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ABSTRACT 
Enabled by the continuous advancement in fabrication technology, 
present day synchronous microprocessors include more than 100 
million transistors and have clock speeds well in excess of the 
1GHz mark. Distributing a low-skew clock signal in this frequency 
range to all areas of a large chip is a task of growing complexity. 
As a solution to this problem, designers have recently suggested 
the use of frequency islands that are locally clocked and externally 
communicate using mixed timing communication schemes. Such a 
design style fits nicely the recently proposed concept of voltage 
islands that, in addition, can potentially enable fine grain dynamic 
power management. This paper proposes a design exploration 
framework for application-adaptive multiple clock processors 
which provides the means for analyzing and identifying the right 
inter-domain communication scheme and the proper granularity for 
the choice of voltage/frequency. In addition, the proposed design 
exploration framework allows for comparative analysis of newly 
proposed or existing application-driven dynamic power 
management strategies. Such a design exploration framework and 
accompanying results can help designers and computer architects 
in choosing the right design strategy for achieving better power-
performance trade-offs in multiple clock high-end processors. 
 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – clocking 

strategies, multi-voltage circuits, application-adaptive processor.  

General Terms 
Algorithms, Management, Performance, Design, Experimentation 

Keywords 
Microarchitecture, Multi Clock Processors, Globally Asynchronous 

Locally Synchronous, Dynamic Voltage Scaling, Simulation 
Framework. 

 

1 Introduction 
The last few decades have been dominated by Moore’s Law, with 

performance being the primary driving force in processor design. This 
trend has lead to a vast increase in the number of transistors used in 
modern microprocessors, while constantly pushing clock frequencies. 
Unfortunately, this has also resulted in a huge increase in power 
dissipation as well, with current processors already dissipating more 
than 100 Watts. One major design bottleneck in today’s high-
performance VLSI systems is the clock distribution network. Large 
clock nets perform like very long signal paths, making it hard for 
designers to keep the clock skew within tolerable limits. With 
increasingly large processor dices and clock frequencies in the multi-
gigahertz range, ever more complex clocking schemes are needed [1]. 
Furthermore, the clock skew is getting worse with each shrink due to 
the increasingly high process and system parameter variation.  

To address these problems, two approaches are possible. The first 
option is to use fully asynchronous designs. While this has been tried 
successfully in isolated cases [2][3][4], the design methodology for 
asynchronous design is far from being mature and thus, far from 
widespread acceptance.  

Another alternative is to use globally asynchronous, locally 
synchronous (GALS) architectures [5][6][7][8], which attempt to 
combine the benefits of both fully synchronous and asynchronous 
systems. A GALS architecture is composed of synchronous blocks that 
communicate with each other using an asynchronous communication 
scheme. Such systems have important advantages, as they do not 
require a global clock distribution network or de-skewing circuitry. 
Using locally generated clock signals within each individual domain, 
they make it possible to take advantage of the industry-standard 
synchronous design methodology. However, the overhead introduced 
by communicating data across clock domain boundaries may become a 
fundamental drawback, limiting the performance of these systems. 
Thus, the choice of granularity for these synchronous blocks or islands 
must be very carefully done in order to prevent the inter-domain 
communication from becoming a bottleneck. At the same time, the 
choice of the inter-domain communication scheme, as well as of the 
on-the-fly mechanisms for per-domain dynamic speed/voltage scaling 
become critical when analyzing overall power-performance trends. 

The contribution of the work proposed in this paper is twofold: 
• First, we propose a design exploration framework for application-

adaptive multiple clock high-end processors that is fully 
parameterizable and allows for detailed analysis of available 
power/performance trade-offs.  

• Second, this paper introduces a new type of dynamic control strategy 
for application-adaptive multiple clock processors that matches the 
voltage/speed for various frequency/voltage islands to the ones 
required by the application workload.  
The paper is organized as follows: in Section 2 we present previous 

work related to the aspects addressed in this paper. In Section 3 we 
present the baseline microarchitecture under consideration. Section 4 
details our simulation framework and the experimental setup, while the 
results of all the tests are presented in Section 5. Finally, we conclude 
the paper with an analysis of the trends observed in the experimental 
results together with our conclusions and directions for future research. 

2 Related Work 
With high clock frequencies driving an ever-increasing number of 

transistors available on-chip, the power burned in the clock distribution 
network starts to become a limitation. In [9], the authors identify the 
clock distribution circuitry as a primary source of power consumption. 
An approach that allows for aggressive future frequency increases, 
maintains a synchronous design methodology, and exploits the trend 
towards making functional blocks more autonomous is the Globally 
Asynchronous, Locally Synchronous clocking style [5][12]. Several 
VLSI designs that can benefit from such a technique were proposed 
[10][11]. All of them are based on the observation that in these specific 
cases the communication performance is not critical. 
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 Previous studies focused on assessing the viability of a GALS 
clocking strategy to a superscalar, out-of-order processor. The 
performance and power consumption of such a processor are evaluated 
in [7]. While performance is worse than in the fully synchronous case 
(with an average of 10%), the paper identifies the ability of the GALS 
processor to use different clock frequencies and supply voltages for 
each synchronous island. The same idea of scaling the clock frequency 
and the supply voltage is studied in [8], concluding that such 
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processors can be more power efficient than their fully synchronous 
counterparts. The paper proposes an algorithm based on the attack-
decay strategy, which can select an optimum voltage and clock 
frequency out of a large number of possible levels.  

Another area of research related to the proposed design exploration 
framework addresses mixed-clock interface design for robust 
communication among frequency islands. A number of mechanisms 
for avoiding race conditions are evaluated in [13]: asynchronous 
wrappers, stretchable clock generators, demand ports, poll ports. While 
these designs can ensure a proper behavior of the system, they 
introduce some performance penalties when compared to their 
synchronous counterparts. To address this issue, asynchronous queues 
were proposed in [14]. This mechanism does not improve the 
communication latency but it increases the bandwidth, allowing data 
transfers on each clock cycle. 

 

3 Baseline microarchitecture 
In this paper, we start with a fairly typical out-of-order, superscalar 

microarchitecture and analyze the impact of various design decisions 
on the power and performance of the GALS processor. To this end, we 
assume a 10-stage pipeline implementing a 4-way processor. While 
this pipeline is significantly longer than the ones studied in [7] or [8], 
we feel that this increased length resembles the pipelines that are 
currently implemented in commercial processors more accurately. The 
underlying microarchitecture organization is shown in Figure 1.  

Figure 1. The baseline microarchitecture 

4 GALS microarchitecture design knobs 
Of extreme importance for the proposed design exploration 

framework is the choice of various design knobs that impact the 
overall power-performance trade-offs in GALS processors. The 
following design choices are of interest for such processors: 
• The choice of the asynchronous communication scheme 
• The granularity chosen for the frequency islands. 
• The dynamic control strategy for adjusting voltage/speed of clock 

domains so as to achieve better power efficiency. 
 

4.1 Clock domain granularity  
To assess the impact of introducing a mixed-clock interface inside 

our pipeline, we have to break it into several synchronous blocks. The 
natural approach – minimize communication over the synchronous 
blocks boundaries – does not necessarily work here. An instruction 
must pass through all the pipeline stages in order to be completed. 
Thus, we have to find other criteria for partitioning. 

One possible criterion for placing the asynchronous interfaces is to 
minimize clock skew, allowing for faster local clocks. Our results [17]1 
show that the most significant speed-up can be achieved by increasing 
the clock speed in the Fetch or Memory, followed by Integer and FP 
partitions. Thus, these modules should be placed in separate clock 
domains if possible. 
                                                 
1 Due to the page limit, we were unable to include detailed results for this analysis and 
the newly proposed dynamic control mechanism. 

For the execution block, we have used the same partitioning scheme 
proposed in [7] and [8]. Starting with a processor with separate clusters 
for integer, floating point and memory execution units (much like the 
Alpha 21264 design) we can naturally separate these clusters in 3 
synchronous modules. The drawback of this scheme is that it increases 
the latency of forwarding a result to another functional unit. This can 
effect be seen mainly in the overall latency of load-use operations that 
are executed in separate clock domains.  

To limit the latency of accessing register data, the Register Read 
and the Write Back stages must be placed together, in the same 
synchronous partition as the Register File. Using the same logic, the 
Rename and Retire stage access the Rename Table and the list of 
available registers so they must be placed in the same partition. 

Thus, we can now split the pipeline into at least 4 clock regions. 
The first one is composed of the Fetch stage, together with all the 
branch prediction and I-cache. The Decode stages can be included 
either in the first clocking region or in the second one – all instructions 
will be passing through both of them. In order to limit the load 
capacitance variations [15] inside synchronous blocks, we introduce 
the boundary after the Decode stages. The second clocking region will 
be organized around the Renaming mechanism, containing the Reorder 
Buffer and Retire logic. Given the variation in the pipeline register 
width, an asynchronous boundary can be also introduced after 
Dispatch. The third clocking region must be organized around the 
Register File, containing Register Read and Write Back. Finally, the 
out-of-order part of the pipeline (Issue logic and execution) is split into 
clusters that amount for 3 different clock regions. The forwarding 
paths can thus be internal – towards a unit of the same type, placed in 
the same clock region – or external – towards other clock regions.  

 

4.2 Inter-domain communication scheme 
The conventional scheme to tackle such problems is the extensive 

use of synchronizers - a double latching mechanism that conservatively 
delays a potential read, waiting for data signals to stabilize. This makes 
classical synchronizers rather unattractive, as their performance 
diminishes and the probability of failure for the whole system rises 
with the number of synchronized signals. 

Pausable clocks have been proposed as a scheme that relies on 
stretching the clock periods on the two communicating blocks until the 
data is stable or the receiver is ready to accept it [6].  While the latency 
is smaller, stretching the clock is reflected in the performance of the 
synchronous blocks and thus can be applied on a per cycle basis only 
when the two blocks use a similar clock frequency.  

Another approach is to use arbiters for detecting any timing 
violation condition (i.e. the write-to-read time is smaller than a certain 
threshold). While the mechanism is conceptually similar to that of 
synchronizers, it offers a much smaller latency. 

Asynchronous FIFO queues were proposed [14], using either 
synchronizers or arbiters. This approach works well under the 
assumption that the FIFO is neither completely full, nor completely 
empty. The scheme retains the extra latency introduced by the use of 
synchronizers, but improves the bandwidth through pipelining. During 
nominal operation, a read is serviced by a different cell than the one 
handling the next write, without the need of further synchronization. 

 

4.3 Dynamic control strategy 
One of the main advantages offered by the GALS approach is the 

ability to run each synchronous module at a different clock frequency. 
If the original pipeline stages are not perfectly balanced, the 
synchronous blocks can naturally be clocked at different frequencies. 
Furthermore, even with a perfectly balanced design (resizing the 
transistors to speed-up the longer signal paths), we can slow down 
synchronous blocks that are off the critical path while keeping the 
others running at nominal speed. The slower clock domains could also 
operate at a lower supply voltage, thus producing additional power 
savings. Since energy is quadratically dependent on Vdd, reducing it 
can lead to significant energy benefits: D≈Vdd / (Vdd - Vt)α where D is 
the logic delay, Vdd is the supply voltage, Vt is the threshold voltage 
and α is a technology dependent constant (currently, 1.2-1.6).  
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Different schemes have been previously proposed for selecting the 
optimal frequency and voltage supply. In [7], a simple threshold-based 
algorithm is used for selecting the best operating point for modules that 
have a low power mode. It monitors the occupancy of each issue 
window, deciding to switch to the low power mode when this 
occupancy drops below a predefined threshold, or ramp the voltage up 
when a high-threshold is exceeded. A more complex model is 
proposed in [8]. Here, an attack-decay algorithm selects the operating 
point for processors that offer a wide range of frequencies and supply 
voltages. It monitors the instruction window occupancy and, based on 
its variation, decides whether the frequency should be increased or 
decreased. Any significant variation triggers a rapid change of the 
clock frequency in order to counter it. Otherwise, the clock frequency 
is decayed continuously, while monitoring the overall performance. 

Looking at each of these methods, we note that instruction window 
occupancy may not be the only significant aspect to be considered for 
deciding a switch. Even though an issue window has high occupancy, 
this could be due to a bottleneck in another cluster. In this case, inter-
domain dependencies may be more significant than the window 
occupancy. Furthermore, both [7] and [8] allow dynamic voltage 
scaling for the execution core only, assuming the speed of the front-
end to be critical for the overall performance. However, there are 
portions of the code where the achievable IPC is significantly smaller 
than the theoretical pipeline throughput. In these cases, it makes sense 
to reduce the speed of the front-end since it produces more instructions 
than can be processed by the back-end. In order to study the efficiency 
of these observations, we propose to modify the previously described 
methods to include both information about cross-domain dependencies 
and dynamic scaling capabilities for the front-end of the pipeline [17]. 

 

5 Simulation Framework 
To measure the impact of our GALS microarchitecture, we have 

simulated a cycle-accurate model of the original pipeline (Figure 1). 
Our simulator is based on SimpleScalar [15], but reflects the target 
pipeline more accurately. It uses normal pipeline registers, separate 
Instruction Windows for each execution cluster and a Retire Buffer. 
Register Renaming is similar to the MIPS R10000 processor. We have 
also moved the execution from Decode (as it is done in SimpleScalar) 
to the Execute stage, to better reflect the behavior of the pipeline. To 
model a GALS environment without global synchronization points, we 
developed an event-driven simulation engine. Events associated with 
each frequency island are synchronized with a local, randomly started 
clock signal. This event-driven simulation engine allows for any 
mixture of clocks speeds and starting phases. 

 We have used Wattch [16] for including power models in our 
framework. These models (including the ones for the asynchronous 
communication) are integrated in our baseline and GALS simulator 
versions to provide energy statistics. Similar to [16], unused units are 
modeled as consuming 10% of their normal in-use power consumption 
to account for all the overheads associated with clock gating.  

In addition to modeling the switching capacitance of memories and 
buses inside the processor, we have also modeled the clock grids. We 
have assumed a clock distribution hierarchy resembling the one used 
by the Alpha 21264 processor. We have modeled one global clock grid 
and local clock grids corresponding to each of the synchronous 
domains. The area and metal density for each clock grid are the ones 
published for the 21264 processor. 

 

Table 1. Microarchitecture parameters 
Parameter Value 
Pipeline 10 stages, 4 way out-of-order 
Instruction Window 64 entries – 32 Int, 16 FP, 16 Mem 
Load / Store Queue 32 entries 
I-Cache 32k, 2 ways, 1 cycle hit time 
D-Cache 32k, 4 ways, 2 cycles hit time 
L2 Cache Unified, 256k, 4 way set-associative, 10 cycles 
Memory access time 100 cycles 
Functional Units 4 Integer ALUs, 2 Integer MUL/DIV 

2 Memory ports 
2 FP Adders, 1 FP MUL/DIV 

Branch Prediction G-share 
 

The parameters for our test microarchitecture are presented in Table 
1. We have used integer and floating-point benchmarks from both 
SPEC95 and SPEC2000 suites. For all experiments, we have fast-
forwarded over the first 500 million instructions and then continued 
simulation for another 50 million. Since clock signals are randomly 
staggered in the GALS cases, simulations were run three times 
averaging the results. To compare the various strategies, we have used 
arbiter-based FIFOs with a synchronization time of 30% of the 
smallest cycle time. To have a fair comparison, we used similar 
frequency levels for all methods, further divided into 8 sub-levels for 
the attack-decay algorithm. 

 

6 Experimental results 
We have analyzed the impact of the granularity and asynchronous 

communication choice, as well as the impact of the dynamic control 
strategy on the overall performance and power. Assuming the 
communication mechanism uses FIFOs, a penalty of up to 16% is 
observed for 6 clock domains. As shown in Figure 2, the performance 
hit increases with the number of asynchronous interfaces – from an 
average of 7% for 4 clock domains to almost 11% for 6 clock domains. 
In all cases, the baseline is the fully synchronous microarchitecture. 

28
Figure 2. Performance degradation for a GALS microarchitecture 
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In terms of power consumption, the GALS processor is more 
efficient due to its lack of global clock grid. However, due to the 
increase in execution time, even though the power per cycle is 
significantly improved, the total energy per task required by the GALS 
processor can actually be higher (Figure 3). Since a 6 clock domain 
architecture would only allow an independent speedup in the register 
file, it seems that the best choice is a 5 clock domain design which 
allows the Fetch and Execution to run at possibly different speeds. 

4 clock domains 5 clock domains 6 clock domains
Figure 3. Energy reduction for a GALS design for 4-6 partitions 
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To evaluate the effectiveness of each asynchronous communication 
scheme, we have considered arbiter-based and synchronizer-based 
FIFOs, as well as pausable clocks. For both arbiters and pausable 
clocks, we assume that an additional interval of 0.3 cycles is needed 
for ensuring correct synchronization. Since pausable clocks effectively 
delay an active clock edge when the synchronization cannot be done, 
the effective producer-to-consumer latency of this approach is 0.3 
cycles. In the arbiters approach however, a failed synchronization is 
followed by a normal consumer cycle, completely unsynchronized 
with respect to the producer clock. This introduces an additional 
average delay of 0.5 cycles, bringing the total latency to 0.8 cycles. For 
similar reasons, the 1 cycle latency associated with the synchronizers is 
actually 1.5 cycles when coupled with random starting phases for the 
producer and consumer clocks. As expected, the worst performance 
corresponds to synchronizers. In this case, the performance hit for a 5-
clock domain design can be up to 25%, with an average of 17.7%. The 
smallest hit in performance is achieved when using pausable clocks, 
with an average of 4.8%. 

None of the 3 mechanisms brings a significant energy reduction. 
While a small gain can be noticed for pausable clocks and arbiters 
(3.6% and 1.9% on average), the use of synchronizer-based FIFOs 
leads to an increase of 2.6% in the energy demands (Figure 5).   
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Figure 4. Performance degradation using different mechanisms for 
the asynchronous communication  

 

 As expected, our results show that the mechanism introducing the 
smallest additional latency (pausable clocks) is the best both in terms 
of performance and energy. However, by delaying the clock signal in 
the consumer to observe the synchronization latency, pausable clocks 
do not allow the use of different speeds across domains. Thus, in order 
to be able to implement dynamic control of local speeds/voltages, we 
have to use FIFOs based on either arbiters or synchronizers. 

Figure 5. Energy reduction for a GALS design using different 
 asynchronous communication mechanisms  

One advantage of the GALS architectures is the ability to scale the 
voltage and clock speed independently, for each of its synchronous 
partitions. We evaluate both the performance and the energy using two 
previously proposed algorithms: the threshold-based one that can 
select the best out of two operating points [7] and the attack-decay 
algorithm that assumes a much larger set of operating points [8]. For 
both of them, we test the efficiency of focusing on the average 
Instruction Window occupancy (threshold TO and attack-decay ADO) 
or on the number of inter-domain dependency (TD and ADD). 

Figure 6. Performance of the DVS-enabled GALS design  

All the dynamic control mechanisms introduce an average drop in 
performance of 10.5% to 16% when compared to the synchronous 
baseline architecture. A very interesting aspect is that the inter-cluster 
dependency information does not improve performance in both cases. 
While TD performs better than TO, in the case of the attack-decay the 
additional information actually decreases the performance. This 
behavior is caused by a significant variance of the communication 
across decision windows. In the case of the threshold-based approach, 
this variance is covered by the hysteresis of the algorithm and large 
variations can trigger a frequency change. In the case of the attack-
decay algorithm on the other hand, smaller variations are taken into 
consideration because of the finer speed/voltage control.  

In terms of energy requirement, the DVS-enabled GALS design 
saves between 10% and 37% (Figure 7). On average, the savings is 
between 20% and 25% for the four DVS algorithms that we study, thus 
making it possible to achieve better power efficiency when compared 
to a synchronous, DVS-enabled counterpart. 

7 Conclusion 
In this paper, we propose a simulation framework that allows for 

rapid evaluation of the different design choices available when 
implementing a GALS processor microarchitecture. 
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Figure 7. Energy consumption of the DVS-enabled design 
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By using this framework, we can evaluate the power and 
performance achieved by several GALS implementations of a 
superscalar, out-of-order processor. Our results show that 
asynchronous interfaces introduced between the several synchronous 
modules can have a very significant effect, varying from 5% when 
using pausable clocks to almost 18% when using synchronizers. 
However, even though pausable clocks seem to be a better choice, they 
do not allow communicating modules to run at different clock 
frequencies. Thus, for implementing DVS we have to select another 
mechanism – asynchronous FIFOs based on arbiters in our case. In 
9 pausable clocks arbiter-based FIFO synchronizer-based FIFO
terms of power consumption, the GALS design paradigm does not 
offer a significant benefit when dynamic voltage scaling is not 
implemented. The reduced clock power is offset in this case by the 
additional runtime needed to finish the same computation. By using 
DVS however, an average energy reduction of up to 25% can be 
achieved at the expense of a 10 to 15% reduction in performance. 
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