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Abstract – We develop a method to estimate the variation of 
leakage current due to both intra-die and inter-die gate length 
process variability. We derive an analytical expression to estimate 
the probability density function (PDF) of the leakage current for 
stacked devices found in CMOS gates. These distributions of 
individual gate leakage currents are then combined to obtain the 
mean and variance of the leakage current for an entire circuit.  We 
also present an approach to account for both the inter- and intra-die 
gate length variations to ensure that the circuit leakage PDF 
correctly models both types of variation. The proposed methods 
were implemented and tested on a number of benchmark circuits. 
Comparison to Monte-Carlo simulation validates the accuracy of 
the proposed method and demonstrates the efficiency of the 
proposed analysis method. Comparison with traditional 
deterministic leakage current analysis demonstrates the need for 
statistical methods for leakage current analysis. 
 
Categories & Subject Descriptors: 
C.4 [Performance of Systems] – modeling techniques 
General Terms:  Reliability, experimentation 
Keywords: Leakage current, Monte Carlo, variability 
 
1  Introduction 

The prominence of leakage currents in modern integrated circuits 
(ICs) has been spurred by the continued scaling of both supply 
voltage (Vdd) and threshold voltage (Vth). The exponential relationship 
between Vth and leakage current (Ioff) is central to this problem since 
Vth must be reduced to maintain good device switching speeds at low 
supply voltages [1]. With the proliferation of portable applications 
that spend significant time in standby mode, large Ioff values become 
a critical roadblock to improved battery lifetimes. For example, static 
power is estimated to account for 15-20% of the total power budget 
in high-performance ICs at the 130nm technology node [2] and a 
number of methods for leakage reduction have been proposed for 
standby mode and during run time [3-8]. 

In addition to the rapid growth of Ioff with each technology 
generation due to its exponential dependency on Vth, the potential 
also exists for large fluctuations of Ioff from die to die or even gate to 
gate within a die.  This is particularly true since controlling Vth is 
made more difficult in nanometer scale MOSFETs by drain-induced 
barrier lowering (DIBL) and discrete dopant effects [9]. While DIBL 
has been a problem since channel lengths first reached submicron 

dimensions, it is exacerbated in sub-100nm devices by fundamental 
scaling limitations on oxide thickness (Tox). 

With the growing uncertainty in threshold voltage, estimation of 
Ioff for a device becomes difficult, making the use of traditional 
delay-oriented corner models for leakage analysis impractical [10]. 
Worst-case model files can easily exhibit 10-100X larger Ioff than a 
nominal device, which leads to excessive guardbanding and overly 
conservative design practices. However, ignoring Ioff variability 
altogether is also not an option:  Consider a circuit block in which a 
small number of very leaky devices easily dominate the total static 
power consumption. Figure 1 shows that the average leakage can be 
much larger (~30% for PMOS with L 3σ = 12.5%) than the nominal 
leakage due to the exponential dependence of current on the gate 
length. This observation also invalidates the use of nominal device 
model files for even typical dies. The results also show that the 
degradation of PMOS leakage current with variations in the gate 
length is much worse than an NMOS counterpart with the same 
degree of gate length variation. This arises since DIBL effects in 
PMOS devices are typically worse than in NMOS devices [11]. 

The above discussion points towards the statistical modeling of 
leakage current as a key unexplored area in future high-performance 
IC design. Monte-Carlo simulations provide a method to analyze the 
effect of process variation, but are very expensive in terms of time 
complexity. An analytical approach to leakage current estimation is 
therefore needed to enable the prediction of leakage power in a 
design before it has been fabricated [12]. 

A statistical leakage analysis method was previously proposed in 
[13] for modeling the impact of gate length variations, gate oxide 
thickness variations, and doping fluctuations on leakage. The analysis, 
however, was limited to stacks of single transistors and the extension 
to multi-transistor stacks is not straightforward.  Also, the inter- and 
intra-die component of process variation was not accounted for. In 
this paper, we therefore propose a new analytical approach for 
statistical leakage estimation that can be applied to general circuit 
topologies and accounts for both inter- and intra-die variations. 
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Figure 1. Dependence of mean and standard deviation of 
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As found in [13], the variation in gate length has the strongest 
impact among the process parameters affecting the leakage current. 
Gate oxide thickness is extremely well controlled by modern 
processes and the effect of the channel doping on the leakage 
current is fairly small. Hence, in this paper we only consider 
variation of the gate length. The dependence of the gate oxide 
thickness and channel doping can be expressed in the same form as 
the dependence on drawn gate length, and hence the same approach 
can be adapted to include variability in these process parameters as 
well. 
 
2  Analytical Approach to Leakage Variability 
   Our goal is to obtain an analytical model that allows efficient 
computation of the PDF of leakage currents for a circuit block or 
chip across the manufactured die.  Using this model, we avoid the 
high computational costs of Monte Carlo based simulations that are 
impractical for analysis during the design process. 

  The objective is to find the PDF of the subthreshold leakage 
current I for a circuit block or chip, given the PDF of the drawn 
channel length L. We perform this task in three phases. First, we 
compute the leakage current distribution of individual gates in the 
circuit using the method described in Sections 2.1.  Due to the 
exponential dependence of leakage current on gate length, the 
distribution of gate leakage for an individual gate has a lognormal 
shape. Secondly, based on the mean and variance of the leakage 
current distribution of individual gates, the total leakage of a circuit 
block is computed based on approximations for sums of lognormal 
distributions, as described in Section 2.2.  In the third phase, the 
impact of inter-die gate length variation is accounted for using a 
discrete PDF of the inter-die component of gate length variation. As 
described in Section 2.3, the distribution of the leakage current due 
to intra-die variability is repeatedly computed, each time centered 
at a gate length that is shifted from the nominal value due to 
inter-die variation.  We then take a weighted sum of this set of 
intra-die leakage distributions using numerical convolution to 
obtain the total leakage distribution accounting for both inter- and 
intra-die gate length variations. Since the number of discretizations 
of the inter-die gate length PDF is typically small, the runtime of 
the third phase of the analysis remains small. 
 
2.1 Leakage Distribution of Individual Gates 

We begin by describing our method for computing an analytical 
expression for the PDF of gate leakage of an individual gate. First, 
the dependence of I on L is characterized by the function h such 
that I = h(L).  We then determine the inverse function g(I), that 
expresses L as a function of I: L = h-1(I) = g(I).  In order to 
compute the PDF of the leakage, it is essential that: (1) the function 
g is a closed-form expression and (2) the function h is differentiable 
over the given range of currents. Unfortunately, the complexity of 
the relationship between leakage current and channel length (i.e., 
the function h(L)) does not allow for the derivation of g(I) such that 
it satisfies these two conditions. Therefore, as will be explained in 
Sections 2.1 and 2.2, we propose an approximate fit for the 
function h(L), such that the required inverse function can be 
computed while maintaining good accuracy.  

 Given the closed form expression of g(I) and the PDF of L = 
fx(L), we can express the PDF of I using the above expressions 
[14]: 
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In our analysis, we assume that the drawn gate length has a 

Gaussian distribution with a fixed mean µ and standard deviation σ.  
Using these facts we can write the PDF of I as follows:  
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Finally, to calculate the mean and standard deviation of the 
leakage current distribution of the gate, we perform numerical 
integration of fy(I) over the given range of leakage currents. 
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Below, we explain the proposed method for computing fy(I) in more 
detail for a single device.  We initially discuss the approach for a 
single device and then extend the analysis for a stack of two or 
more transistors.   
 
Single Transistor Stacks (Inverters) 
  Based on the BSIM3 device model, the subthreshold current 
through a device can be expressed as [15] 

( )( ) ( )( )TdsTthgs VVnVVVII /exp1/exp0 −−−=          (5) 

Here VT=kT/q and I0=µ0Cox(Weff/Leff)VT
2exp(1.8).  The term 

(1–exp(-Vds/VT)) can be neglected for an inverter since Vds= Vdd is 
much greater than the thermal voltage VT.  We also set Vgs=0 since 
the source nodes of either device in an inverter are tied directly to a 
supply rail and do not vary.  Vth is the threshold voltage and is 
given by:  
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where λb is the body-effect factor and λd is the DIBL co-efficient. 
Expressions for λb and λd are given as in [15], [16].  
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These equations in principle enable us to calculate these 
parameters using the device model files for a given technology. 
However, analytical expressions for leakage current based on these 
parameters were found to fit very poorly for 0.18µm technologies. 
In particular, nebulous definitions for the values for technology 
constants such as Nsub and xj produce large errors in the analytical 
current expressions. Further, Equation 7 and particularly Equation 8 
are inadequate in modeling λb and λd [12] and produce 
unrealistically small values for these parameters resulting in large 
errors in the values for leakage current. 
 The actual BSIM3 model used to compute leakage current in 
SPICE simulations is much more complex than the simplified 
expressions presented in Equations 5–8.  Additionally, the 
constraints placed on functions g and h necessitates the use of 
further simplifications to derive a suitable analytical expression for 
current in terms of drawn gate length.  From Figure 2 we see that 
a simplified BSIM3 model vastly overestimates the leakage current 
for devices with gate lengths that deviate by more than 5% from the 
nominal value. Since these conditions correspond to the devices 
that contribute a large portion of leakage current, the resulting PDF 

85



 

 

will be skewed to the right, rendering the BSIM3 fit unacceptable. 
We therefore propose a new mathematical model to express 

leakage current I as a function of L. 

( ) ( )LhLqLqqI =+= 2
321 exp               (9) 

This expression circumvents the use of Vth as an intermediate 
variable in expressing the current as a function of the gate length. 
However, it maintains the general form of the BSIM3 model and 
has the following properties:   

(1) It preserves the exponential dependency of I on L. 
(2) It is easily invertible (as shown below).   
(3) It yields closed form expressions for both I and L.  
(4) It accurately fits currents for both individual NMOS/PMOS 

as well as transistor stacks. 

   Figure 2 shows the comparison between the values for leakage 
current obtained from SPICE simulations and the values obtained 
from both the BSIM3 fit and our empirical fit for a single stacked 
device with 10% variation in gate length. From the plot we can see 
that the empirical model provides a better fit over a wide range of 
channel lengths. 
  Equation 9 is a simple exponential quadratic equation that can be 
inverted to obtain an analytical expression for L as follows:     
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Using the expressions from Equations 2–4 with the functions g, 
h as specified by Equations 9–10, we can obtain the PDF of I. 
Figure 3 presents the comparison between the PDF obtained from 
SPICE simulations and the PDF obtained analytically for a single 
stacked device with 10% 3σ variation in gate length.  The plots of 
the PDFs, including the tail portion, match well and have a 
lognormal shape.   
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Figure 2. Comparison of the BSIM3 fit and analytical fit for 

h(L) with results from SPICE. 
 
Series-Connected Devices (Stacks) 
In the case of a stack of transistors, the gate length variation 
impacts the leakage current of the bottom transistor in the stack in 
two ways: 1) Gate length variation of the bottom transistor directly 
modulates its threshold voltage.  2) Gate length variation of the 
top transistor indirectly affects the leakage of the bottom transistor 
by altering the voltage drop across the top transistors of the stack. 
Hence, the analytical expression of current as a function of gate 
length is more complex for stacks of multiple transistors. Since the 
devices in a stack are placed close together the layout, we make the 

simplifying assumption that their gate length variations in are 
perfectly correlated.  Also, we derive the analysis for stacks of 
two and three transistors, the method can be extended to stacks of 
arbitrary length in a straightforward manner. 

In an inverter we ignored the term (1–exp(-Vds/VT)) in Equation 
5 since the drain-source voltage Vds in the leaking device is much 
greater than the thermal voltage VT.  For a device with stacked 
structures of two or three transistors, the value of the intermediate 
node voltage (Vds2 and Vds3) is much lower.  In [17], the authors 
present a model to compute the drain-source voltage of transistors 
in stacks of arbitrary length.  However, the complexity of these 
analytical expressions makes the derivation for a suitable equation 
for g (as in Equation 1) very difficult. 
  On the other hand, our empirical model is sufficiently robust to 
provide the leakage currents in these stacked circuits using the 
same general form of Equation 9.  The current is once again 
empirically modeled as: 
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1 exp                      (11)              

The constants q1’, q2’ and q3’ are a new set of fitting parameters. 
Naturally, this set of constants will vary for different stack depths 
and also for NMOS vs. PMOS since the drain-source voltages will 
differ.  Equation 10 is then solved again using the suitable 
coefficients in the quadratic expression to obtain the value of 
channel length as a function of I and similarly the PDF can be 
determined. 
A simplifying assumption generally made is treating ON transistors 
in a stack as short circuits [17]. This is a reasonable assumption 
when the ON device is not the top device in an NMOS stack or the 
bottom device in a PMOS stack. In these cases the ON devices lead 
to Vth drops from the nominal voltages, leading to an overall lower 
leakage current. We consider this effect by estimating the leakage 
current under the assumption that the Vth drop is a constant value 
that corresponds to the nominal Vth of the device. This allows us to 
use the same models for stacks of transistors with an effectively 
reduced power supply voltage. 
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Figure 3. Comparison of the SPICE PDF with the analytical 

PDF found from Equation 2. 
 
2.2 Leakage Distribution of Circuit Blocks 
   In this section, we extend the approach developed to estimate 
the leakage current distribution for individual gate to the circuit 
level. Since the distribution of the leakage currents of a single gate 
is close to lognormal, we approximate the leakage current for the 
circuit as a whole as the sum of lognormals. Thus, to find the 
distribution of the total leakage current, given k lognormal random 
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variables (RVs) we need to find the distribution of the sum S given 
as: 

kYYY
k eeeXXXS +++=+++= ...... 21

21            (12) 

  Sums of lognormals, assuming independence, can be well 
approximated by another lognormal RV [18]. Various approaches 
are known to estimate the parameters of the final lognormal. As 
shown in [18] a simpler Wilkinson approximation [19] is more 
accurate as compared to other complex approaches for our range of 
interest in the cumulative probability of leakage current. In 
Wilkinson’s approach the sum of the mean and variance of the 
individual gate leakage current distributions, X1, X2,…, Xk is 
matched with the first two moments of S:  
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where the µ’s and σ’s are the mean and standard deviation of the 
leakage currents of the individual gates.  The PDF of a lognormal 
is given by, 
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where α and β are the parameters of the lognormal distribution. If Y 
(µ,σ) is a Gaussian random variable then the corresponding 
lognormal X is related to Y as X=exp(Y) and since the parameters of 
the lognormal are the mean and variance of the corresponding 
Gaussian distribution, we need to compute these based on the mean 
and variance of the lognormal: 
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These values can be used to obtain the parameters of the Gaussian 
in terms of the mean and variance of the lognormal as given below: 
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The parameters of the lognormal are then obtained using 
Equations 18 and 19, which completely determines the PDF of the 
leakage current of the circuit block. Note that for large circuit 
blocks the leakage current distribution will approach a Gaussian 
due to the Central Limit Theorem [14]. As shown in [20], both S (in 
Equation 12) as well as log S can be approximated by a Gaussian 
for large k. Thus, for large k, the lognormal distribution will tend 
towards the shape of a Gaussian distribution, and using a lognormal 
distribution to approximate sums of lognormals is justified. 
 
2.3  Accounting for Inter- and Intra-Die Variations 
 Process variation can be classified into inter-die variation and 
intra-die variations. Intra-die variation refers to variation within a 
particular circuit block or chip. Inter-die variation occurs from one 
die to the next, meaning that the same device in the design has 
different features among different die. We consider the total drawn 
gate length of device i to be the algebraic sum of the nominal gate 
length Lnominal, the intra-die variation ∆Lintra and the inter-die 

variation ∆Linter.  Consequently, the total variance is a sum of the 
inter- and intra-die variances.   

iintra,internominalitotal LLLL ∆+∆+=,              (20) 

222
raintintertotal σσσ +=                  (21) 

Note that in the above equation, the random variable ∆Linter is 
shared by all devices in a design (creating correlation between their 
leakage currents), where as the random variables ∆Lintra assigned to 
each device are independent (reducing correlation of their leakage 
currents). ∆Linter can also be interpreted as the distribution of the 
chip-mean gate length, where as ∆Lintra represents deviation in gate 
length of individual devices from this chip mean.  

To compute the total leakage, accounting for both types of gate 
length variation, we first discretize the PDF of Linter as shown in 
Figure 4(a). For each discrete point Linter,j on the PDF of Linter, we 
consider the intra-die variation of the channel length as a normally 
distributed PDF, whose mean is Linter,j and standard deviation is 
σintra. Corresponding to this channel length, we obtain a PDF of the 
leakage current for the circuit using the approach outlined in the 
Sections 2.1 and 2.2.  

Thus we obtain a family of the PDFs of leakage current as 
shown in Figure 4(b), where each PDF is associated with a 
conditional probability that corresponds to the PDF value of Linter,j 
on the PDF of Linter. To obtain the PDF of leakage current 
considering both variations we form a weighted sum of the family 
of PDF’s. This can be expressed as:  

∑
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where Pinter(Linter,j) is the probability of occurrence of jth point from 
the set of ‘n’ discrete points selected. Pintra is calculated based on 
the lognormal distribution of the leakage current corresponding to 
the jth point, Linter,j on the Linter PDF. 
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Figure 4.  PDFs for (a) Channel length considering only Linter 
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3 Results 
In this section we first compare the results obtained from the 
analytical approach outlined in the previous section and Monte Carlo 
simulations for individual gates and circuit blocks assuming only 
intra-die variation. We then present the comparison between SPICE 
simulations and our analytical approach for the ISCAS benchmark 
circuits considering both inter- and intra-die variation. We also show 
the difference between deterministic analysis and statistical analysis 
for various circuit blocks. In the analysis that follows we only 
compare the mean and variance of the two approaches.    

Table 1 compares the analytical approach to Monte-Carlo 
simulations for a single gate.  The drawn gate length is assumed to 
be normally distributed, with the 3σ variation being 10% of the 
mean, the mean being 0.18µm.  The table shows that the error in 
estimating the mean leakage current varies from 0-6% but is 
typically < 4%. The estimate in standard deviation shows higher 
error for one of the cases, but in all other cases it is small.  The 
leakage current can be seen to drop significantly while going from 
a 1-stack to a 2-stack which is due to the well known “stack effect”. 
The stack effect shows an even larger reduction for standard 
deviation when going from stacks of depth one to two. For the 
NMOS stacks, the mean reduces by a factor of 5 while the standard 
deviation reduces by a factor of 9.  

Table 1. Comparison of the analytical approach with 
Monte-Carlo simulations for NMOS/PMOS stacks. 

 

Exp Ana %Error Exp Ana %Error
PMOS 32.3 34.1 5.6 25.9 28.9 11.6
NMOS 44.1 44.4 0.7 9.6 10.0 4.2
PMOS 4.7 4.7 0.0 0.3 0.3 0.0
NMOS 9.1 9.1 0.4 1.0 1.0 3.1
PMOS 3.6 3.6 0.0 0.1 0.1 0.0
NMOS 5.8 6.0 3.1 0.6 0.6 3.4

3σ Var = 10%

1-Stack

2-Stack

3-Stack

SD (pA)Mean (pA)

 
Table 2 shows the results of the comparison of the analytical 

approach to Monte-Carlo simulation for nine ISCAS85 benchmark 
circuits [21].  The 3σ variation in the drawn gate length is set at 
±10%.  The experimental mean and standard deviation are 
calculated for a random set of input vectors for each circuit.  The 
table shows that the average error in estimating the mean over all 
circuits is 3.5% with a maximum error of 8.3%.  The average error 
in the standard deviation is 13.7% with a maximum error of 17.9%. 
In our experiments considering both inter and intra-die variation, we 
assume the total standard deviation to be equal to 15% of the mean. 
Table 3 compares the results of the analytical approach to 
Monte-Carlo simulation considering both intra- and inter-die 
variation. The table lists the data for the case where intra-die and 
inter-die process standard deviation have been assumed to be 10% 
and 11% of mean, respectively, which make up a total standard 
deviation of 15% based on Equation 21.  As can be seen, the error in 
the estimated mean is always within 6.1% and that for the standard 
deviation within 21%. 

 We compare the new analytical approach to a traditional 
deterministic approach, where all gates lengths are assumed to be 
perfectly correlated and hence have the same length.  Table 4 
compares the median and the 95th/99th percentile points estimated 
using the traditional approach to the new statistical approach. As 
can be seen, the traditional approach significantly overestimates the 

leakage for higher confidence points since all the devices are 
assumed to be operating at the pessimistic corner point.  Since the 
relationship between the gate length and leakage current is 
monotonic, we find the median point as estimated by a traditional 
analysis to be very close to the nominal leakage current. 
 

Table 2. Comparison of the analytical approach with 
Monte-Carlo simulations for a circuit considering only  

intra-die variation. 

Exp Ana Err(%) Exp Ana Err(%)

c17 6 0.2 0.3 8.3 36.0 37.0 2.8
c432 159 7.1 7.2 1.4 190.0 210.0 10.5
c499 519 19.0 20.0 5.3 280.0 330.0 17.9
c880 364 17.0 17.0 0.0 280.0 330.0 17.9

c1355 528 21.0 22.0 4.8 320.0 370.0 15.6
c1908 432 16.0 17.0 6.3 260.0 300.0 15.4
c2670 825 32.0 33.0 3.1 350.0 410.0 17.1
c3540 940 39.0 40.0 2.6 420.0 480.0 14.3
c6288 2470 120.0 120.0 0.0 900.0 1010.0 12.2

Circuit
Mean (nA) SD (pA)

Size 
(Gates)

   
Table 3. Comparison of the analytical approach with 

Monte-Carlo simulations for a circuit considering both intra- 
and inter-die variation. 

Exp Ana Err(%) Exp Ana Err(%)

c17 0.4 0.4 0.0 0.5 0.4 20.0
c432 10.0 10.0 0.0 9.2 7.6 17.4
c499 28.0 27.0 3.6 24.1 19.5 19.1
c880 24.6 23.9 2.8 21.2 17.4 17.9

c1355 32.2 30.6 5.0 30.2 23.9 20.9
c1908 23.6 23.3 1.3 21.9 17.5 20.1
c2670 48.2 45.4 5.8 41.3 33.7 18.4
c3540 57.5 54.5 5.2 47.4 38.2 19.4
c6288 186.7 175.4 6.1 183.5 152.0 17.2

Circuit
Mean (nA) SD (nA)

 
Table 4. Traditional analysis estimates the median values 

accurately but the higher percentiles are vastly overestimated. 
 

50% 95% 99% 50% 95% 99%
c17 0.2 0.8 2.1 0.2 / 1.0 0.3 / 2.67 0.5 / 4.2 
c432 6.7 21.2 49.8 6.7 / .96 11.6 / 1.83 26.2 / 1.90
c499 18.2 57.2 134.6 19 / .96 34.3 / 1.67 78.5 / 1.71
c880 16.1 50.2 116.8 16.8 / .96 34.1 / 1.47 77.4 / 1.51
c1355 20.0 67.0 162.7 20.7 / .97 51.2 / 1.31 113.2 / 1.43
c1908 15.5 48.3 112.5 16.2 / .96 37.8 / 1.28 80.4 / 1.40
c2670 30.7 96.9 227.3 31.3 / .98 72.3 / 1.34 160.8 / 1.41
c3540 37.3 112.9 258.9 38.4 / .97 86 / 1.31 179.7 / 1.44
c6288 111.1 402.1 1010.0 115.2 / .96 306.2 / 1.31 710.4 / 1.42
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Figure 5. PDFs of leakage current for different contributions 

of inter and inter-die process variation. The total variation is 
15%. 
 

Figure 5 shows the impact of varying the distribution of inter-die 
process variation on the PDF of the leakage current while keeping 
the standard deviation of the total gate length σtotal=15% of the 
mean. The figure shows that when inter-die process variation is 
increased (and consequently the intra-die variation is decreased), 
the PDF tends to a lognormal shape.  Note that for the case of no 
intra-die process variation, all gate lengths on a single die will be at 
their nominal values. Hence the PDF of this leakage current due to 
inter-die process variation alone should be similar to the PDF of the 
leakage current of a single gate which, as we know, can be closely 
approximated by a lognormal. 

The figure suggests that, since leakage current is well 
characterized in terms of the IDDQ values across die, the shape of 
this leakage current PDF can be a useful way to estimate the 
contribution of the inter-die or intra-die component to the total 
process variation. 

 
4  Conclusions 
In this work we have presented a method to estimate distributions 
of leakage current in the presence of both inter- and intra-die 
process variations. We developed a model to predict leakage 
currents as a function of drawn gate length and have shown it to be 
fairly accurate over the range of values of interest. We then 
developed a new approach to estimate leakage currents PDF’s in 
circuit blocks considering both inter- and intra-die process variation. 
We compared this approach to Monte-Carlo simulations and have 
showed it to be accurate in estimating the overall mean and 
standard deviation of the leakage current in circuit blocks. We have 
shown that using the analytical approach we can significantly 
reduce the pessimism introduced by deterministic analysis while 
saving on the computational effort required for a Monte-Carlo 
analysis. We have also highlighted the difference in the impact of 
inter and intra-die process variation on the PDF of leakage current.  
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