
Y-MAC: An Energy-efficient Multi-channel MAC Protocol for Dense
Wireless Sensor Networks

Youngmin Kim, Hyojeong Shin, and Hojung Cha
Department of Computer Science

Yonsei University
Seodaemun-gu, Shinchon-dong 134, Seoul 120-749, Korea

{ymkim, hjshin, hjcha}@cs.yonsei.ac.kr

Abstract

As the use of wireless sensor networks (WSNs)

becomes widespread, node density tends to increase.
This poses a new challenge for Medium Access Control
(MAC) protocol design. Although traditional MAC
protocols achieve low-power operation, they use only a
single channel which limits their performance. Several
multi-channel MAC protocols for WSNs have been
recently proposed. One of the key observations is that
these protocols are less energy efficient than single-
channel MAC protocols under light traffic conditions.
In this paper, we propose an energy efficient multi-
channel MAC protocol, Y-MAC, for WSNs. Our goal is
to achieve both high performance and energy
efficiency under diverse traffic conditions. In contrast
to most of previous multi-channel MAC protocols for
WSNs, we implemented Y-MAC on a real sensor node
platform and conducted extensive experiments to
evaluate its performance. Experimental results show
that Y-MAC is energy efficient and maintains high
performance under high-traffic conditions.

1. Introduction

Sensor nodes are typically battery powered and
operate in unattended environments. Therefore,
maximizing the energy efficiency of the nodes is
important in order to prolong network lifetimes. Since
the radio module is a major energy consumer in a
sensor node, much research has been devoted to
designing energy efficient MAC protocols.

S-MAC [1] uses several techniques to reduce
energy consumption of sensor nodes. Neighboring
nodes form a virtual cluster to auto-synchronize their
sleep schedules. Nodes periodically sleep and wake up
to reduce idle listening overhead. S-MAC also

implements RTS/CTS in order to reduce collisions and
avoid overhearing.

Low Power Listening (LPL) [2] combines the low-
level carrier sense technique with CSMA, and
Preamble Sampling [3] also proposes a similar
algorithm. Nodes are duty-cycled through periodic
channel sampling. By stretching the preamble of a
message so that it is longer than the sleep interval,
senders are able to wake up receivers. WiseMAC [4]
and B-MAC [5] are advanced versions of LPL.
WiseMAC avoids long preambles by learning the
sampling schedule of neighboring nodes. B-MAC
supports run-time reconfiguration to reduce duty cycle
and minimize idle listening. In order to save energy at
non-target receiver nodes, X-MAC [6] uses a series of
short preamble packets containing target address
information. To shorten the preamble length, the
receiver sends an early acknowledgement to the sender,
in the short pause time between preamble packets.
These contention-based MAC protocols can flexibly
adapt to diverse traffic conditions by adjusting the duty
cycle. However, they sacrifice energy during in the
contention period.

To guarantee collision-free communication, several
TDMA-based MAC protocols have been proposed.
PEDAMACS [7] uses an access point to schedule node
transmission and reception. The access point explicitly
schedules all the nodes, based on its knowledge of the
topology of the whole network. LMAC [8] uses a
distributed time slot selection mechanism. Each node is
able to send out a message collision-free since it owns
an exclusive time slot in a two-hop neighborhood.
However, all the nodes have to wake up at every time
slot in order not to miss incoming messages. While
LMAC schedules senders, Crankshaft [9] schedules
receivers, allocating time slots to the nodes for data
reception. Because each node wakes up for data
reception at a different offset from the start of the super

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.27

53

frame, the number of nodes overhearing unrelated
messages is reduced.

Since the aforementioned MAC protocols focus on
the efficient use of energy, they have difficulties in
handling bursty traffic. Typical sensor applications,
such as habitat/environmental monitoring and
infrastructure diagnostics, require low data rates and
their communication patterns are periodic. With the
widespread use of sensor applications, however, the
node density in WSNs becomes higher. Moreover,
some of latest operating systems for WSNs enable
sensor nodes to run multiple applications. This leads to
higher packet density on the network, and thus
handling bursty traffic has become a major issue in
MAC design. To address this issue, Funneling-MAC
[10] and Z-MAC [11] propose hybrid approaches,
combining the advantages of contention-based
protocols and time-slotted protocols. SCP-MAC [12]
suggests not only synchronous channel polling to
reduce energy wastage, but also a multi-hop streaming
scheme to handle bursty traffic towards base stations.

Recently, several researchers have explored the
possibility of using multiple channels to overcome the
limitations of single channel MAC protocols. Ansari,
Zhang and Maሷhoሷnen [13] propose a multi-radio MAC
protocol running on a sensor node platform equipped
with two radio transceivers. This approach is not an
economical solution for WSNs, hence devising a multi-
channel MAC protocol using a single radio transceiver
would be a better solution. Most commercial radio
devices, such as the CC1000 [14] and CC2420 [15],
already provide the basic functions required to support
multiple channels.

This paper proposes an energy-efficient multi-
channel MAC protocol, Y-MAC, for wireless sensor
networks. The protocol fully describes our previous
demonstration [16]. The main contributions of this
paper are as follows:

• We propose a light-weight channel hopping

mechanism. Y-MAC avoids redundant channel
assignment by not allocating fixed channels to
the nodes. Initially, messages are exchanged on
the base channel. When a traffic burst occurs, a
receiver and potential senders hop to one of the
other available channels, according to the
hopping sequence. Since these messages are
carried over additional channels, each node is
guaranteed to receive at least one message on the
base channel.

• Most of the abovementioned multi-channel MAC
protocols for WSNs have only been evaluated
through simulation experiments. To validate the
practicality of the proposed algorithm, we

implemented Y-MAC in the RETOS operating
system [17], and compared it with other
published MAC protocols using a set of
TmoteSky [18] sensor nodes.

The rest of this paper is organized as follows. In

Section 2, we discuss related research. Section 3
describes the design of Y-MAC. Section 4 details its
practical implementation and some related issues. In
section 5, we evaluate Y-MAC through extensive
experiments. We conclude the paper in Section 6.

2. Related work

Several multi-channel MAC protocols have been
studied for general ad-hoc networks [19] [20] [21] [22].
The protocols are, however, not suitable for WSNs
because of their limitations in terms of resources,
computing power and cost. Recently, a few multi-
channel MAC protocols for WSNs have been proposed.

MMSN [23] is the first multi-channel MAC
protocol which takes into account the restrictions
imposed by WSNs. The protocol suggests four
strategies for assigning different frequencies to the
nodes. Each node is assigned a physical frequency for
data reception. With the assigned frequencies, nodes
cooperate to maximize parallel transmission among
neighboring space.. Although MMSN achieves
increased network throughput, the fixed channel
allocations limit channel utilization. In general, the
amount of data passing through a node changes
depending on its current position in the routing path.
Moreover, the routing topology varies dynamically
because WSNs are susceptible to changes in the
surrounding environment. Therefore, MAC protocols
for WSNs should flexibly allocate network resources,
such as frequencies and time slots, to the nodes in the
network. In order to avoid static channel assignment,
Xun et. al. [24] did not allocate a fixed channel to each
node, and assumed all the nodes in the network to be
clustered. In their protocol the cluster head collects
request messages from the cluster members, and then
distributes channels to both the source and the
destination nodes. After receiving a schedule from the
cluster head, node pairs communicate on the
designated channels. Although this coordinator-based
mechanism is able to increase the total sleep time of
the nodes, the maximum network throughput of the
cluster is limited by the number of request packets
which can be managed by the cluster head. Moreover,
cluster heads consume more energy than standard
nodes, which can be a serious problem if all the nodes
are physically homogeneous. Durmaz Incel, Dulman,
and Jansen [25] propose a multi-channel MAC

54

protocol based on LMAC. Nodes communicate on the
basic channel at first, and once all the time slots on the
basic channel are exhausted, new channels are
introduced. Since nodes are scattered over several
channels, they are linked through bridge nodes. One
disadvantage of this protocol is that if two nodes
positioned within a one-hop distance are located on
different channels, they still have to communicate via a
bridge node. This results in increasing packet latency
and additional energy consumption by bridge nodes.

While these multi-channel MAC protocols were
evaluated only through theoretical analysis and
simulation results, McMAC [22] has been evaluated by
implementing a simplified version of the protocol on a
general sensor node platform. McMAC pairs a random
channel hopping algorithm with a rendezvous scheme.
However, its performance in WSNs is in doubt because
the scheme was originally designed for general
wireless networks, such as 802.11a/b/g.

3. The Y-MAC protocol

This section describes the detailed design of Y-
MAC, and related issues.

3.1. Frame architecture

Y-MAC is a TDMA-based multi-channel MAC

protocol. In general, TDMA-based MAC protocols
allocate a time slot to each node in the network. The
allocated time slot is used for data transmission or data
reception according to the protocol. We define a time
slot for data transmission as a send time slot, and a
receive time slot is defined accordingly.

If each node has an exclusive send time slot in two-
hop neighborhood, collision-free access to the medium
is guaranteed. Such a scheme is thus able to reduce
energy wasted by contention and collisions. However,
all nodes must wake up at every time slot so as not to
miss incoming messages. This results in energy
wastage due to idle listening and overhearing. In the
case of the latest commercial radio transceivers for
WSNs, energy consumption while receiving is even
greater than while transmitting due to the sophisticated
de-spreading and error correction techniques [26].
Therefore, scheduling receivers is more energy
efficient than scheduling senders under light traffic
conditions, because each node samples the medium
only in its own receive time slot. Although potential
senders compete to seize the medium in a CSMA
fashion, the contention level is relatively low since
contention among senders which have different
destination nodes is eliminated. To achieve low energy

consumption under light traffic conditions, we adapted
this scheme.

Figure 1 illustrates the frame architecture of Y-
MAC. Time is divided into several fixed-length frames,
and each frame is composed of a broadcast period and
a unicast period. Since the wake up times for nodes are
dispersed, every node must wake up at the start of the
broadcast period to exchange broadcast messages. If
there are no incoming broadcast messages, each node
turns off its radio until its own receive time slot to save
energy. Determining the number of time slots is
important because there is a tradeoff between the
number of time slots and the delivery latency. The
more time slots we have, the more nodes we can
allocate exclusive time slots to, but delivery latency
increases due to the prolonged length of the frame
period. One alternative approach is to increase the
number of possible time slots using multiple channels.
This requires complex operations.

3.2. Time synchronization

Since several channels are available, a sender and a
receiver have to agree on the communication channel
as well as the transmission timing. This necessitates
time synchronization algorithms for typical multi-
channel MAC protocols. Although some time
synchronization techniques are available [27] [28] [29]
[30], we use a simple time synchronization technique
to decrease synchronization overhead. In our protocol,
sensor nodes synchronize their upcoming timer events
by exchanging the time remaining in the current
superframe period, not just agree on a common clock.
This scheme can be easily implemented by adjusting
the expiration times of timer events.

3.2.1. Initial time synchronization. Time
synchronized nodes periodically broadcast the
information required for time synchronization. This
consists of the time remaining to the start of the next
frame period, and the sequence number originated
from the sink node. We assume that there is only one
sink node in the network to simplify the explanation.
Our protocol is able to accommodate several sink
nodes if additional memory space is allocated.

Figure 1. Frame architecture of Y-MAC

55

The sink node starts normal operation soon after

being booted, and periodically broadcasts control
messages to initiate the network. A node which is
trying to join the network turns on its radio transceiver
to receive this timing information. We set a wait time
equivalent to the time interval between control
messages. Once a node receives the first control
message, it sets its time remaining to the next frame
period to equal that of the sender. This aligns the
superframe periods of the two nodes.

3.2.2. Error compensation. Since the crystal clocks
used for general sensor node platforms are typically
cheap and inaccurate, all nodes have to communicate
periodically in order to compensate for time
synchronization errors resulting from clock drift. An
example of error compensation is shown in Figure 2.
T1 and T2 represent the time remaining to the next
frame period for node 1 and node 2. When node 2
receives the time synchronization information from
node 1, it averages the time remaining and adjusts the
expiration time of its timer event. As a result, the
starting points for the next frame period of these two
nodes get closer. To lessen the control overhead for
time synchronization, the timing information is
included in control messages that every node
periodically broadcasts to maintain network
connectivity.

3.2.3. Network partition detection and reassociation.
Ad-hoc wireless networks are often partitioned. This
can be caused by a number of factors, including node
failure, flat batteries, and the presence of obstacles. If a
node has not received any control messages with fresh
sequence numbers during a predefined time, it is
considered to be detached from the network. The
waiting time for such control messages should be
carefully determined, since reliable broadcasting is
hard to achieve in WSNs. Our protocol separates
broadcast traffic from unicast traffic. This makes
broadcasting is more reliable than in the other MAC
protocols that do not separate different types of traffic.
In our implementation, the wait time is three times as

large as the control message interval. This empirical
value was sufficient to detect a network partition in our
implementation.

If a node detects a network partition, it goes into the
sleep mode to save energy. To reassociate with the
network, the radio is periodically turned on to perform
the bootstrap phase described earlier. Unless it receives
any control messages, the radio is turned off again.
Initially, the sleep interval is short. Whenever a node
wakes but fails to rejoin the network, the interval
doubles to save energy consumption from periodic
listening. However, a maximum value for the sleep
interval is defined to guarantee a reasonable
reassociation time.

3.3. Time slot assignment and retrieval

Time slot assignment algorithms are classified as

either coordinated methods or distributed methods. To
distribute control overhead evenly, we adapted a
distributed method based on algorithms proposed in
LMAC [8] and MMSN [23]. Every node maintains a
slot allocation vector, storing occupied time slots
within its own one-hop neighborhood including itself.
Each bit in the slot allocation vector is set if the time
slot at the same position is occupied. This information
about time slot assignment is broadcast with the
control messages. After completing its initial time
synchronization, each node collects information about
occupied time slots in its two-hop neighborhood by
OR-ing slot allocation vectors upon receiving a control
message. The collection time must be greater than the
control message interval to allow for the possible loss
of control messages. If there are many available time
slots, one of them is randomly selected, otherwise
several nodes should share the same time slot. The
total number of time slots should therefore be
determined considering the estimated node density.

The next issue to be considered is node removal. If
a node runs out of battery, or is removed from the
network, the time slot that has been used by that node
must be released for the future use. A node is
considered to have been removed when its control
message has not arrived during a predefined time.
Neighboring nodes update their slot allocation vectors
once the removal of the node is noticed.

Figure 3 shows the structure of the control message
used in Y-MAC. The message consists of a node

Figure 3. Control message in Y-MAC

Figure 2. Time synchronization technique

56

address, its own time slot, a slot allocation vector, a
sequence number originated from the sink node, and
information for time synchronization.

3.4. Medium access design

The medium access design of Y-MAC is based on
synchronous low power listening. We define the time
slot length to be long enough to receive one message.
Therefore, only the contention winner can transmit a
message to the destination node. Contention between
potential senders is resolved in the contention window.
The node wishing to send a packet sets a random back-
off value within the contention window. When the
back-off timer is fired, the node wakes up and checks
the medium for a certain amount of time. If the channel
is clear, a preamble is transmitted until the end of the
contention window to suppress competing
transmissions. The receiver wakes up at the end of the
contention window to receive the data part of the
message. If it receives no signal from neighboring
nodes, the receiver node turns off its radio device. This
scheme can be easily implemented in bit-stream
oriented RF transceivers such as the CC1000. In the
case of packet oriented RF transceivers, however,
additional techniques, proposed in [6] [12] [31], are
needed.

3.4.1. Broadcast messages. Broadcast messages are
exchanged only within the broadcast period. At the
beginning of the broadcast period, every node tunes to
the base channel. If a node has a pending broadcast
message, it takes part in the contention process
described above. Only the contention winner transmits
the data part of its message, and the other nodes listen
to it. If a node did not receive or send a broadcast

packet in the broadcast time slot, the radio transceiver
is turned off to conserve node energy. To prioritize to
control messages, Y-MAC sets their back-off timer
values shorter than for general broadcast messages.

3.4.2. Unicast messages. Unicast messages are
initially exchanged on the base channel. Each node
changes its frequency to the base channel at the
beginning of its own receive time slot, and potential
senders also do so. After receiving a unicast message
from the contention winner, the receiver sends an
acknowledgement to the sender to confirm delivery
success, if the acknowledgement request flag was set in
the message. If reliable transmission is critical, the
application is able to set this flag to request an
acknowledgement. Otherwise, the flag should be
cleared to reduce communication overhead. We use
one of the reserved fields in the IEEE 802.15.4 MAC
header to indicate an acknowledgement request.

This scheme is energy efficient under light traffic
conditions, since every node polls the medium only
during the broadcast time slots and its own unicast
receive time slot. Under heavy traffic conditions,
however, many unicast messages may have to wait in
the message queue, or are dropped due to the limited
per-node bandwidth. To address this problem, we
propose a light-weight channel hopping mechanism,
exploiting multiple channels to reduce the packet
delivery latency. This mechanism is shown in Figure 4.
We assume that four channels are available. F1 is the
base channel. If a node receives a unicast message on
the base channel, it hops to the next channel to receive
the following message. The next channel is calculated
by the hopping sequence generation algorithm. Any
nodes that have pending messages destined to the same
receiver also hop to the same channel and compete
again. In this way, bursts of messages ripple across
channels, and only one node uses the base channel at
any one time. To guarantee per node fairness, we give
a penalty to the contention winner by limiting the range
of its back-off timer value for the next transmission.

Although the channel number increases sequentially
in this figure, other algorithms can be used to generate
a hopping sequence. In order to space out ripples,
however, the sequence number generation algorithm
must guarantee that there should is only one node
among one-hop neighbors on any particular channel.
The algorithm should also be deterministic, so as not to
require state exchange to arrange the rendezvous.

The question here is how to notify the contention
losers whether the receiving node will wait during the
next time slot or not. There are two options. The first is
to insert a flag into the acknowledgement, and the
second is to transmit a small and independent packet at
the start of the time slot. With the first option,

Figure 4. A light-weight channel hopping mechanism

57

contention losers must overhear the acknowledgements.
Since receivers send acknowledgements to senders
selectively, we chose the second option.

Algorithm 1 states the control flow of a node in the
unicast time slot. A node may also be a sender in its
own receive time slot if two neighbors hold the same
time slot due to lack of available time slots.

4. Implementation

We implemented Y-MAC in the RETOS operating
system on the TmoteSky motes. RETOS is an
operating system for WSNs developed at Yonsei
University. The network architecture of RETOS is
layered. Figure 5 illustrates the overall network
architecture of RETOS. It consists of three layers: the
dynamic networking layer (DNL), the networking
supporting layer (NSL), and the medium access control
(MAC) layer. User applications need only to interact
with the DNL to deliver messages, and different
routing modules can be selected taking into account the
characteristics of user applications. The NSL is
responsible for neighborhood management, and
maintains neighborhood information in the neighbor

table. New nodes are added to the neighbor table, and
nodes are removed from the table if their periodic
control messages have not arrived for a predefined
period of time. The bottom layer is the MAC layer. We
break the MAC layer into five components: back-off
timer, access control, radio device driver, SPI bus
control, and message queue. For our implementation of
Y-MAC in RETOS, we also separate the broadcast
message queue and the unicast message queue. All of
the Y-MAC parameters, including the queue size, are
determined at compile-time. The most important of
these four components is the access control component
which coordinates medium access by nodes. MAC
designers can easily implement new MAC protocols by
rewriting this component.

General TDMA-based MAC protocols maintain
neighbor information that includes assigned time slots.
Since the NSL is in charge of neighborhood
management, MAC implementers can concentrate on
the access control component, keeping the source code
simple and concise.

The main difficulty in implementing any TDMA-
based MAC protocol is time synchronization. Every
node in the network periodically communicates with
other nodes to compensate for synchronization errors
caused by clock drift. To timestamp the time remaining
in the current frame period in the control message, we
used a technique proposed in ETA [32]. Besides errors
from clock drift, another problem is caused by the
timer queue. TDMA-based MAC protocols should
maintain an accurate time interval between two
consecutive frame periods. Like other operating
systems, RETOS provides a common timer queue.

Figure 5. RETOS network architecture

Algorithm 1. A node in the unicast time slot

if it received a unicast message in the previous time slot
 hops to the next channel and notifies that it will

continue to receive in current time slot then{
if there is an incoming message then

receives a message;
else turns off the radio;

}
else if it took part in contention in the previous time

slot and still has messages destined to the previous
destination node then{

hops to the same channel which the receiver
locates in;
if it has been informed that the destination node

will continue to receive in the current time slot
then

participates in the contention;
 else turns off the radio;

}
else if it has some pending messages in the current time
slot then{

hops to the base channel and participates in
contention;

}
else if the current time slot is its own time slot then {

hops to the base channel;
if there is an incoming message then

receives a message;
else turns off the radio;

}
else Turns off the radio;

58

Kernel developers and application developers can
register timer events through the set_timer() system
call which takes an upcoming timeout as a parameter.
Since RETOS implements a common timer queue as a
variable timer, the kernel has to reprogram the timer
tick rate for every timer request. We initially
implemented Y-MAC using this variable timer. When
a new frame period is invoked, Y-MAC registers the
next frame period as a timer event, but delays in the
registration and deletion of timer events caused jitters.
Moreover, activated timer requests should wait in the
bottom half to be executed for a while. For these
reasons, we added a new timer queue dedicated to Y-
MAC. This saves the starting time of the previous
frame period. By adding this value and the event
interval, Y-MAC maintains a constant time interval
between timer events.

5. Evaluation

For comparison purposes, we also implemented

LPL [2] and Crankshaft [9] in RETOS. Our version of
LPL was based on the technique proposed in [31], and
Crankshaft was implemented by modifying some
features of Y-MAC.

We evaluated performance in terms of three metrics:
energy efficiency, delivery latency and reception rate.
We used duty cycle as an indicator of energy efficiency,
because accurately measuring the energy consumption
of sensor nodes is difficult.

5.1. Time synchronization error

Since precise time synchronization between nodes
is crucial to implementing multi-channel MAC
protocols, we conducted some preliminary experiments.
Twenty TmoteSky motes were used, with attenuated
radio transmission power to construct a multi-hop
environment.

Table 1 summarizes the parameters and the results

of the time synchronization experiments. The
experiments were conducted for one hour. Every node
broadcast its time remaining in the current frame
period every 8 seconds. Each node recorded the time
difference between nodes when it received time
synchronization messages from the neighboring nodes.
The average time difference was reported to the sink

node. The results show that the overall synchronization
errors are acceptable for implementing a multi-channel
MAC protocol in general sensor node platforms. We
used an auxiliary clock sourced from a 32.768 kHz
crystal oscillator, hence 1 tick is equal to 1/32 ms.

5.2. Experimental setup

The parameter settings of our experiments are

shown in Table 2. To compare the three MAC
protocols fairly, we set the sleep interval for LPL to
equal the frame length of Crankshaft and Y-MAC.
RETOS is a multi-threaded operating system, so when
a node receives a message it wakes up a blocked thread.
Taking into account this wake-up delay, and the time
to handle a message, we set the message exchange
window to 15 ms.

5.3. Performance in single-hop environments

We evaluated the basic performance of the three

MAC protocols in single-hop environments. Every
node periodically transmits a message to a single
receiver. We varied the number of transmitters to
analyze the relationship between performance and
node density.

In Crankshaft, the sink node listens for whole frame
period because it is connected to the base station and
powered from it. However we assumed the single
receiver to be a general sensor node in this experiment,
thus it only listens during its own receive time slot.

Figure 6 (a) shows the average duty cycles of the
three MAC protocols when every node generates a
message every 10 seconds. When node density is

Table 2. Experimental parameters
Low Power Listening
Sleep interval 300 ms
Channel polling duration 4 ms
Crankshaft and Y-MAC
Contention window 15 ms
Message exchange window 15 ms
Channel polling duration 4 ms
Number of broadcast slots 2
Number of unicast slots 8
Packet header length 16 bytes
Payload length 32 bytes
Control message interval 15 secs
Maximum retransmission 2
Y-MAC specific
Number of channels 5
Wait for a notification message 3 ms

Table 1. Time synchronization experiments
Number of nodes 20
Avg. number of neighbors 4.5
Spacing between nodes 2m
Time synchronization message interval 8 sec.
Avg. error with neighbors 1.65 ticks

59

relatively small, LPL achieves low duty cycle. As the
number of transmitters increases, however, duty cycle
increases because senders waste energy overhearing
unintended messages. In Y-MAC and Crankshaft, the
average duty cycle remains low because the
overhearing problem is reduced by allocating receive
time slots to the nodes.

The average message delivery latency is shown in
Figure 6 (b). The latency of LPL is significantly higher
than the other protocols, since a sender has to send a
preamble longer than the sleep interval to wake up a
receiver. For Y-MAC and Crankshaft, delivery latency
is slightly higher than the theoretical average delivery
latency of half of the frame length. Delay from
insertion into the message queue causes the gap
between these two latency values. Figure 6 (c) shows
that all three protocols achieved good reception rates.
However, Y-MAC and Crankshaft achieved good
reception rates and low duty cycles at the same time.

Figure 7 (a) shows the average duty cycles of the
three MAC protocols when every node generates a
message once every second. The average duty cycle of
LPL increases with the number of transmitters because
senders not only transmit messages but also overhear
the messages from other senders. Y-MAC and
Crankshaft still exhibit the same trend shown in figure
6 (a). Figure 7 (b) shows the average delivery latency.

The delivery latency of Crankshaft increases
dramatically once the number of senders exceeds 3 due
to the limited per node reception bandwidth. As a
receiver receives only one message during in the frame
period, pending messages must wait in the message
queue to be retransmitted in a subsequent frame period.
In Y-MAC, however, the delivery latency remains
steady since a contention loser can retry in the next
time slot on the next channel. Meanwhile, Figure 7 (c)
shows that Y-MAC achieves good reception rate even
under high traffic conditions, while the other single
channel MAC protocols suffer due to limited reception
bandwidth.

5.3. Performance in multi-hop environments

To validate practicality in real environments, we

constructed a multi-hop network consisting of 15
TmoteSky sensor nodes. These were deployed in a hall
20 meters long and 15 meters wide. We attenuated the
transmission power of the nodes to construct a multi-
hop environment. The experiment site is shown in
Figure 8. Each node reports local information to the
sink node, including the parent node in the routing path,
the number of neighbors, and battery power remaining.
We used a sensor network monitoring tool, RMon [33],
to observe the current state of the deployed network.

D
uty C

ycle (%
)

(a) Average duty cycle of nodes (b) Average delivery latency (c) Average data reception rate

Figure 7. Performance in single-hop environments, 1 packet per second.

(a) Average duty cycle of node (b) Average delivery latency (c) Average data reception rate

Figure 6. Performance in single-hop environments, 1 packet per 10 seconds.

60

RMon displays the current topology of the network as
well as the local information gathered from the nodes.
As shown in Figure 9, RMon displays the topology of
the network in a graphical user interface (GUI), with
statistics in the bottom panel. For the experiments, we
added additional performance indicators, such as duty
cycle and message delivery latency. LPL was
deliberately excluded from this experiment because it
did not perform well under high traffic conditions.

Energy savings for the sink nodes are less important
because this node is normally powered by the base
station. In Y-MAC and Crankshaft, the sink node
listens in every unicast time slot. The difference
between the two protocols is that the sink node in Y-
MAC continuously hops to the next channel so as not
to interfere with data reception by other nodes.
Channel hoping is determined taking into consideration
the available number of channels.

We controlled the message generation rate to vary
the traffic load in the network. Figure 10 (a) shows the
average duty cycle of nodes with increasing message
generation rate. Both Y-MAC and Crankshaft maintain
a low duty cycle. The duty cycle of Y-MAC is slightly
higher than Crankshaft because receivers send out a
notification messages at the start of the next time slot

in order to receive consecutive messages. Figure 10 (b)
indicates that the average per hop delivery latency of
Crankshaft rises faster as the traffic load increases. If a
sender has lost the contention or did not receive an
acknowledgement, it retries in the next frame period.
The average per hop delivery latency of Y-MAC is
steady because retransmission can be carried out in the
next time slot on the next channel. Figure 10 (c) shows
the average data reception rate at the sink node. Y-
MAC outperforms Crankshaft in terms of data
reception rates. Crankshaft does not provide good data
reception rates under high traffic conditions because it
cannot handle bursty messages. The average data
reception rate of Y-MAC remains relatively high
because a receiver is able to receive a series of
messages by using multiple channels.

6. Conclusions

In this paper, we proposed a multi-channel MAC
protocol for wireless sensor networks. Although
existing energy efficient MAC protocols achieve low
energy consumption, they sacrifice network throughput.
When an important event occurs, sensor nodes around
the event have to report their data to the base station as

(a) Average duty cycle of nodes (b) Average per hop delivery latency (c) Average data reception rate

Figure 10. Performance in multi-hop environments

Figure 9. Sensor network monitoring tool : RMon Figure 8. Experimental setup in the hall

61

quickly as possible. To handle bursty messages
effectively, Y-MAC exploits multiple channels.

Unlike most of the other multi-channel MAC
protocols for WSNs, we implemented Y-MAC in the
RETOS operating system running on TMoteSky motes.
A serious challenge in implementing any TDMA-based
MAC protocol is achieving accurate time
synchronization. In our implementation, sensor nodes
exchange the time remaining in the current frame
period to synchronize their starting points for the next
frame period. Our preliminary experiments show that
the average time synchronization error among sensor
nodes is acceptable for MAC designers to implement
TDMA-based MAC protocols. We also proposed a
light-weight channel hopping mechanism that enables
multiple node pairs to communicate simultaneously on
multiple channels. Sensor nodes hop to the next radio
channel if they have additional pending messages for
the receiver. This mechanism increases network
throughput and reduces message delivery latency at the
same time.

Throughout this paper, we have conducted
extensive experiments to validate the practicality of the
proposed Y-MAC protocol. Experimental results show
that Y-MAC achieves low duty cycle under light traffic
conditions, similar to other existing low power MAC
protocols. We have proven that Y-MAC achieves
effective transmission of bursty messages, under high
traffic conditions, while maintaining low energy
consumption.

We believe that our work demonstrates the
practicality of adopting multi-channel MAC protocols
in real life sensor node platforms. The use of multiple
channels can definitely increase MAC protocol
performance with low energy consumption.

7. Acknowledgements

This research was supported by the National
Research Laboratory (NRL) program of the Korean
Science and Engineering Foundation (No.
M10500000059- 6J0000- 05910) and MIC (Ministry of
Information and Communication), Korea, under the
ITRC (Information Technology Research Center)
support program supervised by the IITA (Institute for
Information Technology Advancement)" (IITA-2008-
C1090-0801-0015)

8. References

[1] W. Ye, J. Heidemann and D. Estrin, “An Energy-efficient
MAC Protocol for Wireless Sensor Networks”, 21st
Conference of the IEEE Computer and Communications
Societies.

[2] J. Hill and D. Culler, “Mica: a wireless platform for
deeply embedded networks.”, IEEE Micro, 2002.

[3] A. El-Hoiydi, “Aloha with Preamble Sampling for
Sporadic Traffic in Ad Hoc Wireless Sensor Networks.”,
IEEE International Conference on Communications (ICC),
2002.

[4] A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: An Ultra
Low Power MAC Protocol for Multi-hop Wireless Sensor
Networks.”, First Int. Workshop on Algorithmic Aspects of
Wireless Sensor Networks (ALGOSENSORS 2004), Lecture
Notes in Computer Science, LNCS 3121, 2004.

[5] J. Polastre, J. Hill and D. Culler, “Versatile low power
media access for wireless sensor networks.”, SenSys04, 2004.

[6] M. Buettner, G. Yee, E. Anderson and R. Han, “X-MAC:
A Short Preamble MAC Protocol For Duty-CycledWireless
Networks.”, SenSys06, 2006.

[7] S. Coleri-Ergen and P. Varaiya, “PEDAMACS: Power
Efficient and Delay Aware Medium Access Protocol for
Sensor Networks.”, IEEE Trans. on Mobile Computing, 2006.

[8] L. van Hoesel and P. Havinga, “A Lightweight Medium
Access Protocol (LMAC) for Wireless Sensor Networks.”.
INSS04, 2004.

[9] G. Halkes and K. Langendoen, “Crankshaft: An Energy-
Efficient MAC-Protocol For Dense Wireless Sensor
Networks.”, EWSN07, 2007.

[10] Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T.
Campbell, Se Gi Hong and Francesca Cuomo, “Funneling-
MAC: A Localized, Sink-Oriented MAC For Boosting
Fidelity in Sensor Networks.”, SenSys06, 2006.

[11] I. Rhee, A. Warrier, M. Aia and J. Min, “Z-MAC: a
hybrid MAC for wireless sensor networks”, SenSys05, 2005.

[12] W. Ye, F. Silva and J. Heidemann, “Ultra-Low Duty
Cycle MAC with Scheduled Channel Polling.”, SenSys06,
2006.

[13] Junaid Ansari, Xi Zhang and Petri Maሷhoሷ nen, “Demo
Abstract: Multi-Radio Medium Access Control Protocol for
Wireless Sensor Networks.”, SenSys07, 2007.

[14] Chipcon, CC1000 Single Chip Very Low Power RF
Transceiver. http://www.chipcon.com/files/CC1000Data
Sheet2_2.pdf

[15] Chipcon, CC2420 2.4GHz IEEE 802.15.4 / ZigBee-
ready RF Transceiver.
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

[16] Youngmin Kim, Hyojeong Shin and Hojung Cha,
“Demo Abstract: A Multi-channel MAC Implementation for
Wireless Sensor Networks.”, SenSys07, 2007.

62

[17] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, C.
Yoon, “RETOS: Resilient, Expandable, and Threaded
Operating System for Wireless Sensor Networks.”, The Sixth
International Conference on Information Processing in
Sensor Networks (IPSN 2007)

[18] Tmote Sky, http://www.sentilla.com/pdf/eol/tmote-sky-
datasheet.pdf

[19] Shih-Lin Wu, Chih-Yu Lin, Yu-Chee Tseng, and Jang-
Ping Sheu, “A New Multi-Channel MAC protocol with on
demand channel assignment for mobile ad-hoc networks.”, In
Proc. International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN ’00)

[20] A. Tzamaloukas and J.J. Garcia-Luna-Aceves,
“Channel-Hopping Multiple Access.”, In Proc. IEEE ICC
2000, New Orleans, Louisiana, June 18-22, 2000.

[21] Jungmin So and Nitin Vaidya, “Multi-Channel MAC for
AdHoc Networks: Handling Multi-Channel Hidden
Terminals Using A Single Transceiver.”, ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), May 2004.

[22] Hoi-Sheung So, W. Walrand, J. and Jeonghoon Mo,
“McMAC: A Parallel Rendezvous Multi-Channel MAC
Protocol.”, Wireless Communications and Networking
Conference (WCNC), 2007.

[23] Gang Zhou, Chengdu Huang, Ting Yan, Tian He, John
A. Stankovic and Tarek F. Abdelzaher, “MMSN: Multi-
Frequency Media Access Control for Wireless Sensor
Networks.”, INFOCOM, 2006

[24] Chen Xun, Han Peng, He Qiu-sheng, Tu Shi-liang, Chen
Zhang-long, “A Multi-Channel MAC Protocol for Wireless
Sensor Networks.”, In Proceedings of The Sixth IEEE
International Conference on Computer and Information
Technology (CIT), 2006.

[25] Ozlem Durmaz Incel, Stefan Dulman, and Pierre Jansen,
“Multi-channel Support for Dense Wireless Sensor
Networking.”, EUROSSC, 2006.

[26] Hui Cao, Kenneth W. Parker and Anish Arora, “O-MAC:
A Receiver Centric Power Management Protocol.”, Network
Protocols, 2006. ICNP '06.

[27] Kay R omer, “Time Synchronization in Ad Hoc
Networks.”, In Proceedings of MobiHoc 2001, Long Beach,
CA, Oct 2001.

[28] Weilian Su and Ian F. Akyildiz, “Time-Diffusion
Synchronization Protocol for Sensor Networks.”, Technical
report, Georgia Institute of Technology, Broadband and
Wireless Networking Laboratory, 2002.

[29] Saurabh Ganeriwal, Ram Kumar, Sachin Adlakha, and
Mani B. Srivastava, ”Network-wide Time Synchronization in
Sensor Networks.”, Technical report, University of
California, Dept. of Electrical Engineering, 2002.

[30] Hoi-Sheung Wilson So, Giang Nguyen, Jean Walrand,
“Practical Synchronization Techniques for Multi-Channel
MAC.”, MobiCom’06, September 23–26, 2006, Los Angeles,
California, USA.

[31] S. Moon, T. Kim, H. Cha, "Enabling Low Power
Listening on IEEE 802.15.4-based Sensor Nodes", The 5th
IEEE Wireless Communications & Networking Conference
(WCNC 2007), Hong Kong, China, March 2007.

[32] Branislav Kusy, Prabal Dutta, Philip Levis, Miklos
Maroti, Akos Ledeczi, and David Culler, “Elapsed Time on
Arrival: A simple, versatile, and scalable primitive for
canonical time synchronization services.”, accepted for
publication in Int. J. Ad Hoc Ubiq. Comput.

[33] I. Jung, H. Cha, "RMTool: Component-Based Network
Management System for Wireless Sensor Networks," 2007
IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, January 2007.

63

