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Abstract
Process variations have become a critical issue in performance

verification of high-performance designs. We present a new, statisti-
cal timing analysis method that accounts for inter- and intra-die
process variations and their spatial correlations. Since statistical
timing analysis has an exponential run time complexity, we propose
a method whereby a statistical bound on the probability distribution
function of the exact circuit delay is computed with linear run time.
First, we develop a model for representing inter- and intra-die vari-
ations and their spatial correlations. Using this model, we then
show how gate delays and arrival times can be represented as a sum
of components, such that the correlation information between
arrival times and gate delays is preserved. We then show how
arrival times are propagated and merged in the circuit to obtain an
arrival time distribution that is an upper bound on the distribution
of the exact circuit delay. We prove the correctness of the bound and
also show how the bound can be improved by propagating multiple
arrival times. The proposed algorithms were implemented and
tested on a set of benchmark circuits under several process varia-
tion scenarios. The results were compared with Monte Carlo simu-
lation and show an accuracy of 3.32% on average over all test
cases.

1 Introduction
Static timing analysis has become an indispensable part of per-

formance verification. Static timing analysis has the advantage that
it does not require input vectors and has a run time that is linear with
the size of the circuit. A number of methods have been proposed to
increase the accuracy of static timing analysis through improved
delay models and analysis techniques. In recent technologies, the
variability of circuit delay due to process variations has become a
significant concern. As process geometries continue to shrink, the
ability to control critical device parameters is becoming increas-
ingly difficult, and significant variations in device length, doping
concentrations, and oxide thicknesses have resulted.

Traditionally, process variations have been modeled in static tim-
ing analysis (STA) using so-called case analysis. In this methodol-
ogy, best-case, nominal and worst-case SPICE parameters sets are
constructed and the timing analysis is performed several times, each
time using one case file. Each execution of static timing analysis is
therefore deterministic, meaning that the analysis uses deterministic
delays for the gates and any statistical variation in the underlying
silicon is hidden. While this approach has been successfully used in
the past to model die-to-die variations, it is not able to accurately
model variations within a single die. With the continual scaling of
feature sizes, the ability to control critical device parameters on a
single die has become increasingly difficult. Using a worst-case
analysis for these so-called intra-die variations therefore leads to
very pessimistic analysis results since it assumes that all devices on
a die have worst-case characteristics, ignoring their inherent statisti-
cal variation. The emerging dominance of intra-die variations there-
fore poses a major obstacle for deterministic STA, giving rise to the
need for statistical timing analysis approaches.

In general, process variations can be divided into inter-die varia-
tions and intra-die variations. Inter-die variations are variations that
occur from one die to the next, meaning that the same device on a
chip has different features among different die of a wafer, from
wafer to wafer, and from wafer lot to wafer lot. Intra-die variations
are variations in device features that are present within a single chip,
meaning that a device feature varies between different locations on
the same die. Intra-die variation result from equipment limitations
or statistical effects in the fabrication process, such as statistical
variations in the doping concentrations.

Intra-die variations often exhibit spatial correlations, where
devices that are close to each other have a higher probability of
being alike than devices that are placed far apart. This has been
reported especially for gate length variations [1]. Intra-die varia-
tions can also have a deterministic component due to topologically
dependencies of device processing, such as CMP effects and optical
proximity effects [2]. In some cases, such topological dependencies
can be directly accounted for in the analysis [3][4], whereas in other
cases, such variations are treated as random.

Statistical timing analysis is similar to deterministic timing anal-
ysis in that arrival times are propagated through the circuit from pri-
mary inputs to primary output. In statistical timing analysis,
however, the gate delays and arrival times are represented with ran-
dom variables. The difficulty of statistical timing analysis results
from the correlations that arise among the arrival times in the circuit
and between the arrival times and gate delays. These correlations
must be taken into account when arrival times are propagated in the
circuit, leading to an exponential run time complexity and making
statistical timing analysis a challenging problem.

A number of statistical timing analysis approaches have been
proposed in recent years [5-18]. In [13] the correspondence between
deterministic timing analysis and statistical timing analysis was first
shown. However, the proposed method does not address the correla-
tion between the arrival times. In [14], a novel method using dis-
cretized probability distributions is proposed. However, the run time
of the method is exponential and the proposed approaches to reduce
the run time have an unclear impact on the accuracy. In [15], a novel
method using statistical bounds is proposed with gate delays
restricted to Gaussian distributions. However, to obtain a high qual-
ity bound, it is necessary to enumerate all paths in the circuit, lead-
ing to exponential run time complexity. In [16], a path based
statistical delay computation is presented using an accurate delay
model. However, the analysis is performed one path at a time and
the number of critical and near-critical paths in a circuit can be very
large. In [17], a new circuit optimization method was therefore pro-
posed that reduces the number of near critical paths in a circuit,
thereby improving the statistical delay of the circuit. Finally, in [18]
a method using statistical bounds is presented that addresses the
arrival time correlations due to path reconvergence. However, the
method does not address arrival time correlations due to spatial cor-
relations between the gate delays.

In this paper, we therefore propose a new statistical timing analy-
sis approach to model the impact of process variations on circuit
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delay. We model both inter- and intra-die process variations and
account for spatial correlations of the gate delays. In our analysis,
we focus on gate length variability since it has been shown to have a
dominant impact on gate delay [1]. However, our analysis can be
easily extended to other process variations as well. We first present
a model for inter- and intra-die gate length variation and their spatial
correlations. Gate delays and arrival times are represented as a sum
of random variables, and preserve the spatial correlation informa-
tion.

The correlation between the arrival times complicates the com-
putation of the maximum arrivals times, as required during arrival
time propagation. Since the exact computation of the maximum
arrival time requires exponential run time, we propose a method that
produces an upper bound on the exact arrival time in linear run time.
We prove the correctness of the proposed bound in the presence of
spatially correlated gate delays. The obtained bound is itself a ran-
dom variable with a probability distribution function, allowing for
the computation of useful statistical quantities such as confidence
points. In order to improve the proposed bound, we propose a
method whereby multiple arrival times are propagated in the circuit
at the expense of additional run time. We implemented the proposed
methods and tested them on benchmark circuits. We demonstrate
that using the proposed methods, the statistical delay of a circuit can
be computed with high accuracy.

The remainder of this paper is organized as follows. In Section 2,
we present our model of process variations and our modeling
assumptions. In Section 3 we present our approach for statistical
timing analysis. In Section 4, we present the heuristic method for
improving the quality of the bound by propagating multiple arrival
times. In Section 5, we present our results and in Section 6 we draw
our conclusions.

2 Process Variation Model
In this section, we present our model for process variations. We

consider two basic types of process variations in our analysis: inter-
die variations and intra-die variations. Intra-die variation can be fur-
ther divided into random variations, and spatially correlated varia-
tions. Random intra-die variations have no dependence on the
location of the devices, while intra-die variations that are spatially
correlated produce an increased likelihood of similar gate lengths
for devices that are closely spaced versus those that are placed fur-
ther apart. We first discuss our model for inter- and intra-die varia-
tions which is based on the model in [19] and then discuss how this
model is extended to account for spatial correlations.

We propose the following model, where the device length Ltotal,k
of device k is the algebraic sum of the nominal gate length, the inter-
die device length variation Linter and intra-die device length varia-
tion, Lintra,k:

, (EQ 1)

where Linter and Lintra,k are random variables. Lnom represents
the mean of the gate length across all possible die. All devices on a
die share one variable Linter for the inter-die component of their
total device length variation, which represents a variation of the
chip mean of the gates of a particular die. Lintra,k represents the
variation of an individual gate from this chip mean. For the
moment, we ignore the spatial correlation of intra-die variations,
and hence each device is represented with a separate independent
random variable Lintra,k, where all random variables Lintra,k
have identical probability distributions. For the purpose of our dis-
cussion, we assume that both random variables Linter and Lintra,k

have a truncated normal distribution. This reflects the fact that the
gate length in an operational chip cannot be less than some finite
minimum value or more than some finite maximum value. How-
ever, any suitable distribution can be used, and our proposed
approach is not restricted to normal distributions.

After defining a model for the gate length variation, the delay dk
of gate k is now defined as follows:

dk = Dk(Lnom + Linter + Lintra,k) (EQ 2)

Since function Dk is in general a non-linear function, finding the
distribution of dk can be difficult. However, we take advantage of
the fact that the gate length variations Linter and Lintra,k are typ-
ically small, with typical 3-sigma values of less than 15% of Lnom.
Hence, we make the simplifying assumption that, for small varia-
tions, the change in gate delay is linear with the change in gate
length. Hence, we can write EQ2 as follows:

dk = Dk(Lnom) + Dk( Linter) + Dk( Lintra,k), (EQ 3)

where Dk(Linter) and Dk(Lintra,k) are the change of gate delay
due to inter- and intra-die gate length variation. For convenience,
we define Dk() as follows:

, (EQ 4)

where the sensitivity of the delay with respect to device length
is computed at the nominal device length. We can now

express the delay of a gate with the following simple expression:
dk = Dnom + α Linter + α Lintra,k (EQ 5)

where α = . Note that instead of using EQ4 any linear fit-

ting function could be used as well. Although EQ5 uses a simple
linear approximation, such an approximation was found to give very
good accuracy for current process variabilities [16][19].

Spatial Correlation Model

In EQ1, the intra-die variation of gate delay is modeled by
assigning an independent random variable for each gate. However,
in the presence of spatial correlation, these random variables
become dependent which greatly complicates the analysis. We
therefore propose the following method for modeling spatial corre-
lation of intra-die process variation.

We first divide the area of the die into regions using a multi-level
quad-tree partitioning, as shown in Figure 1. For each level l, the die

area is partitioned into 2l-by-2l squares, where the first or top level 0
has a single region for the entire die and the last or bottom level m

has 4m regions. We then associate an independent random variable
Ll,r with each region (l, r) to represent a component of the total

intra-die device length variation. The variation of a gate k is then
composed as the sum of intra-die device length components Ll,r,
where level l ranges from 0 to m and the region r at any particular
level is the region that intersects with the position of gate k. For the
gate in region 2,1 in Figure 1, the components of intra-die device
length variation are therefore L0,1, L1,1 and L2,1. The intra-die
device length of gate k is now defined as the sum of all random
variables Ll,r associated with a gate:

, (EQ 6)
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where Ll,r are the random variables associated with the quad-tree
and Lrandom,k is an independent random variable, assigned to each
gate to model uncorrelated delay variation.

It must be ensured that the sum of all random variables Ll,r
associated with a gate always adds up to the total intra-die gate
length variation. This can be accomplished by assigning all random
variables associated with a particular level the same probability dis-
tribution and by dividing the total intra-die variability among the
different levels.

Using the described model, gates that lie within close proximity
of each other will have many common intra-die device length com-
ponents resulting in a strong intra-die length correlation. Gates that
lie far apart on a die share few common components and therefore
have weak correlation. For the three gates shown in Figure 1 in
regions (2,1), (2,4) and (2,15) the intra-die device length variation is
expressed as follows:

(EQ 7)

(EQ 8)

(EQ 9)

We can observe from the above equations that gates 1 and 2 are
strongly correlated, as they share the common variables L1,1 and

L0,1. On the other hand, gates 1 and 3 are more weakly correlated
as they share only the common variable L0,1. Note that the devices
that are closely spaced, but fall in different squares, will have less
correlation than those that are equally spaced, but fall within the
same square. However, this issue can be addressed by using an addi-
tional quad-tree which is offset by half the size of the smallest
square.

Figure 1 shows an example of a die with 3 levels of partitioning
resulting in 16 regions at the bottom level. Since the number of

regions at the bottom level grows as 4m it is possible to obtain a fine
partitioning of the die with only a moderate number of levels. Note

also that length L0,1 associated with the region at the top level of
the hierarchy is equivalent to the inter-die device length Linter
since it is shared by all gates on the die.

We can control how quickly the spatial correlation diminishes as
the separation between two gates increases by controlling the allo-
cation of total intra-die device length variation among the different
levels. If the total intra-die variance is largely allocated to the bot-
tom levels, and the regions at top levels have only a small variance,
there is less sharing of device length variation between gates that
are far apart and the spatial correlation will diminish quickly. On the
other hand, if the total intra-die variance is predominantly allocated
to the regions at the top levels of the hierarchy, then even gates that
are widely spaced apart will still have significant correlation and
spatial correlation will diminish more slowly as spacing increases.
The proposed model is therefore flexible and can be easily fit to
measured device length data.

Based on the above model for intra-die spatial correlation, we
can combine EQ5 and EQ6 to obtain the following expression of the
delay a gate:

. (EQ 10)

Note that all random variables in EQ10 are independent random
variables. This has the advantage that spatial correlations can be
processed using only independent random variables, which simpli-
fies the analysis. Note also that some of the random variables in
EQ10 will occur in the expressions of multiple gate delays.

Finally, to simplify the notation, we rewrite EQ10 using a more
general form as follows:

(EQ 11)

Where Li and Drandom,k are random variables and are con-

stants. Drandom,k is the random delay due to uncorrelated intra-die
gate length variation. The variables Li correspond to one of the ran-
dom variables in the proposed model, such as Linter and Ll,r.
The sum is taken over all random variables present in the model and

= α for the random variable Linter and for the random variables

Ll,r associated with the gate, based on its position in the die. For

all other i, = 0. Note that EQ11 is simply a more general and

convenient form of EQ10, where the delay of a gate is expressed in
terms of all random variables in the model, instead of just those
associated with that particular gate. Using EQ11, the delay of a gate
is expressed as a sum of independent random variables, some of
which may be shared in the delay expression of one or more gates.
In the following Section, we show how to perform timing analysis
based on the proposed model for process variation.

3 Statistical Timing Analysis Method
Static timing analysis is performed by propagating arrival times

from the primary inputs to the primary outputs using repeated appli-
cation of two operations:

1. Propagation. Arrival times are propagated from the input of a
gate to the output of that gate. In the process, the delay of the
gate is added to the arrival time.

Figure 1. Modeling spatial correlations using quad-tree
partitioning
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2. Merging. Multiple arrival times that converge at a gate output
from different gate inputs are merged by taking the maximum of
these arrival times.

Statistical timing analysis can be performed in the same manner
using propagation and merging, except that both the gate delays and
the arrival times are now random variables. In this case, the arrival
time is specified either with a cumulative distribution function
(CDF) or probability density function (PDF). To simplify the
implementation of statistical STA it is often more convenient to
approximate continuous PDFs and CDFs with discrete functions.
For computational efficiency, we use discrete PDFs and CDFs in the
implementation of our proposed method. However, for generality,
we will formulate the statistical timing analysis task using continu-
ous functions.

The difficulty in statistical timing analysis arises from the corre-
lations between the random variables, which arise from one of two
sources. First, reconvergence of circuit paths results in arrival times
that are dependent, since they share a common portion of their path
delay. However, in [18] it was shown that ignoring the correlation
resulting from reconvergent fanout produces an upper bound on the
statistical delay and results in a conservative analysis.

The second source of dependence results from spatial correla-
tions between gate delays. It is clear that if the delay of two gates is
correlated, the arrival times at their outputs will be correlated as
well thereby complicating the merging operation of these two
arrival times. Furthermore, spatial correlation also results in depen-
dence between an arrival time and the gate delays themselves. This
complicates the propagation operation where the delay of a gate is
added to the arrival time at its input node.

It is easy to show that, unlike correlations resulting from recon-
vergent paths in the circuit, ignoring spatial correlations may not
result in an upper bound on the statistical delay. This is intuitively
obvious from the fact that spatial correlation makes the intra-die
variability more similar to that of inter-die variability, which
increases the delay of circuit paths. The correlation between the
arrival times and between arrival times and the gate delays must
therefore be accounted for during the propagation and merging
operation.

Note that if we express the delay of a gate using a single random
variable, by convolving its independent components in EQ11, it will
be very difficult to recover the correlation information between this
gate delay and another. In the proposed approach, we therefore
maintain the representation of the delay of a gate using its sum of
components, as shown in the right hand side of EQ11. Similarly, we
need to preserve the correlation information of arrival times. Hence,
we also represent the arrival times in the timing analysis using a
sum of components. Similar to that of the gate delay in EQ11, an
arrival time a is therefore expressed as follows:

(EQ 12)

where Anom is the arrival time at nominal process conditions, Li are

the random variables of gate length, are constant coefficients and

Arandom is the uncorrelated component of arrival time variation.
We will show that by expressing the arrival times in the same form
as that of gate delay, their correlations can be determined and cor-
rectly addressed.

Using the proposed representations for gate delays and arrival
times, we now perform arrival time propagation and merging, such
that the form of the arrival times is maintained. Below, we will

show that propagation can easily adhere to this requirement and can
be performed exactly and efficiently. However, performing an exact
merging operation requires that all possible values of each of the
random variable Li in expression EQ11 be enumerated, which has
an exponential run time in terms of the number of random variables
Li. This is computationally complex and also destroys the required
form of arrival time. We therefore propose an alternate method for
merging two arrival times, and prove that this method results in an
arrival time whose CDF is an upper bound on the CDF of exact
arrival times, while preserving the form of the arrival time expres-
sion. The method is simple and has linear run time with the number
of random variables Li. Using this approach, it is therefore possible
to perform statistical timing analysis with linear run time in terms of
circuit size, while guaranteeing a conservative analysis.

Below, we first define a statistical bound on the CDF of a random
variable. We then discuss the methods for arrival time propagation
and merging. Finally, in Section 4, we present a method whereby
multiple arrival times can be propagated, improving the obtained
bound at the cost of additional run time.

Statistical bounds

We define an upper bound on the CDF of an arrival time random
variable as follows:

Definition 1. The arrival time CDF Q(t) is an upper bound of the
arrival time CDF P(t) if and only if for all t, .

Figure 2 shows two arrival time CDFs P(t) and Q(t), where Q(t) is
an upper bound on P(t). Note that the upper bound Q(t) is itself a
valid CDF and that all confidence points are bounded by Q(t) on
P(t). By using CDF Q(t) instead of P(t), we will overestimate the
delay corresponding to a performance yield, resulting in a conserva-
tive analysis for late arrival times, as shown in Figure 2. Similarly,
for a particular required delay, the probability that a die will meet
this delay constraint will be underestimated.

We now introduce following useful lemma for arrival time CDFs:

Lemma A. If two random variables a and x have arbitrary CDFs
P(a) and Q(x) and for any value of a random variable x is such that

then, the probability distribution of x is a statistical upper
bound on the probability distribution of a.

Proof: Consider an arbitrary fixed value of t. We then separate cases

and and using the fact that according to the assump-

tion , we can write:

(EQ 13)
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Figure 2. CDF Q(t) is a conservative bound on CDF P(t).
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(EQ 14)

It should be noted that in Lemma A random variables a and x need
not be statistically independent. We now show how arrival times
can be computed using propagation and merging. While the propa-
gation operation is exact, the merging operation results in an upper
bound on the CDF of the exact arrival time.

Arrival time propagation

During the propagation operation, the delay of a gate is added to
an arrival time. We perform this operation using the following pro-
cedure:

Procedure 1:

Given a gate delay d = and an

arrival time , at the

input of the gate, we now compute the arrival time a2 at the output
of the gate as follows:

(EQ 15)

where

The derivation of the above procedure can be easily shown as fol-
lows: . From this it follows that,

Simple rearranging of the terms results in

,

from which follows EQ15. Note that the computation of a2 using
EQ15 is exact and therefore correctly accounts for the spatial corre-
lation of the arrival time a1 and the gate delay d. Also, propagation
using EQ15 is efficient as a simple summation of the coefficients of
a1 and d is performed. Since random variables Drandom and

Arandom,1 are independent, computation of Arandom,2 is per-
formed by simple numerical convolution.

Maximum operation

As mentioned earlier, computing an exact maximum of two
arrival times a1 and a2 where each is expressed as a sum of compo-
nents, requires enumeration of the random variables Li, which is
expensive. Also, the resulting arrival time would not be in the
required form and spatial information would not be available for
futher propagation and merging operations. We therefore propose a
merging operation, which is efficient, and which generates an
arrival time whose CDF is an upper bound on the exact arrival time.
The proposed procedure is based on the following theorems.

Lemma B: For any given numbers a, b, x, y the inequality
is valid

Proof: There exist only 4 mutually cases: (a) ; (b)

; (c) and (d) .

In case (a) max(a+b, x+y) = x+y and max(a,x)+max(b,y)=x+y so
inequality is valid.

In case (b) max(a, x)+max(b, y) = x + b and according to the
assumption both and are valid. So ine-

quality is again valid.

Cases (c) and (d) are symmetrical to cases (b) and (a), proving the
lemma.

This lemma can be generalized to the following Theorem.

Theorem A: For any given numbers a1,a2,.., an and x1,x2,...,xn the
following inequality is valid.

. (EQ 16)

Theorem A can be proven by induction using Lemma B.

Note that Theorem A holds for any numbers, regardless of their
nature, including random variables. Applying Theorem A to the
maximum of two arrival times, we can formulate the following pro-
cedure for the merge operation.

Procedure 2 :

Given arrival times,

and , we can compute an

upper bound of merged arrival time a3 as follows:

(EQ 17)

where

or

Based on Theorem A, we can replace the maximum function
max(a1, a2) in procedure 2 with max(Anom,1, Anom,2),

, and max(∆Arandom,1, ∆Arandom,2). It is

clear that , as

shown in Procedure 2, for the positive values of the random variable

Li and , for the neg-

ative values of Li . Also, since ∆Arandom,1 and ∆Arandom,2 are corre-

lated only through path reconvergence, ignoring their correlation
during their maximum computation will result in an upper bound
[18], and hence the maximum of ∆Arandom,1 and ∆Arandom,2 can be

efficiently computed numerically.
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4 Multiple Arrival Time Propagation
While the maximum operation in Procedure 2 has the desired

features that it is conservative and preserves the required form of
arrival times, it nevertheless introduces error in the analysis. The
degree to which error is introduced by Procedure 2 is dependent on
the relative magnitude of the different components of a1 and a2. If,

for instance, for all i, and also Anom,1 > Anom,2 and the

minimum value of ∆Arandom,1 with non-zero probability is greater
than the maximum value of ∆Arandom,2 with non-zero probability
(i.e. ∆Arandom,1 > ∆Arandom,2 for all possible values), it is easy to
show that the arrival time computed by Procedure 2 is exact. How-
ever, if some terms of arrival time a1 are greater than a2 and some
terms of arrival time a2 are greater than a1, it is clear that a (conser-
vative) error is introduced in the analysis.

To improve the analysis, we therefore extend the proposed
appraoch by propagating multiple arrival times. In this case, only
those arrival times are merged that result in a small error while
those arrival times whose merger would result in a high error are
propagated separately. If the correct arrival times are selected, it is
clear that the analysis accuracy will improve. Given a set k of K
arrival times incident at a node, we must select a subset m of M
arrival times to propagate, while all other arrival times are merged
with other arrival times. It is clear that the optimal set of arrival
times to propagate depends on many factors, including the arrival
times that will combine with the set m later in the circuit. Determin-
ing the optimal set is an intractable problem. We therefore propose
the following heuristic to select the set of arrival times m given a set
of incident arrival times k.

First, we compute for each pair of arrival times, mi and mj the
maximum arrival time ai,j using Procedure 2. Then, we determine
the mean of each arrival time ai,j which is computed by summing
the means of each component. Finally, we select the arrival time ai,j
with the minimum mean and replace the original two arrival times
mi and mj with ai,j in the set m. This procedure reduces the size of
the set m by one arrival time. The procedure is then repeated until
the number of arrival times in m is reduced to a set of K arrival
times, that can be propagated.

The above selective merging procedure effectively merges those
arrival times incident on a node that result in an “early” arrival time
that will have less impact on the overall delay of the circuit. These
arrival times are therefore good candidates for merging, while
arrival times whose merger would result in a late arrival time are
propagated. The selective merging procedure is repeated at each
node.

Finally, at the output node of the circuit, the set of K propagated
arrival times must be merged to obtain the final arrival time of the
circuit as a whole. Since the arrival times K do not need to be prop-
agated further in the circuit, their particular form, in terms of a sum
of independent random components, need not be preserved. Hence,
we can convolve the components Anom,i, , and ∆Arandom,i

into a single random variable before taking their maximum. This
has the advantage that the error introduced by Procedure 2 is not
incurred in the final merger of the arrival times at the output node.
However, the arrival times are correlated, and to compute their
exact maximum would require high computational complexity. We
will therefore show that, due to the particular form of the arrival
times, their correlation can be ignored and the computed maximum
will bound the exact maximum. Hence, the maximum of the con-

volved arrival times can be efficiently computed using simple
numerical techniques.

In [18], it was shown that the CDF of max(x1+y, x2+z), where x1,
x2, y, and z are independent random variables, is an upper bound on
the CDF of max(x+y, x+z), when x1 and x2 have an identical proba-
bility distribution as x. However, the form of our particular problem
is more general in that we require the computation of max(x+y,
ax+z), where x, y, and z are independent random variables and a is a
positive constant. We will now show that, similar to the previous
case, the CDF of max(x1+y, ax2+z) is an upper bound on the CDF of
max(x+y, ax+z). This means that ignoring the correlation between
the two arrival times (x+y) and (ax+z) during the maximum opera-
tion will result in an upper bound of the CDF of the exact maxi-
mum. We prove the correctness of this bound with the following
theorem.

Theorem 1: Let x, x1, x2, y, and z be positive, independent ran-
dom variables with probability density functions p(x), p(x1), p(x2)
q(y), r(z), noting that x1 and x2 have the same probability density
functions as random variable x. For any positive constant value a>0
the CDF of random variable max(x+y, ax+z) is upper bounded by
the CDF of random variable max(x1+y, ax2+z).

Proof: The CDF of random variable max(x+y, ax+z) is:

(EQ 18)

The CDF of random variable max(x1+y,ax2+z) is:

(EQ 19)

By transforming the integral over the 4 dimensional volume into an
iterated integral we express Q(t) as follows:

(EQ 20)

We now rewrite Q(t) as follows:

, where (EQ 21)

(EQ 22)

Multiplying equation EQ18 by the integral of probability density

function p(x) we express P(t) as follows:

(EQ 23)

We now rewrite P(t) as follows, by rearranging the terms:

(EQ 24)

We now convert this integral over the 4 dimensional volume into an
iterated integral we obtain the following expression for P(t):
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(EQ 25)

which can be rewritten in the form similar to EQ21:

, where (EQ 26)

(EQ 27)

This expression for S(y,z) can be rewritten as follows:

(EQ 28)

The integrals expressing R(y,z) and S(y,z) in formulae EQ22 and
EQ28 have the same integration functions f(x1,x2)=p(x1)p(x2) and
f(x,v)=p(x)p(v) and differ only in the names of their variables.
Moreover function f(x,v) is symmetric with respect to its variables:
f(x,v) = f(v,x). Using this, we can prove that for any given values of
y and z . We do this by considering two separate

cases: and .

In the first case and EQ28 becomes:

(EQ 29)

Comparing EQ22 and EQ29 and renaming the integration variables
x1 and x2 into x and v we can conclude that:

(EQ 30)

In the second case and EQ28
becomes:

(EQ 31)

Comparing EQ22 and EQ31 and renaming integration variables x1
and x2 into v and x we can conclude that:

(EQ 32)

Thus for any y and z , from which using EQ21

and EQ26 we obtain . Therefore, according to Defini-
tion 1, CDF Q(t) of random variable max(x1+y,ax2+z) is an upper

bound of the CDF P(t) of random variable max(x+y, ax+z).

5 Results
The statistical bound computation, as well as the proposed refine-

ment method were implemented and tested on the synthesized ver-
sion of ISCAS85 [20] benchmark circuits. Delay sensitivities were
calculated for the standard cell library which used a 180 nm nomi-
nal device length. We used 3 levels of intra-die variation to model
spatial correlation, as shown in Figure 3. Accordingly, each gate k
was randomly allocated a location on a 4x4 grid, which determined
the random variables associated with that gate along the hierarchy.
Process variability information was used for different scenarios hav-
ing a total standard deviation of 10%,14% and 15% from Lnom. The
computed bounds were compared with Monte Carlo simulation and
worst case analysis. Monte Carlo simulation was performed for
10,000 samples. The worst case analysis assumes the total variation
to be inter-die variation and computes the 99% confidence point for
the circuit delay CDF by setting Linter at its 99% point. For each
gate length random variable, a Gaussian delay distribution truncated
at the 3 sigma point, was used.

Table 1 shows the results for the bound computation and refine-
ment using multiple arrival time propagation. A total standard devi-
ation of 14% was divided among inter-die (5.7%), intra-die with
spatial correlation (8.06%) and random intra-die variation (10%).
For each circuit, the total number of nodes/edges (column 2) is
shown. The 99% confidence points for worst case analysis (column
3), for single and multiple arrival times (column 4 & 5) and for
Monte Carlo (column 6) is shown. The % error between the Monte
Carlo results and our approach (column 7) was 2.98% on an aver-
age. Although we only report the 99% points in Table 1, the com-
puted bounds are CDFs and allow the computation of other
confidence points. Column 8 shows the runtime of our algorithm for
100 arrival times. For most circuits, the run time is very small with
the maximum being 300 seconds.

Table 2 shows comparisons between 99% confidence points
obtained by our algorithm using 100 arrival times and Monte Carlo
simulation for two different variation scenarios. In (Column 2, 3 &
4) a total standard deviation of 10% was equally divided among
inter-die, intra-die and random variations. The average error for all
the circuits was 2.35%. The runtimes were small, not exceeding 300
seconds. In (Column 5, 6 & 7) a total standard deviation of 15% was
again equally divided among the three components. Average error
was 4.63% for all circuits and maximum runtime was 280 seconds.

Figure 3 shows the CDFs for the proposed upper bounds with
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Table 1. Results for a total variation of 14%

Circuit
Results for the 99% confidence pt.

(ns) runt
ime
(s)name

nodes/
edges

worst
case

1/20/50
arrival times

100a
times

Monte
Carlo

%
error

c17 13/20 0.30 0.28/0.28/0.28 0.28 0.28 0.00 4

c499 561/978 2.01 2.06/1.90/1.88 1.87 1.82 2.7 6

c432 214/379 2.26 2.23/2.09/2.07 2.07 2.03 1.9 6

c880 425/804 2.69 2.58/2.43/2.42 2.42 2.41 0.4 7

c1355 570/1071 2.68 2.66/2.51/2.49 2.48 2.41 2.9 12

c1908 466/858 3.82 3.70/3.59/3.58 3.58 3.41 4.9 25

c2670 1059/1731 2.63 2.44/2.35/2.35 2.35 2.34 0.4 25

c3540 991/1972 3.88 3.89/3.73/3.69 3.66 3.41 4.3 30

c5315 1806/3311 3.70 3.55/3.36/3.35 3.35 3.24 3.5 32

c6288 2503/4999 10.6 10.33/10.50/10.54 10.6 9.32 10.7 300

c7552 2202/3945 4.99 4.73/4.48/4.48 4.48 4.45 0.8 30

∆
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and without refinement as well as the CDF obtained through Monte
Carlo simulation for the circuit c3540.

6 Conclusions
In this paper, we have proposed a new statistical timing analysis

algorithm. The method has a linear run time and computes an upper
bound on the distribution of the exact circuit delay. We first, pro-
posed a model for inter- and intra-die process variations that
accounts for spatial correlations. We then presented an efficient
method for propagating arrival times in the circuit, which is linear in
run time, and computes an upper bound on the distribution function
of the exact circuit delay. We proved the correctness of the bound
and showed how the bound is improved by propagating multiple
arrival times at each node, using a heuristic method for selecting
propagated arrival times. We tested the proposed methods on a
number of synthesized benchmark circuits and demonstrated the
accuracy and efficiency of the approach.
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Table 2. Results for a total variation of 10% and 15%

Circuit
name

10% variation 15% variation

99% pt. Our
Approach/

Monte Carlo
(ns)

%
error

run-
time
(s)

99% pt. Our
Approach/

Monte Carlo
(ns)

%
error

run-
time
(s)

c17 0.26/0.26 0.00 5 0.29/0.29 0.00 5

c499 1.81/1.76 2.80 10 2.02/1.91 5.75 12

c432 2.01/1.99 1.10 15 2.19/2.11 3.79 10

c880 2.39/2.38 0.42 15 2.55/2.51 1.59 14

c1355 2.40/2.35 2.10 25 2.66/2.52 5.55 20

c1908 3.47/3.35 3.50 28 3.82/3.58 6.70 25

c2670 2.31/2.30 0.43 30 2.45/2.44 0.40 25

c3540 3.51/3.35 4.70 30 3.90/3.57 9.24 32

c5315 3.25/3.18 2.21 35 3.61/3.40 6.17 37

c6288 9.87/9.11 8.30 300 10.85/9.85 10.1 280

c7552 4.41/4.39 0.45 35 4.71/4.63 1.72 34

Figure 3. Comparison of CDF bounds and Monte-Carlo CDF
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