
ON THE INTERACTION BETWEEN POWER-AWARE
FPGA CAD ALGORITHMS

Julien Lamoureux and Steven J.E Wilton

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, B.C., Canada

ABSTRACT
As Field-Programmable Gate Array (FPGA) power consumption
continues to increase, lower power FPGA circuitry, architectures,
and Computer-Aided Design (CAD) tools need to be developed.
Before designing low-power FPGA circuitry, architectures, or
CAD tools, we must first determine where the biggest savings (in
terms of energy dissipation) are to be made and whether these
savings are cumulative. In this paper, we focus on FPGA CAD
tools. Specifically, we describe a new power-aware CAD flow for
FPGAs that was developed to answer the above questions.

Estimating energy using very detailed post-route power and delay
models, we determine the energy savings obtained by our power-
aware technology mapping, clustering, placement, and routing
algorithms and investigate how the savings behave when the
algorithms are applied concurrently. The individual savings of the
power-aware technology-mapping, clustering, placement, and
routing algorithms were 7.6%, 12.6%, 3.0%, and 2.6%
respectively. The majority of the overall savings were achieved
during the technology mapping and clustering stages of the power-
aware FPGA CAD flow. In addition, the savings were mostly
cumulative when the individual power-aware CAD algorithms
were applied concurrently with an overall energy reduction of
22.6%.

1. INTRODUCTION
Power consumption has become a critical concern in the
semiconductor industry. As the heat generated by integrated
circuits begins to exceed the ability of packaging to dissipate this
heat, designers are forced to sacrifice performance in order to
meet power budgets. Furthermore, the increased demand for low-
power integrated circuits for hand-held applications provides
additional incentive for the development of new techniques to
reduce power consumption. Power consumption is especially
critical in Field-Programmable Gate Arrays (FPGAs). An FPGA’s
programmability is afforded through the use of long routing tracks
and programmable switches. These switches are laden with
parasitic capacitance. During high-speed operation, the switching
of these tracks causes significant power dissipation. Already,
many FPGA vendors report that power dissipation is one of the
primary concerns of their customers.

FPGA power consumption can be reduced by optimizing at the
circuit level, architecture level, and at the Computer-Aided Design
(CAD) level. There have been several low-power architectures
and CAD tools described by previous researchers [1,7,12,14,15].
However, these have all been “point-solutions”, in that each
considers only a single CAD algorithm or architecture. In this
paper, we describe a suite of power-aware CAD algorithms, and
use this suite to answer two questions:

1. What stages of the FPGA CAD flow are most suited to power
minimization? In this paper, we focus on technology
mapping, clustering, placement and routing. We expect that
high-level synthesis algorithms would also be amenable to
reducing power, but we have not yet investigated this.

2. Are the power savings from individual power-aware stages
cumulative? In other words, we wish to know whether
savings at one stage can impact the savings that can be
achieved in subsequent stages.

Thus, the primary goal will be to understand the interaction
between the power reduction techniques in each stage of the CAD
flow. Only by understanding where energy savings can be
expected, and how these savings interact, can we expect to make
significant progress in creating low-power FPGA CAD tools.

This paper is organized as follows. Section 2 describes the
experimental framework used to evaluate the performance of the
power-aware CAD algorithms. Section 3 introduces terminology
used throughout this paper. Sections 4 to 7 describe the new
power-aware technology mapping, clustering, placing, and routing
algorithms, and their results. Section 8 then combines the results
from the individual stages of the flow to determine if the savings
are cumulative. Finally, Section 9 presents our conclusions.

2. EXPERIMENTAL FRAMEWORK
To answer questions 1 and 2, we begin with a baseline FPGA
CAD flow consisting of well-established algorithms, as shown in
Figure 1. The baseline CAD flow consists of CutMap [5], T-
VPACK [8], and VPR [2,9]. These algorithms are representative
of algorithms used in commercial FPGA CAD flows.

Placement (VPR)

Clustering (T-VPack)

Technology Mapping (CutMap)

Circuit

Routing (VPR)

Delay / Area / Power
Estimations

Figure 1. Baseline FPGA CAD flow.

To investigate the influence of each CAD stage on energy
reduction, we replace each CAD stage with a power-aware
algorithm. Initially, we replace only one CAD stage at a time, so

701

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

that we can examine and compare the impact of each stage on the
energy reduction. Then, we replace multiple baseline stages with
power-aware algorithms to investigate the interaction between the
power-aware stages. In all cases, the power-aware algorithms we
use are representative of power-aware algorithms that have either
been published in the literature or are straightforward extensions
of the baseline CAD algorithms.

To measure the effectiveness of our algorithms, we use detailed
power and delay models. Regardless of which stage we are
enhancing (to make it power-aware), we estimate the speed and
power of our implementations after routing has been performed.
This provides for much more accurate estimates than would be
possible during higher-levels of the CAD flow, since only after
routing can we accurately determine the resistance and
capacitance associated with each net in the circuit.

The delay model used was that from VPR [2]. VPR models an
FPGA at a low-level, taking into account specific switch patterns,
wire lengths, and transistor sizes. Once a circuit is routed onto the
FPGA, VPR extracts the resistance and capacitance information
for each net, and uses the Elmore delay to produce delay
estimates.

The power model is described in [12]. This model uses the same
resistance and capacitance information as the delay model, and
uses this information to estimate dynamic power, short-circuit
power, and leakage power. Switching activity estimations for
each wire of a circuit, which are required for calculating dynamic
and short-circuit power, are computed using the transition density
model along with a filter function used to emulate the effect of
inertial delays of logic gates [11]. Although simulation-based
activity estimation techniques provide more accurate estimates,
the transition density technique is far faster, and in [11] was
shown to work well.

The metric we use for comparing algorithms is the power-delay
product or energy. When comparing power-aware FPGA CAD
algorithms it is important to consider both power and delay.
Using CAD algorithms to minimizing power at the expense of
delay is ineffective since similar results can be achieved by simply
slowing the system clock. For each experiment we use 20 large
MCNC benchmark circuits. Each benchmark was optimized in
SIS using script.rugged [13] and then transformed into a network
of 2-input gates using dmig [3]. All experiments target island-
style FPGAs implemented in a 0.18µm TSMC CMOS process.

3. TERMINOLOGY
Before presenting our results we review some terminology defined
in [4,5] to describe Boolean networks. A Boolean network can be
represented by a directed acyclic graph (DAG), where gates are
represented by nodes and wires are represented by directed edges.
Given a network N=(V(N), E(N)) with a source s and a sink t, a cut
(X,X) is a partition of the nodes in V(N) such that s∈ X and t∈X.
The cut-size is the number nodes in X that are adjacent to some
node inX. A cut is K-feasible if its cut-size is smaller or equal to
K. The set of nodes which are fanins of node v is denoted input(v)
and the set of nodes which are fanouts of node v denoted is
output(v). Given a subgraph H of the Boolean network, input(H)
denotes the set of distinct nodes outside H which supply input to
the gates in H. A Boolean network is K-bounded if |input(v)| ≤ K
for each node v in the network. The depth of a node v is the length
of the longest path from any primary input of the network to v.

Given a K-bounded network N, let Nv denote the subnetwork
consisting of node v and all the predecessors of v. The label of v,
denoted label(v), is defined as the depth of the optimal K-LUT
mapping solution of Nv. Finally, a node v that is an input to a K-
LUT or to a primary output is denoted rooted(v).

4. TECHNOLOGY MAPPING
The first stage of the FPGA CAD flow that we consider is
technology mapping. Technology mapping transforms a netlist of
gates and registers into a netlist of K-input lookup tables (K-
LUTs) and registers. LUT-based technology mapping has been
well studied [1,4,5,6,7]. The goal in this section is to understand
how much of an influence a power-aware technology mapper can
have in reducing the overall energy. To make our results concrete,
we have implemented a power-aware technology mapper that uses
techniques described in previous works [1,5,6].

Existing power-aware technology mapping algorithms typically
reduce power by minimizing the switching activity of the wires
between LUTs. In FPGAs, these wires are implemented using
routing tracks with significant capacitance; charging and
discharging this capacitance consumes a significant amount of
power. Intuitively, by minimizing the capacitance of high activity
wires, the total power of the final implementation may be reduced.
The capacitance of high activity wires between LUTs can be
minimized during technology mapping by implementing LUTs
that encapsulate high activity wires, thereby removing them from
the netlist.

Another power reduction technique, recently described in [1], is to
minimize the number of wires between LUTs. This can be
achieved by minimizing node duplication. Technology mappers
that are not power-aware use node duplication to optimize for
depth. However, this technique tends to increase the number of
nodes and connections in an implementation, which increases the
amount of power used by the implementation. To demonstrate
this we compare FlowMap and CutMap. Both algorithms produce
depth optimal solutions. However, CutMap also attempts to
minimize area by avoiding unnecessary node duplication. The
results are shown in Table 1. The 4-LUT circuits mapped using
FlowMap have 12.6% more 4-LUTs, 7.7% more connections, and
correspondingly dissipate 9.3% more energy than circuits mapped
using CutMap.

4.1 Power-Aware Algorithm
Our power-aware algorithm, called Emap, incorporates both
techniques described above. The EMap algorithm has three
phases (see Figure 2).

The first phase of the algorithm begins by constructing the set of
all K-feasible cuts for each node in the network using the
technique outlined in [6]. The nodes are processed in topological
order (beginning from the primary inputs) thereby guaranteeing
that every node is processed after all of its predecessors. After all
the cuts are found, each node is labeled with the depth that it
would have in an optimal depth K-LUT mapping solution. These
labels are needed during the second phase of the algorithm to
determine the slack of each node. The slack is used to guide the
algorithm and produce a network with optimal depth.

The second phase of the algorithm evaluates the cuts of each node
in the network in reverse topological order (beginning from the

702

primary outputs). For each node, it chooses the cut with the
lowest cost from one of two possible cut sets. If the node has no
slack, only cuts that produce a depth-optimal mapping solution are
considered; however, if it does have slack, all K-feasible cuts are
considered. After selecting a cut, the nodes that fan into the cut
are labeled as root nodes and their slack is updated.

The third and final phase of the algorithm generates the final K-
LUT network by traversing the graph in reverse topological order
and collapsing each node based on the cuts selected during the
second phase.

D
c
d

w
c
t

been (or is likely to be) labeled as a root node of a LUT and is 1
otherwise (to be explained below), act(u) is the estimated
switching activity of the net driven by node u, λ is a constant that
controls the relative importance of the activity factor, and
output(u) is the set of nodes that are fanouts of node u.

The first part of the cost function is a quotient. Intuitively, the
numerator of the quotient penalizes node duplications by
increasing the cost of cuts that encapsulate nodes that have already
been labeled as root nodes. The denominator, however, rewards
cuts that encapsulate many nodes that have not been labeled as
root nodes. Both help to minimize the number of LUTs and
connections in the final solution.

The second part of the cost function is a summation over all the
inputs nodes ofXv. The numerator of the sum is the weight-
activity product and the denominator is the fanout size of input
node u. The weight factor minimizes node duplication by favoring
cuts that reuse nodes that have already been cut, or that are likely
to be cut in the future. The activity factor minimizes the switching
activity of the connections by favoring cuts with lower input
activities. The fanout size factor rewards cuts that have high-
fanout input nodes. High-fanout nodes are difficult to encapsulate
entirely; attempting to encapsulate them results in unnecessary
node duplication. This is avoided by choosing high-fanout nets as
root nodes. Finally, the summation implicitly favors cuts with
fewer inputs since the cuts with fewer inputs tend to have lower
sums.

Using this cost function, nodes with large fanouts are likely to be
chosen as root nodes. To enhance the algorithms ability to
minimize node duplication, the weight of nodes with large fanouts
(3 or more) are set to 0 prior to phase 2. This gives cuts with high
fanout nets a lower cost.

4.3 Technology Mapping Results
To evaluate the influence of the technology-mapper on the power
consumption of the final circuit implementation, we use the CAD
flow described in Section 2 with CutMap replaced by our power-
aware mapper. It is important to note that we take each circuit
through the entire flow, and estimate power and delay after
routing. This is different than in previous works [1,7] where the
reduction in average switching activity is used to evaluate power-
aware technology mapping. In our case, since we wish to
compare these improvements to those obtained in later CAD
/* Phase 1 */
foreach node v ∈ N do
 enumerate_K_feasible_cuts(v, K);
foreach node v∈ N do
 label(v) = compute_label(v);
 if (v ∈ primary_input(N) || v ∈ primary_output(N))
 rooted(v) = TRUE;
 else
 rooted(v) = FALSE;
end for
Dopt = max({label(v) | v ∈ N})
foreach node v∈ N do
 latest(v) = Dopt;
 slack(v) = latest(v) – label(v);
end for

/* Phase 2 */
foreach node v ∈ N do
 if (rooted(v) == TRUE)
 if slack(v) > 0
 (Xv,Xv) = choose_cut(K-feasible_cut(v));
 else
 (Xv,Xv) = choose_cut(min_height_K-feasible_cut(v));
 foreach u ∈ input (Xv,Xv) do
 rooted(u) = TRUE;
 latest(u) = min(latest(u), latest(v) – 1);
 slack(u) = latest(u) – label(u);
 end for
 end if
end for

/* Phase 3 */
form_LUT_network(N);

Figure 2. Pseudo-code of the EMap algorithm.

4.2 The Cost Function
uring the second phase of the algorithm, the cut with the lowest

ost is selected from the cutset of each node. The function used to
etermine the cost of each cut (Xv ,Xv), is:

∑
∈

⋅+⋅
•

−+
+

=

)input(

v

|)(|
))(1()(

|)(|||1
|)(|1

),cost(

vXuvv

v

v

uoutput
uactuweight

XrootedX
Xrooted

XX

λ

hereXv is the set of nodes encapsulated within the LUT that
orresponds to cut (Xv,Xv), rooted(Xv) is the set of nodes inXv
hat have been labeled as root nodes, weight(u) is 0 if node u has

stages, we need to obtain post-route power and delay estimates.

As shown in the last column of Table 1, the energy reduction,
averaged over all benchmark circuits, is 7.6%, 8.4%, and 8.2% for
LUT sizes of 4, 5, and 6 respectively. In some previous works,
improvements of up to 17% have been reported; however, in these
works, either a simplified power model (obtained before
placement and routing and that only consider dynamic routing
power) was employed, or else comparisons were made to
FlowMap or another similar technology mapper. Comparing our
results to FlowMap using the simplified model described in [7],
our improvement is approximately 21%.

703

Table 1. Technology Mapping Results.
Nodes Connections Energy (nJ) LUT

Size
Algorithm

Mean % Diff Mean % Diff Mean %Diff

FlowMap 2900 12.6 11576 7.7 2.39 9.3
CutMap 2576 0 10746 0 2.18 0 4
EMap 2441 -5.2 9705 -9.7 2.01 -7.6

FlowMap 2554 18.5 11301 11.9 2.53 11.9
CutMap 2156 0 10102 0 2.26 0 5
EMap 2079 -3.6 9102 -9.9 2.07 -8.4

FlowMap 2109 18.4 10179 11.6 2.59 12.1
CutMap 1782 0 9118 0 2.31 0 6
EMap 1771 -0.6 8331 -8.6 2.12 -8.2

The improvements of the technology mapper come primarily from
the minimization of node duplication. The switching activity
improvements account for only a small fraction of the energy
savings. As we increase the relative importance of the switching
activity factor, λ, the average switching activity of the wires
between the LUTs decreases; however, node duplication
increases. The resulting increases in the number of nodes and the
number of connections more than counteract the benefits of the
activity reduction. The best results, shown in Table 1, where
obtained when λ is set to 0.25.

5. CLUSTERING
Modern island-style FPGAs have clustered logic blocks which
consist of multiple LUT/register pairs called logic elements (LEs).
The clusters (LABs in Altera parts and CLBs in Xilinx parts)
typically have between 4 and 10 LEs that are locally
interconnected. Connections within the logic blocks are faster and
dissipate less energy than connections between logic blocks.

Clustering algorithms are used to pack the LUTs and registers into
clusters. Traditional clustering goals include minimizing area,
minimizing delay, and maximizing routability. To minimize area,
clustering algorithms try to pack clusters to full capacity in order
to minimize the number of clusters. Delay is minimized by
packing LUTs that are on a critical-path together in order to
exploit local routing, which is faster than global routing. Finally,
routability is improved by minimizing the number of inputs used
by each cluster.

Intuitively, we would expect clustering to be more effective than
technology mapping at reducing power, since clusters are typically
larger (commercial parts contain as many as 10 LUTs per cluster).
On the other hand, encapsulating high activity nodes into clusters
does not eliminate these nodes entirely, as it does in technology
mapping. An interconnection between LUTs within a cluster still
requires a connection; however, the capacitance of this intra-
cluster connection is much smaller than the capacitance of the
inter-cluster connections.

5.1 Clustering Algorithm
To investigate these tradeoffs, we have extended the T-VPack
algorithm from [8] by modifying the cost function. In T-VPack,
LUTs are packed one at a time. For each LUT, an attraction
function is used to select a seed LUT from the set of all LUTs that
have not already been packed. After a seed LUT is packed into

the new logic block, new LUTs are selected using a second
attraction function. LUTs are packed into the cluster until it
reaches full capacity or all cluster inputs have been used. If all the
cluster inputs become occupied before the cluster reaches full
capacity, a hill-climbing technique is applied which looks for
LUTs that do not increase the number of inputs used by the
cluster.

Of particular interest are the two attraction functions. The seed
attraction function is used to select the initial LUT to pack into a
new cluster. In the original algorithm, one of the LUTs on the
most time-critical path is chosen. The second attraction function
selects a LUT to be packed into a partially filled cluster. In the
original algorithm, this second attraction function is (for a LUT B
being considered for cluster C):

G
CNetsBNetsBCritBAttraction |)()(|)1()()(∩

α−+⋅α=

where Crit(B) is a measure of how close LUT B is to being on the
critical path, Nets(B) is the set of nets connected to LUT B,
Nets(C) is the set of nets connected to the LUTs already selected
for cluster C, and G is a normalizing factor. The first term in this
attraction function gives priority to nodes on the critical path. The
second term gives priority to LUTs that share nets with the LUTs
already packed into the cluster.

In our power-aware clustering algorithm, we modify these
attraction functions. The first attraction function is modified so as
to select a LUT whose input and output wires have the highest
switching activity.

The second attraction function, which selects the remaining LEs
that are packed into each cluster, is modified as follows (for an LE
B being considered for cluster C):





















⋅

∩∈
⋅β

+
∩∈

⋅β−
⋅α−

+⋅α=

∑

∑

AvgActivityG

CNetsBNetsiiActivity
G

CNetsBNets iiWeight

BCritBAttraction

)()(|)(

)()(|)(
)1(

)1(

)()(

where Crit(B) is a measure of how close LE B is to being on the
critical path, Nets(B) is the set of nets connected to LE B, Nets(C)
is the set of nets connected to the LEs already selected for cluster
C, Activity(i) is the estimated switching activity of net i,
ActivityAvg is the average switching activity of all the nets in the
user circuit, α and β are user-defined constants which determine
the relative importance of each attraction component, and G is a
normalizing factor.

The first term of the new attraction function is the same as before,
the second is modified, and the third is new. Instead of measuring
the cardinality of the set of shared nets for each LE, the second
term sums the weight of each shared net. The weight of a net is 1
for most nets; however, the weight is 2 for nets that are likely to
be fully encapsulated into the current cluster. A weight of 2 is
assigned to nets that are small (fewer than 4 pins) and that have
not already been connected to any other cluster. The weight factor
increases the probability of encapsulating nets entirely within a
cluster by favoring nets that are more easily encapsulated. The
third term of the attraction function minimizes the switching
activity of connections between logic blocks by attracting high
activity nets inside the logic blocks. The term favors LEs that

704

share high activity nets with the LEs that are already packed in the
current logic block. Values of 0.0 for α and 0.6 for β were found
experimentally to produce the most energy-efficient results.

5.2 Clustering Results
Figure 3 compares the energy dissipation of circuits clustered
using T-VPack and the new power-aware clusterer (P-T-VPack).
In both cases, the baseline technology mapper, placer, and router
were used. Again, the energy results are obtained after routing.
The graph illustrates that the energy minimization becomes more
effective as the cluster size is increased. Larger clusters
encapsulate more wires allowing the algorithm to remove more
high-activity wires from global routing. For clusters of size 4, the
energy is reduced by 12.6%.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10
Cluster Size (N)

En
er

gy
 (n

J)

0

2

4

6

8

10

12

14

16

18

20

%
 E

ne
rg

y
R

ed
uc

tio
n

T-VPack P-T-VPack % Energy Reduction

Figure 3. Power-aware clustering results versus cluster size.
In Table 2 we examine the energy reductions in more detail. For
clusters with four LEs, the power-aware clusterer reduces the
number of inter-cluster connections by 1.0% and the average inter-
cluster switching activity by 20.8%. In contrast with the
technology mapper, the improvements from the clustering
algorithm come primarily from the minimization of switching
activity.

Table 2. Clustering results.

 T-VPack P-T-VPack % Diff.
Connections 6268 6206 -1.0

Average Activity 0.298 0.236 -20.8
Energy (nJ) 2.18 1.88 -12.6

6. PLACEMENT
After being packed, the clusters are mapped to physical locations
on the FPGA. This stage of the CAD flow is called placement.
Intuitively, a good placement can have a significant impact on
power. If clusters connected by high-activity nets are placed near
each other, these high-activity nets will likely be short, and thus,
consume less power. On the other hand, unlike technology
mapping, a placement algorithm can not eliminate high-activity
nets all together; it can only make these nets shorter. In cases
when there are many high-activity nets, it may not be possible to
place all clusters connected by these nets close together.

Similarly, in cases when there are timing-critical nets that also
have low switching activity, the delay of the circuit may increase.
This delay increase may counteract the power reduction, thereby
reducing the overall energy savings. To investigate these
tradeoffs, we modified an existing timing-aware placement
algorithm to optimize for power using a technique similar to that
described in [15].

6.1 Placement Algorithm
Our baseline algorithm was T-VPlace [9], a part of the VPR tool
suite [2]. T-VPlace is based on simulated annealing. The
algorithm starts with a random initial placement of the circuit on
the FPGA, after which pairs of logic blocks are randomly selected
and then swapped for a large number of iterations. Each swap is
evaluated to determine if it should be kept or not. If the swap
decreases the cost, as defined by a cost function, the swap is
always kept; however, if the cost increases, the swap may or may
not be kept. The probability of keeping a seemingly-bad swap
decreases as the algorithm executes.

The cost function used by T-VPlace has two components. The first
component is the sum of the bounding box dimensions of all nets.
That is, if there are Nnets nets, and bbx(i) and bby(i) are the x and y
dimensions of the bounding box of net i, then:

∑
=

+⋅=
netsN

i
yx ibbibbq(i)Cost Wiring

1

)]()([

The term q(i) is used to scale the bounding boxes to better
estimate wirelength for nets with more than 3 terminals, as
described in [9]. The second component is used to evaluate the
timing cost of a potential placement. The timing cost is:

∑
∈∀

⋅=
circuitj,i

CE)j,i(yCriticalit)j,i(DelayCost Timing

where Delay(i,j) is the estimated delay of the connection from
source i to sink j, CE is a constant, and Criticality(i,j) is an
indication of how close to the critical path the connection is [9].
The total cost is the sum of the wiring cost and timing cost for all
nets:

WiringCost Previous
Cost Wiring

TimingCost Previous
Cost TimingC ∆

⋅λ−+
∆

⋅λ=∆)1(

where PreviousTimingCost and PreviousWiringCost are auto-
normalizing factors that are updated once every temperature, and
λ is a user-defined constant which determines the relative
importance of the cost components.

To make this cost function power-aware, a third component is
added to T-VPlace’s cost function. The power cost component
estimates the power consumption of each net by multiplying their
bounding box and switching activity:

)()]()([
1

iActivityibbibbq(i)Cost Power
netsN

i
yx ⋅+⋅= ∑

=

Like the timing and wiring components, the power component of
the cost function is auto-normalized with a PreviousPowerCost
factor, which is updated once every temperature. The relative

705

importance of the power component is controlled with a user-
defined constant, γ.

6.2 Placement Results
The power-aware algorithm (called P-T-VPlace) produced
marginal but consistent improvements in terms of energy when
compared with T-VPlace. As shown in the fourth column of
Table 4, the post-routing energy dissipation was reduced by 3.0%,
where all of the 20 benchmarks showed improvement. Note again
that these improvements were for the placement algorithm only;
the baseline algorithms were used for the other three CAD stages.

Intuitively, the P-T-VPack algorithm attempts to place clusters
connected with high-activity nets close to each other. To
investigate to what extent this is happening, we examined the
relationship between the switching activity and the capacitance of
each net after routing. We divided the nets of each circuit into
groups, based on their activities (the first group consisted of nets
with an activity of 0.0 to 0.1, the second group consisted of nets
with an activity of 0.1 to 0.2, etc.). For each net, we found the
post-routing capacitance using the baseline and power-aware
placement algorithms. The total capacitance of all the nets in each
group was then summed, and the results were plotted in Figure 4.
This plot shows that high-activity nets are more likely to have a
low capacitance when the power-aware placement algorithm is
used, compared to when the baseline placement algorithm is used.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Activity Ratio

To
ta

l C
ap

ac
ita

nc
e

(n
F)

-25

-20

-15

-10

-5

0

5

10

15

20

%
 C

ap
. D

iff
er

en
ce

Baseline Placer Power-aware Placer % Cap. Difference

Figure 4. P-T-VPlace (wire cap. vs. switching activity).

Examining the results further, the power-aware placer reduces
global routing power by 6.7% compared to the baseline placer.
The critical-path delay, however, increases by 4.0%, thereby
counteracting much of the power reductions. The delay increase
is incurred when critical-path nets have low switching activity.
When switching activity is not considered, all critical-path nets are
kept short in order to reduce delay. However, when switching
activity is considered, critical-path nets with low switching
activity are not kept as short as before.

7. ROUTING
Once clusters are assigned to physical locations on the FPGA,
connections between the clusters must be routed through the
FPGA’s prefabricated programmable routing fabric. Routing is
more complex in FPGAs than in any other implementation
medium, since only a limited number of programmable switches
between routing tracks are provided. Intuitively, we would not

expect a power-aware router to significantly impact the power of
the final implementation. Although it is possible for a non-power-
aware router to take a circuitous route for a high-activity net,
experiments have shown that this rarely happens.

7.1 Routing Algorithm
To quantify this intuition, we have modified the router in VPR to
be power-aware. The original router uses a negotiated congestion-
delay algorithm based on PathFinder [10]. During initial iterations,
an overuse of routing resources is allowed (in other words, it is
acceptable for more than one net to share a routing wire). In later
iterations, however, the penalty for this overuse is increased, until
no wire is used by more than one net.

The baseline VPR router uses the following cost function to
evaluate a routing track n while forming a connection from source
i to sink j:

)()()()),(1(
)(),()(

npnhnbjiCrit
ndelayjiCritnCost

⋅⋅⋅−
+⋅=

The cost function has a delay term and a congestion term. The
delay term is the product of the Elmore delay of node n and
Crit(i,j) as defined in Section 6.1. The congestion term, which has
more weight when the criticality is low, has three components:
b(n) is the “base cost”, h(n) is the historical congestion cost, and
p(n) is the present congestion of node n. The value of p(n) is
increased gradually as the algorithm progresses to discourage node
sharing, allowing the algorithm to produce a legal solution.

To make the router power-aware, we modified the cost function as
follows:

)]()()())(1()([
)),(1()(),()(

npnhnbiActCritcap(n)iActCrit
jiCrit ndelayjiCritnCost

⋅⋅⋅−+⋅
⋅−+⋅=

where cap(n) is the capacitance associated with routing resource
node n and ActCrit(i) is the activity criticality of net i:

),)(min()(t MaxActCri
yMaxActivit

iActivityiActCrit =

where Activity(i) is the switching activity in net i, MaxActivity is
the maximum switching activity of all the nets, and MaxActCrit is
the maximum activity criticality that any net can have. Setting
MaxActCrit to 0.99 prevents nets with very high activity from
completely ignoring congestion.

The delay term is left unchanged; when criticality is high, the cost
focuses on Elmore delay. The second term, however, is modified
to consider the capacitance of a routing resource node when the
activity of the net is high.

7.2 Routing Results
To investigate the effectiveness of the router on reducing energy,
we used the new router with the baseline algorithms for all other
CAD stages. The improvements, shown in the third column of
Table 4, were similar to those achieved during placement. The
average post-routing energy disspation was reduced by 2.6%. All
of the 20 benchmarks showed an improvement.

Intuitively, this algorithm attempts to route high-activity nets
using routing resources that are less capacitive, such as pass-

706

transistor switched tracks rather than tristate-buffered tracks. To
investigate to what extent this is happening we used the same
technique described in Section 6.3 to examine the relationship
between wire capacitance and switching activity of nets routed
with the power-aware router. Again we saw that nets with high
switching activity are more likely to have a low capacitance when
the power-aware routing algorithm is used, compared to when the
baseline routing algorithm is used.

0.0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Activity Ratio

To
ta

l C
ap

ac
it

an
ce

 (
nF

)

-12

-10

-8

-6

-4

-2

0

2

4

%
 C

ap
. D

if
fe

re
nc

e

Baseline Router Power-aware Router % Cap. Difference

Figure 5. P-VPR Router (wire cap. vs. switching activity).

The power-aware router reduces global routing power by 6.2%
compared to the baseline router. The critical-path delay, however,
increases by 3.8%, again counteracting much of the power
savings.

8. COMBINED RESULTS
The four previous sections considered each FPGA CAD algorithm
in isolation in order to determine how suitable each algorithm is to
energy minimization. This chapter, however, combines the
power-aware algorithms described in the previous sections in
order to examine the interactions between the savings of each
power-aware algorithm. The results obtained for all sixteen
possible CAD algorithm combinations are summarized in Table 4.

The energy reduction obtained when all the power-aware
algorithms are combined is 22.6%. If the reductions of each stage
were perfectly cumulative, the total reduction would be 25.8%
(sum of the individual reductions). In other words, the reductions
of the entire power-aware CAD flow are mostly cumulative, with
only 3.2% overlap. To further investigate this, we examine the
overlap between each power-aware algorithm separately.

For example, consider the interaction between the power-aware
technology mapping and clustering algorithms. By itself, the
power-aware technology mapping algorithm leads to a 7.6%
reduction in energy. The power-aware clustering algorithm, by
itself, leads to a 12.6% reduction in energy. Experimentally, by
combining the two enhanced algorithms, we obtained an
improvement of 17.6% (compared to 20.2% if the reductions had
been perfectly cumulative). In other words, there is an overlap of
2.6% between the reductions achieved by the technology-mapper
and the reductions achieved by the clusterer.

Using the same approach, the overlap for all remaining power-
aware pairings was determined. The results are shown in Table 3.

Table 3. Overlap between power-aware algorithms.

Overlap (%) Emap P-T-Vpack P-VPR Placer
P-VPR Router 0.27 0.04 -0.10
P-VPR Placer 0.39 -0.33

P-T-Vpack 2.61

The results suggest that most of the overall overlap occurs
between the technology mapping and clustering algorithms. The
overlap between the other algorithms is very small. A negative
overlap implies that combining the algorithms introduces
additional energy reductions; however, the negative values in
Table 3 are very small and can be attributed to variance in the
experimental results. It is intuitive that most of the overlap occurs
between the technology mapping and clustering algorithms since
the two algorithms account for most of the overall energy
reduction. The overlap occurs when the technology mapping
algorithm reduces the size of the netlist, leaving fewer wires for
the clustering algorithm to work with. Generally, the overlap
between the two stages increases proportionally with respect to the
reductions of the technology mapper. This trend is illustrated in
Figure 2, where each point corresponds to one benchmark circuit
and the line is a linear regression trend line.

-6

-4

-2

0

2

4

6

8

10

12

14

-10 -5 0 5 10 15 20 2

EMap Reduction (%)

Em
ap

/P
-T

-V
Pa

ck
 O

ve
rla

p
(%

)

5

Figure 2. EMap/P-T-VPack Overlap.

Although not shown, the interactions between all the algorithms
are similar; however, the effect is less dramatic since the
reductions of the placement and routing algorithm are less
significant.

9. CONCLUSION
In this paper, we have investigated the interactions between
various stages in the FPGA CAD flow. We considered
technology-mapping, clustering, placement, and routing. We have
found that (1) the technology mapping and clustering algorithms
were the most effective at reducing power, (2) the overlap
between the energy savings achieved during each of the CAD
stages is small. Of course, the numerical results are specific for
our algorithms; however, we expect that other power-aware
algorithms would produce similar conclusions. We have not yet
considered high-level synthesis, but we expect that the energy
savings achieved there could be significant.

707

Table 4. Combined Results (Energy (nJ)).
Mapper Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Power Power Power Power Power Power Power Power

Clusterer Baseline Baseline Baseline Baseline Power Power Power Power Baseline Baseline Baseline Baseline Power Power Power Power
Placer Baseline Baseline Power Power Baseline Baseline Power Power Baseline Baseline Power Power Baseline Baseline Power Power
Router Baseline Power Baseline Power Baseline Power Baseline Power Baseline Power Baseline Power Baseline Power Baseline Power

alu4 1.64 1.58 1.62 1.56 1.56 1.51 1.52 1.48 1.58 1.54 1.56 1.52 1.53 1.50 1.52 1.47
apex2 1.70 1.64 1.64 1.59 1.50 1.44 1.45 1.40 1.60 1.53 1.54 1.48 1.37 1.31 1.32 1.26
apex4 0.94 0.93 0.90 0.88 0.83 0.81 0.79 0.78 0.95 0.94 0.90 0.89 0.86 0.84 0.81 0.80
bigkey 2.34 2.29 2.33 2.29 2.40 2.36 2.39 2.37 2.51 2.47 2.49 2.45 2.48 2.44 2.46 2.42
clma 8.56 8.15 8.15 7.77 7.39 7.03 6.90 6.60 7.56 7.25 7.39 7.00 6.66 6.39 6.40 6.09
des 3.12 3.05 3.08 3.02 3.13 3.03 3.08 2.98 3.15 3.07 3.12 3.02 3.13 3.03 3.04 2.96

diffeq 0.90 0.87 0.88 0.84 0.76 0.73 0.73 0.71 0.79 0.77 0.78 0.75 0.69 0.68 0.66 0.65
dsip 2.22 2.21 2.19 2.17 2.04 2.00 2.01 2.00 2.21 2.18 2.21 2.16 2.03 2.00 2.01 1.98

elliptic 2.73 2.63 2.61 2.52 2.07 2.02 1.93 1.89 2.21 2.14 2.10 2.04 1.88 1.83 1.76 1.70
ex1010 2.85 2.78 2.81 2.73 2.46 2.41 2.31 2.27 2.56 2.52 2.52 2.46 2.21 2.18 2.07 2.04

ex5p 1.01 0.98 0.98 0.96 0.87 0.86 0.85 0.82 0.97 0.95 0.94 0.91 0.87 0.87 0.85 0.84
frisc 1.91 1.86 1.76 1.72 1.46 1.42 1.36 1.33 1.66 1.61 1.52 1.49 1.38 1.36 1.24 1.22

misex3 1.38 1.37 1.37 1.32 1.24 1.20 1.18 1.14 1.31 1.26 1.29 1.25 1.16 1.13 1.13 1.08
pdc 2.69 2.62 2.54 2.50 2.32 2.29 2.25 2.19 2.47 2.42 2.32 2.31 2.11 2.08 2.02 1.98

s298 2.23 2.15 2.17 2.11 1.76 1.72 1.70 1.68 2.10 2.04 2.06 2.01 1.72 1.69 1.70 1.66
s38417 7.43 7.27 7.25 7.08 6.60 6.46 6.48 6.37 6.69 6.55 6.59 6.44 6.26 6.13 6.13 5.99

s38584.1 5.89 5.76 5.82 5.68 5.19 5.06 5.09 4.97 4.92 4.83 4.87 4.78 4.31 4.22 4.24 4.13
seq 1.64 1.58 1.59 1.51 1.40 1.36 1.34 1.30 1.47 1.42 1.42 1.35 1.30 1.24 1.24 1.19
spla 2.02 1.96 1.91 1.84 1.73 1.69 1.59 1.57 1.86 1.83 1.77 1.72 1.59 1.56 1.51 1.49

tseng 0.96 0.94 0.94 0.92 0.85 0.83 0.83 0.81 0.84 0.81 0.83 0.81 0.77 0.75 0.75 0.73
Geo.

Mean
2.18 2.12 2.11 2.05 1.90 1.85 1.83 1.79 2.01 1.96 1.95 1.90 1.79 1.75 1.73 1.68

% Diff. 0.00 -2.63 -2.99 -5.72 -12.6 -14.8 -15.9 -17.9 -7.59 -9.95 -10.19 -12.6 -17.6 -19.5 -20.6 -22.6

10. REFERENCES
[1] Anderson, J., and Najm, F.N., Power-Aware Technology

Mapping for LUT-Based FPGAs, IEEE Intl. Conf. on Field-
Programmable Technology, pp. 211-218, December 2002.

[2] Betz, V., and Rose, J., Architecture and CAD for the Speed
and Area Optimization of FPGAs, Ph.D. Dissertation
University of Toronto, 1998.

[3] Chen, K.C., Cong, J., Ding, Y., Kahng, A.B., and Trajmar, P.,
DAG-Map: Graph-Based FPGA Technology Mapping for
Delay Optimization, IEEE Design and Test of Computers,
September 1992, pp.7-20.

[4] Cong., J., and Ding, Y., FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 13(1):1-12, 1994.

[5] Cong, J., and Hwang, Y. Simultaneous Depth and Area
Minimization in LUT-Based FPGA Mapping, Proc. Int'l
Symp. on FPGAs, Monterey, CA, pp. 68-74, February 1995.

[6] Cong, J., Wu, C., and Ding, E. Cut Ranking and Pruning:
Enabling A General And Efficient FPGA Mapping Solution,
Proc. Intl. Symp. on FPGAs, Monterey, CA, pp. 29-35, 1999

[7] Li, H., Mak, W-K., and Katkoori, S., LUT-Based FPGA
Technology Mapping for Power Minimization with Optimal
Depth, IEEE Computer Society Workshop on VLSI, Orlando,
2001, pp.123-128.

[8] Marquardt, A., Betz, V., and Rose, J., Using cluster-based

logic blocks and timing-driven packing to improve FPGA
speed and density, Proc. Intl. Symp. on FPGAs, Monterey,
CA, pp. 37-46, February 1999.

[9] Marquardt, A., Betz, V., and Rose, J., Timing-Driven
Placement for FPGAs, Proc. Intl. Symp. on FPGAs, Monterey,
CA, pp. 203-213, February 2000.

[10] McMurchie, L., and Ebeling, C., PathFinder: A Negotiation-
Based Performance-Driven Router for FPGAs, Proc. Intl.
Symp. on FPGAs, Monterey, CA, pp. 111-117, 1995.

[11] Najm, F., Low-pass Filter for Computing the Transition
Density in Digital Circuits, vol. 13, no.9, pp. 1123-1131,
September 1994.

[12] Poon, K., Yan, A., and Wilton, S., A Flexible Power Model for
FPGAs, Intl. Conf. on Field-Programmable Logic and
Applications, September 2002.

[13] Sentovich, E.M., et al., SIS: A System for Sequential Circuit
Synthesis, UC Berkeley, Memorandum No. UCB/ERL
M92/41, Electronics Research Laboratory, May 1992.

[14] Singh, A., and Malgorzata, M., Efficient Circuit Clustering for
Area and Power Reduction in FPGAs, Proc. ACM/SIGDA
Intl. Symp. on FPGAs, Monterey, CA, pp. 59-66, February
2002.

[15] K. Roy, “Power-Dissipation Driven FPGA Place and Route
Under Timing Constraints”, IEEE Transactions on Circuits
and Systems, vol. 46, no. 5, pp. 634-637, May 1999.

708

http://ballade.cs.ucla.edu/~cong/papers/fpga95_cutmap.ps.Z
http://ballade.cs.ucla.edu/~cong/papers/fpga95_cutmap.ps.Z

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

