a preamble is transmitted until the end of the 
contention window to suppress competing 
transmissions. The receiver wakes up at the end of the 
contention window to receive the data part of the 
message. If it receives no signal from neighboring 
nodes, the receiver node turns off its radio device. This 
scheme can be easily implemented in bit-stream 
oriented RF transceivers such as the CC1000. In the 
case of packet oriented RF transceivers, however, 
additional techniques, proposed in [6] [12] [31], are 
needed. 
 
3.4.1. Broadcast messages. Broadcast messages are 
exchanged only within the broadcast period. At the 
beginning of the broadcast period, every node tunes to 
the base channel. If a node has a pending broadcast 
message, it takes part in the contention process 
described above. Only the contention winner transmits 
the data part of its message, and the other nodes listen 
to it. If a node did not receive or send a broadcast 

packet in the broadcast time slot, the radio transceiver 
is turned off to conserve node energy. To prioritize to 
control messages, Y-MAC sets their back-off timer 
values shorter than for general broadcast messages. 
 
3.4.2. Unicast messages. Unicast messages are 
initially exchanged on the base channel. Each node 
changes its frequency to the base channel at the 
beginning of its own receive time slot, and potential 
senders also do so. After receiving a unicast message 
from the contention winner, the receiver sends an 
acknowledgement to the sender to confirm delivery 
success, if the acknowledgement request flag was set in 
the message. If reliable transmission is critical, the 
application is able to set this flag to request an 
acknowledgement. Otherwise, the flag should be 
cleared to reduce communication overhead. We use 
one of the reserved fields in the IEEE 802.15.4 MAC 
header to indicate an acknowledgement request.  

This scheme is energy efficient under light traffic 
conditions, since every node polls the medium only 
during the broadcast time slots and its own unicast 
receive time slot. Under heavy traffic conditions, 
however, many unicast messages may have to wait in 
the message queue, or are dropped due to the limited 
per-node bandwidth. To address this problem, we 
propose a light-weight channel hopping mechanism, 
exploiting multiple channels to reduce the packet 
delivery latency. This mechanism is shown in Figure 4. 
We assume that four channels are available. F1 is the 
base channel. If a node receives a unicast message on 
the base channel, it hops to the next channel to receive 
the following message. The next channel is calculated 
by the hopping sequence generation algorithm. Any 
nodes that have pending messages destined to the same 
receiver also hop to the same channel and compete 
again. In this way, bursts of messages ripple across 
channels, and only one node uses the base channel at 
any one time. To guarantee per node fairness, we give 
a penalty to the contention winner by limiting the range 
of its back-off timer value for the next transmission.  

Although the channel number increases sequentially 
in this figure, other algorithms can be used to generate 
a hopping sequence. In order to space out ripples, 
however, the sequence number generation algorithm 
must guarantee that there should is only one node 
among one-hop neighbors on any particular channel. 
The algorithm should also be deterministic, so as not to 
require state exchange to arrange the rendezvous.  

The question here is how to notify the contention 
losers whether the receiving node will wait during the 
next time slot or not. There are two options. The first is 
to insert a flag into the acknowledgement, and the 
second is to transmit a small and independent packet at 
the start of the time slot. With the first option, 

Figure 4. A light-weight channel hopping mechanism
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contention losers must overhear the acknowledgements. 
Since receivers send acknowledgements to senders 
selectively, we chose the second option.  

Algorithm 1 states the control flow of a node in the 
unicast time slot. A node may also be a sender in its 
own receive time slot if two neighbors hold the same 
time slot due to lack of available time slots. 
 
4. Implementation 
 

We implemented Y-MAC in the RETOS operating 
system on the TmoteSky motes. RETOS is an 
operating system for WSNs developed at Yonsei 
University. The network architecture of RETOS is 
layered. Figure 5 illustrates the overall network 
architecture of RETOS. It consists of three layers: the 
dynamic networking layer (DNL), the networking 
supporting layer (NSL), and the medium access control 
(MAC) layer. User applications need only to interact 
with the DNL to deliver messages, and different 
routing modules can be selected taking into account the 
characteristics of user applications. The NSL is 
responsible for neighborhood management, and 
maintains neighborhood information in the neighbor 

table. New nodes are added to the neighbor table, and 
nodes are removed from the table if their periodic 
control messages have not arrived for a predefined 
period of time. The bottom layer is the MAC layer. We 
break the MAC layer into five components: back-off 
timer, access control, radio device driver, SPI bus 
control, and message queue. For our implementation of 
Y-MAC in RETOS, we also separate the broadcast 
message queue and the unicast message queue. All of 
the Y-MAC parameters, including the queue size, are 
determined at compile-time. The most important of 
these four components is the access control component 
which coordinates medium access by nodes. MAC 
designers can easily implement new MAC protocols by 
rewriting this component.  

General TDMA-based MAC protocols maintain 
neighbor information that includes assigned time slots. 
Since the NSL is in charge of neighborhood 
management, MAC implementers can concentrate on 
the access control component, keeping the source code 
simple and concise.  

The main difficulty in implementing any TDMA-
based MAC protocol is time synchronization. Every 
node in the network periodically communicates with 
other nodes to compensate for synchronization errors 
caused by clock drift. To timestamp the time remaining 
in the current frame period in the control message, we 
used a technique proposed in ETA [32]. Besides errors 
from clock drift, another problem is caused by the 
timer queue.  TDMA-based MAC protocols should 
maintain an accurate time interval between two 
consecutive frame periods. Like other operating 
systems, RETOS provides a common timer queue. 

Figure 5. RETOS network architecture 

Algorithm 1. A node in the unicast time slot 

if it received a unicast message in the previous time slot 
      hops to the next channel and notifies that it will  

continue to receive in current time slot then{ 
if there is an incoming message then 

receives a message;  
else turns off the radio; 

} 
else if it took part in contention in the previous time 

slot and still has messages destined to the previous 
destination node then{ 

hops to the same channel which the receiver 
locates in; 
if it has been informed that the destination node  

will continue to receive in the current time slot 
then 

participates in the contention; 
       else turns off the radio; 

} 
else if it has some pending messages in the current time 
slot  then{ 

hops to the base channel and participates in  
contention;  

} 
else if the current time slot is its own time slot then { 

hops to the base channel; 
if  there is an incoming message then 

receives a message; 
else turns off the radio; 

} 
else Turns off the radio; 
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Kernel developers and application developers can 
register timer events through the set_timer() system 
call which takes an upcoming timeout as a parameter. 
Since RETOS implements a common timer queue as a 
variable timer, the kernel has to reprogram the timer 
tick rate for every timer request. We initially 
implemented Y-MAC using this variable timer. When 
a new frame period is invoked, Y-MAC registers the 
next frame period as a timer event, but delays in the 
registration and deletion of timer events caused jitters. 
Moreover, activated timer requests should wait in the 
bottom half to be executed for a while. For these 
reasons, we added a new timer queue dedicated to Y-
MAC. This saves the starting time of the previous 
frame period. By adding this value and the event 
interval, Y-MAC maintains a constant time interval 
between timer events. 

 
5. Evaluation 

 
For comparison purposes, we also implemented 

LPL [2] and Crankshaft [9] in RETOS. Our version of 
LPL was based on the technique proposed in [31], and 
Crankshaft was implemented by modifying some 
features of Y-MAC.  

We evaluated performance in terms of three metrics: 
energy efficiency, delivery latency and reception rate. 
We used duty cycle as an indicator of energy efficiency, 
because accurately measuring the energy consumption 
of sensor nodes is difficult. 

 
5.1. Time synchronization error 
 

Since precise time synchronization between nodes 
is crucial to implementing multi-channel MAC 
protocols, we conducted some preliminary experiments. 
Twenty TmoteSky motes were used, with attenuated 
radio transmission power to construct a multi-hop 
environment.  

 
Table 1 summarizes the parameters and the results 

of the time synchronization experiments. The 
experiments were conducted for one hour. Every node 
broadcast its time remaining in the current frame 
period every 8 seconds. Each node recorded the time 
difference between nodes when it received time 
synchronization messages from the neighboring nodes. 
The average time difference was reported to the sink 

node. The results show that the overall synchronization 
errors are acceptable for implementing a multi-channel 
MAC protocol in general sensor node platforms. We 
used an auxiliary clock sourced from a 32.768 kHz 
crystal oscillator, hence 1 tick is equal to 1/32 ms. 

 
5.2. Experimental setup 

 
The parameter settings of our experiments are 

shown in Table 2. To compare the three MAC 
protocols fairly, we set the sleep interval for LPL to 
equal the frame length of Crankshaft and Y-MAC. 
RETOS is a multi-threaded operating system, so when 
a node receives a message it wakes up a blocked thread. 
Taking into account this wake-up delay, and the time 
to handle a message, we set the message exchange 
window to 15 ms.  
 
5.3. Performance in single-hop environments 

 
We evaluated the basic performance of the three 

MAC protocols in single-hop environments. Every 
node periodically transmits a message to a single 
receiver. We varied the number of transmitters to 
analyze the relationship between performance and 
node density.  

In Crankshaft, the sink node listens for whole frame 
period because it is connected to the base station and 
powered from it. However we assumed the single 
receiver to be a general sensor node in this experiment, 
thus it only listens during its own receive time slot. 

Figure 6 (a) shows the average duty cycles of the 
three MAC protocols when every node generates a 
message every 10 seconds. When node density is 

Table 2. Experimental parameters 
Low Power Listening 
Sleep interval 300 ms 
Channel polling duration 4 ms 
Crankshaft and Y-MAC 
Contention window 15 ms 
Message exchange window 15 ms 
Channel polling duration 4 ms 
Number of broadcast slots 2 
Number of unicast slots 8 
Packet header length 16 bytes 
Payload length 32 bytes 
Control message interval 15 secs 
Maximum retransmission 2 
Y-MAC specific 
Number of channels 5 
Wait for a notification message 3 ms 

Table 1. Time synchronization experiments 
Number of nodes 20 
Avg. number of neighbors 4.5 
Spacing between nodes 2m 
Time synchronization message interval 8 sec. 
Avg. error with neighbors 1.65 ticks 
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relatively small, LPL achieves low duty cycle. As the 
number of transmitters increases, however, duty cycle 
increases because senders waste energy overhearing 
unintended messages. In Y-MAC and Crankshaft, the 
average duty cycle remains low because the 
overhearing problem is reduced by allocating receive 
time slots to the nodes.  

The average message delivery latency is shown in 
Figure 6 (b). The latency of LPL is significantly higher 
than the other protocols, since a sender has to send a 
preamble longer than the sleep interval to wake up a 
receiver. For Y-MAC and Crankshaft, delivery latency 
is slightly higher than the theoretical average delivery 
latency of half of the frame length. Delay from 
insertion into the message queue causes the gap 
between these two latency values. Figure 6 (c) shows 
that all three protocols achieved good reception rates. 
However, Y-MAC and Crankshaft achieved good 
reception rates and low duty cycles at the same time. 

Figure 7 (a) shows the average duty cycles of the 
three MAC protocols when every node generates a 
message once every second. The average duty cycle of 
LPL increases with the number of transmitters because 
senders not only transmit messages but also overhear 
the messages from other senders. Y-MAC and 
Crankshaft still exhibit the same trend shown in figure 
6 (a). Figure 7 (b) shows the average delivery latency. 

The delivery latency of Crankshaft increases 
dramatically once the number of senders exceeds 3 due 
to the limited per node reception bandwidth. As a 
receiver receives only one message during in the frame 
period, pending messages must wait in the message 
queue to be retransmitted in a subsequent frame period. 
In Y-MAC, however, the delivery latency remains 
steady since a contention loser can retry in the next 
time slot on the next channel. Meanwhile, Figure 7 (c) 
shows that Y-MAC achieves good reception rate even 
under high traffic conditions, while the other single 
channel MAC protocols suffer due to limited reception 
bandwidth.  
 
5.3. Performance in multi-hop environments 

 
To validate practicality in real environments, we 

constructed a multi-hop network consisting of 15 
TmoteSky sensor nodes. These were deployed in a hall 
20 meters long and 15 meters wide. We attenuated the 
transmission power of the nodes to construct a multi-
hop environment. The experiment site is shown in 
Figure 8. Each node reports local information to the 
sink node, including the parent node in the routing path, 
the number of neighbors, and battery power remaining. 
We used a sensor network monitoring tool, RMon [33], 
to observe the current state of the deployed network. 

D
uty C

ycle (%
)

 
(a) Average duty cycle of nodes (b) Average delivery latency (c) Average data reception rate 

Figure 7. Performance in single-hop environments, 1 packet per second. 

 
(a) Average duty cycle of node (b) Average delivery latency (c) Average data reception rate 

Figure 6. Performance in single-hop environments, 1 packet per 10 seconds. 

60



 

RMon displays the current topology of the network as 
well as the local information gathered from the nodes. 
As shown in Figure 9, RMon displays the topology of 
the network in a graphical user interface (GUI), with 
statistics in the bottom panel. For the experiments, we 
added additional performance indicators, such as duty 
cycle and message delivery latency. LPL was 
deliberately excluded from this experiment because it 
did not perform well under high traffic conditions. 

Energy savings for the sink nodes are less important 
because this node is normally powered by the base 
station. In Y-MAC and Crankshaft, the sink node 
listens in every unicast time slot. The difference 
between the two protocols is that the sink node in Y-
MAC continuously hops to the next channel so as not 
to interfere with data reception by other nodes. 
Channel hoping is determined taking into consideration 
the available number of channels.  

We controlled the message generation rate to vary 
the traffic load in the network. Figure 10 (a) shows the 
average duty cycle of nodes with increasing message 
generation rate. Both Y-MAC and Crankshaft maintain 
a low duty cycle. The duty cycle of Y-MAC is slightly 
higher than Crankshaft because receivers send out a 
notification messages at the start of the next time slot 

in order to receive consecutive messages. Figure 10 (b) 
indicates that the average per hop delivery latency of 
Crankshaft rises faster as the traffic load increases. If a 
sender has lost the contention or did not receive an 
acknowledgement, it retries in the next frame period. 
The average per hop delivery latency of Y-MAC is 
steady because retransmission can be carried out in the 
next time slot on the next channel. Figure 10 (c) shows 
the average data reception rate at the sink node. Y-
MAC outperforms Crankshaft in terms of data 
reception rates. Crankshaft does not provide good data 
reception rates under high traffic conditions because it 
cannot handle bursty messages. The average data 
reception rate of Y-MAC remains relatively high 
because a receiver is able to receive a series of 
messages by using multiple channels. 
 
6. Conclusions 
 

In this paper, we proposed a multi-channel MAC 
protocol for wireless sensor networks. Although 
existing energy efficient MAC protocols achieve low 
energy consumption, they sacrifice network throughput. 
When an important event occurs, sensor nodes around 
the event have to report their data to the base station as 

 
(a) Average duty cycle of nodes (b) Average per hop delivery latency (c) Average data reception rate 

Figure 10. Performance in multi-hop environments 

Figure 9. Sensor network monitoring tool : RMon Figure 8. Experimental setup in the hall 
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quickly as possible. To handle bursty messages 
effectively, Y-MAC exploits multiple channels.  

Unlike most of the other multi-channel MAC 
protocols for WSNs, we implemented Y-MAC in the 
RETOS operating system running on TMoteSky motes. 
A serious challenge in implementing any TDMA-based 
MAC protocol is achieving accurate time 
synchronization. In our implementation, sensor nodes 
exchange the time remaining in the current frame 
period to synchronize their starting points for the next 
frame period. Our preliminary experiments show that 
the average time synchronization error among sensor 
nodes is acceptable for MAC designers to implement 
TDMA-based MAC protocols. We also proposed a 
light-weight channel hopping mechanism that enables 
multiple node pairs to communicate simultaneously on 
multiple channels. Sensor nodes hop to the next radio 
channel if they have additional pending messages for 
the receiver. This mechanism increases network 
throughput and reduces message delivery latency at the 
same time. 

Throughout this paper, we have conducted 
extensive experiments to validate the practicality of the 
proposed Y-MAC protocol. Experimental results show 
that Y-MAC achieves low duty cycle under light traffic 
conditions, similar to other existing low power MAC 
protocols. We have proven that Y-MAC achieves 
effective transmission of bursty messages, under high 
traffic conditions, while maintaining low energy 
consumption.  

We believe that our work demonstrates the 
practicality of adopting multi-channel MAC protocols 
in real life sensor node platforms. The use of multiple 
channels can definitely increase MAC protocol 
performance with low energy consumption.  
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