

Abstract

A primary goal of high-level modeling is to efficiently
explore a broad design space, converging on an optimal or
near-optimal system architecture before moving to a more
detailed design. This paper evaluates a high-level, layered
software-on-hardware performance modeling environment
called MESH that captures coarse-grained, interacting
system elements. The validity of the high-level model is
established by comparing the outcome of the high-level
model with a corresponding low-level, cycle-accurate
instruction set simulator. We model a network processor and
show that both high and low level models converge on the
same architecture when design modifications are classified
as good or bad performance impacts.

1. Introduction

System on a chip (SoC) designs are projected to become
increasingly complex with the potential for hundreds of
interacting programmable processing elements on a single
chip. Key design decisions for these concurrent systems will
focus on how coarse-grained hardware and software design
elements interact to affect system performance. Simulations
must allow designers to manipulate such heterogeneous
design elements as the numbers and types of processing
resources, interconnect strategies, software tasks, scheduler
types, task mappings, and arbitration strategies so that near
optimal designs may be reached.

For such systems, designers would readily trade accuracy
for the ability to explore more quickly a larger, less detailed
design space. Important at this level is getting close to the
“optimal” design through high level trade-offs, and then
switching to a more detailed level to further improve the
design. Indeed, for many complex design spaces the optimal
may never be known, but competitive advantage is gained by
getting closer within a limited design time.

Figure 1 conceptually illustrates this as two levels of
performance modeling in a design space. The bottom level
represents the detailed

instruction set simulator

 (ISS) level.
The top level represents a high-level model. While the planes
are flat for the purposes of illustration, in reality each of the
levels would imply a multidimensional curve characterizing
the relative performance of each individual model. As a
designer makes a move along the high-level curve, a set of
more detailed designs are implied in the more detailed curve.
As illustrated, these projections may overlap, and the
absolute error between the high-level point and its projection
may be sizable at times. However, so long as the
measurements in the high level model track those in the
lower level, the high-level modeling can be used to narrow a
larger design space more quickly than if complete detail
were required.

A primary criticism of current high-level modeling is that
it does not support meaningful, early design exploration. ISS

approaches are too detailed, requiring fully developed
software and hardware models. Many higher levels of
modeling are purely functional, specifying required system
behavior, but not capturing timing information necessary for
performance evaluation. The designer cannot separate the
system into high-level, concurrent software and hardware
design elements and discover their performance as they
interact in a modeled system. Instead, we focus on providing
a simulation foundation for a performance modeling
environment that captures software executing on hardware in
concurrent, layered thread relationships. Our modeling
environment, MESH (Modeling Environment for Software
and Hardware)[1][2], provides a basis midway between
functional and ISS models, allowing for early, high-level
performance modeling without the need for the detail of
instruction set simulators or complete software models.

We motivate our approach by showing how high-level
software on hardware performance models must capture
layering. Then we outline how logical

on

 physical thread
relationships capture high-level software on hardware
execution for heterogeneous multiprocessing systems.
Finally, we evaluate MESH in reaching a near optimal
design over a set of heterogeneous design elements that
include software, schedulers and processor resources.

2. High Level, Layered Performance Modeling

The design of concurrent systems with multiple
programmable elements at the high level is fundamentally
different than the design of systems with hardware elements
at the high level, due to design element interactions. In
hardware designs, high level models may be composed from
groups of interconnected elements because the behavior of
one group is not affected by the behavior of another group;
component encapsulation holds and independence largely
applies. Hardware design can be considered monolithic, even
manipulated on a common graph basis.

In contrast, programmable systems are characterized by
resource sharing. Shared system resources include busses,
memories, buffers, queues, processors and networks, which
are arbitrated by protocols, switches, arbiters, schedulers and
memory controllers. Software and hardware design elements
cannot be resolved to a single model [3]. Rather, the resource
sharing requires a layered relationship on models — the

Figure 1 Experimental Design Exploration

MESH:
High-Level

ISS:
Cycle-

Accurate

Layered, Multi-Threaded, High-Level Performance Design

Andrew S. Cassidy, JoAnn M. Paul and Donald E. Thomas
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

{acassidy, jpaul, thomas}@ece.cmu.edu

1530-1591/03 $17.00  2003 IEEE

upper layer is the common context across resources as
illustrated by the programmer’s view in Figure 2. The
hardware model of the system, shown in the dark box,
consists of multiple processors, P

i

, with local memory, M

i

,
each connected to network N

1

. The performance

potential

of the system increases as the number of processors. But
only in this pure hardware sense does the system have
independent design elements. The

actual

 system
performance is reduced from the potential speedup due to
the interactions of the hardware and software elements in
the system. The programmer’s view of the system, shown as
the grey arrow penetrating the hardware box, co-ordinates
the otherwise separate hardware elements to work together
on a common problem. The program is not an

equivalent

model of the hardware, as a high-level hardware
specification of lower-level hardware might be, rather it is

part

 of the programmed system, layered on top of the
hardware model.

The effects of the interactions among system design
elements on overall system performance requires models
that include a layering relationship of software executing on
hardware. The challenge in high-level performance
modeling lies in understanding what set of features are
adequate to capture the interactions of the system’s software
and hardware design elements and how those features are
affected by abstracting away detail. The step from low-level
ISS modeling to high-level performance modeling is not
straight-forward. Other high-level modeling approaches for
heterogeneous multiprocessing have been focused on the
integration of different event timing models [4] or resolving
different models with component-like wrappers [5]. A
formal, layered relationship on threads (described next)
provides a basis for allowing the designer to manipulate
design elements before components are formed or detailed
timing models are established.

2.1 Thread Basis

We begin by summarizing our formal foundation for
MESH which models systems using logical and physical
sequencing of events [1]. The definition of an event model
as a pair of data and time values is not new and the notions
that digital systems include both logical and physical
sequencing [7] as well as partially and totally ordered
sequences [8] are both well established. We adopt the
nomenclature in [9] referring to a time value in an event
tuple as a tag. Our objective of high-level performance
modeling and our layered, multi-threaded approach
distinguish us from [9]. High-level performance modeling
requires understanding how to model logical events as they
are interleaved by and resolved to resources (processors) in
a data-dependent manner when the resources are,
themselves, interleaved in simulation time.

An

event

 in a system model has a tag and a value e = (t,
v). The

value

 represents an operand v

∈

V, the set of all
operands in the system, which is the result of a calculation.
The

tag

 indicates a point in a sequence of events in which
the operand is calculated.

Threads are an ordered set of N events,
Th = {e

1

, … , e

N

}
where the ordering is specified by the tags of the events and
N may be considered infinite. Event e

i

 < e

j

 iff T(e

i

) < T(e

j

),
where T(e

x

) represents the tag of event e

x

.
Computer systems contain two kinds of event ordering

— logical and physical [7]. The tags used in

logical
ordering

 specify a sequence which is not physically based;
the ordering does not relate back to physical intervals or
global time. Logical ordering often arises from functional
language specifications at a high level of design. A basic
assumption is that reordering the logical events of a thread
(i.e., reordering the time tags) is allowable as long as data
precedences are not violated. The tags used in

physical
ordering

 represent a physical time basis; there is a real,
physical interval of time between two tags

i

and

 j

 when

i

≠

 j

.

2.2 Logical-to-Physical Event Resolution

The means of resolving logical events to physical events
impacts the design. Logical and physical thread sequences
are denoted as Th

L

 and Th

P

 respectively. The thread
Th = {e

1

, … , e

N

}
is ordered based on its tags. Clearly, a physically ordered
system is totally ordered. A

partially ordered

 system has at
least two logical tags t and t’ for which we do not know if t
< t’ or t’ < t. Thus, assuming events e

a

 and e

b

 are partially
ordered, one resolution to a physical order is the sequence

Th = {…, e

a

, e

b

, …},
while another correct resolution is

Th = {…, e

b

, e

a

, …}.
Another possible resolution is that they will have the same
physical tag; they will be concurrent. Describing a system
with a partially ordered sequence allows greater flexibility
in the design of the system; partially ordered events give rise
to alternate implementations of the system, where actual
concurrency can be determined at runtime.

The hardware design process specifies a resolution of
logical events to physical events by binding them at design
time, e.g., a logic synthesis tool binds Boolean algebraic
functions (logical events) to gates (physical events).

In software design, the resolution of logical events to
physical events does not occur until runtime. Clearly there
must be a physical machine to execute the software, but the
actual physical execution performance of the software is not
part of the system model. From a design point of view,
optimization of the logical ordering of a single-threaded
software system (software design), can be done
independently of the design of the physical system
(processor design) upon which it will ultimately execute. In
contrast, optimization of concurrent software executing on
concurrent hardware requires the software design to be
considered with respect to its underlying architecture.
Adding or deleting a thread of execution or a physical
resource does not necessarily give insight as to whether the
overall performance of the system will be made better or
worse. Performance modeling of concurrent software-on-
hardware systems requires capturing the nuances of how the
logical events will be resolved to the physical events.

2.3 The Role of Scheduling

MESH has two dimensions of scheduling: a time-based
scheduling of the physical events, and self-timed scheduling
of the logical events as they interact with each other in a

P1 M1 Pn Mn

N1
Figure 2 A Programmed, Networked System

programmer’s view

layer resolved to physical time by schedulers. This permits
performance modeling of concurrent software executing on
concurrent hardware.

Concurrent, multi-threaded software systems give rise to
the need for scheduling the logical threads on concurrent
hardware resources. Consider a system with M logical
threads of execution executing on R resources, where M >
R. We define the physical event sequences in the system as a
sequence for each resource as

Here we extend the thread notation of the previous section
so that Th

Pr

 denotes the physical events of resource r, for
r=1,…,R. The events are a totally ordered sequence with
time tag T(e

Prt

).
We also extend the logical thread notation to let Th

Lrm

denote the logical thread

m

 which is mapped to resource

r

.
Each physical resource, r, can in general support M_r
logical threads (M_r indicates r as a subscript of M). Thus,
M = M_1 + ... + M_R. These threads are mapped by the
resource’s scheduler U

Pr

to a physical thread Th

Pr

. Each U

Pr

below

is a scheduling function that

 logically

 interleaves the
M_r threads on resource r. M_r is typically unbounded.

In general, the events of the threads Th

Lrm

 are grouped
by the scheduler and assigned to execute at a resource’s
physical time. In so doing, each scheduler on a resource r
has access to the logical event sequences of M_r threads:

These are logical events with no implication on physical
interval sizes; logical event ordering in and of itself does not
model performance. However, the schedulers map these
logical events to physical events, thus capturing
performance modeling.

Alternately, a logical collection of schedulers mapped to
individual resources may be formed as

U

Li

= {U

P1

, U

P2

, ..., U

PR

}
allowing scheduling to be considered as a single, common
logical scheduling context across multiple processing

resources. The individual physical resources owned by U

Li

must each have their own local copies of a distributed,
cooperative scheduler so that the common context is formed
across the resources. For example, consider a pthread
scheduler, distributed across R processor resources and
scheduling M threads. While the pthread scheduler is a
single scheduling entity, in reality it is a logical scheduling
context, distributed across the R resources in a co-operative
manner. The co-operation of the distributed schedulers is
what allows M tasks to be mapped to R resources, where M
and R are not known before runtime.

2.4 Performance from Layered Interleaving

Now consider R concurrent resources, three of which (1,
2, and R) are shown in Figure 3. As physical entities, the
resources can be interleaved by the relative interval sizes
implied between the physical events — this is the time-
based scheduling. Consider the one sub-sequence of
physical events: e

P12

, e

P23

, e

PR1

, as shown from left to right.
(Note that the second subscript of the events (time t)
represents time within the timebase of the physical thread;
these are not global time tags.) The scheduler of each
resource selects logical threads to be executed in the
physical time period implied by each event. Here, scheduler
U

P1

 might select the events shown in the box: e

L113

, e

L122

,
e

L123

, implying a logical interleaving — resource sharing
among threads — on resource 1. (Each of these logical
events could represent a large amount of software
functionality.) This is the self-timed scheduling in our
approach since decisions about logical event sequences are
made in concert with data dependencies from data generated
elsewhere in the system.

Considering all three resources, the actual event
sequence of logical threads in the example is {…, e

L113

,
e

L122

, e

L123

, e

L222

, e

LR11

, e

LR21

, e

LR22

, …} as implied by
the boxed events. The actual sequence of logical events can
be thought of as the

system trajectory

.
In Figure 3, the atomic groupings shown are executed left

to right, as the sequence R

1

, R

2

, R

R

is implied by the rate-
based interleaving of the resources. The trajectory can be
affected by many high-level factors such as resource rates,
scheduling policies, and data dependencies. For instance, an
increase in the computation power of a resource, say
resource 2, could allow it to execute an extra logical event as
part of e

P23

. If this extra event, say e

L233

, was being waited
for by thread Th

LR3

 on resource R, then scheduler U

PR

might make a different scheduling decision, executing e

LR31

along with other logical events on R instead of those shown.
Significantly, the actual trajectory of the system over

time (its performance) is calculated by the simulation — not

ThP1 = {eP11, eP12, ..., eP1t, ...}
ThP2 = {eP21, eP22, ..., eP2t, ...}

ThPR = {ePR1, ePR2, ..., ePRt, ...}

…

UP1(ThL11, ThL12, ..., ThL1M_1) —> ThP1
UP2(ThL21, ThL22, ..., ThL2M_2) —> ThP2

UPR(ThLR1, ThLR2, ..., ThLRM_R) —> ThPR

…

ThLr1 = {eLr11, eLr12, …, eLr1i, …}
ThLr2 = {eLr21, eLr22, …, eLr2i, …}

ThLrM_r = {eLRM_r1, eLRM_r2, …, eLRM_ri, …}

…

Figure 3 Atomicity Relationships

ThL11 = {eL111, eL112, eL113, ..., eL11i, ...}
ThL12 = {eL121, eL122, eL123, ..., eL12i, ...}
ThL13 = {eL131, eL132, eL133, ..., eL13i, ...}

ThL1M_1={eL1M_11,eL1M_12,…, eL1M_1i,…}

ThP1 = {eP11, eP12, eP13..., eP1t, ...}

…

ThL21 = {eL211, eL212, eL213, ..., eL21i, ...}
ThL22 = {eL221, eL222, eL223, ..., eL22i, ...}
ThL23 = {eL231, eL232, eL233, ..., eL23i, ...}

ThL2M_2={eL2M_21,eL2M_22, ..., eL2M_2i, ...}

ThP2 = {eP21, eP22, eP23, ..., eP2t, ...}

…

ThLR1 = {eLR11, eLR12, eLR13,..., eLR1i, ...}
ThLR2 = {eLR21, eLR22, eLR23, ..., eLR2i, ...}
ThLR3 = {eLR31, eLR32, eLR33, ..., eLR3i, ...}

ThLRM_R={eLRM_R1, eLRM_R2 ,..., eLRM_Ri, ...}

ThPR = {ePR1, ePR2, ePR3, ..., ePRt, ...}

…

Resource 1 Resource 2 Resource R

UP1 UP2 UPR

pre-specified in a static graph-like manner.

3. Design Exploration Example
A network processor serves as an example to illustrate

how our approach allows the level of performance modeling
to be raised above a cycle-accurate ISS [4]. The network
processor, shown in Figure 4, is an embedded
multiprocessor SoC, designed for the specific purpose of
routing network packets efficiently. Chip multiprocessing
(CMP) techniques are used to enhance system performance,
processing control and data functions separately, and further
parallelizing the processing of data packets across several
programmable cores.

Many elements of the Example Network Processor
(ENP) are based on the Intel IXP1200 network
processor[11]. Our ENP is composed of three microengines
(uE’s), based on the Intel IXP instruction set, a StrongARM
processor, three types of shared memory, IXP1200 Control
and Status Register (CSR) set, and a set of Tx/Rx FIFOs.
The ENP is our baseline design, around which we explored
a broader design space using the logical and physical thread
relationships described in section 2.

We tested nine physical and logical design changes
which are also included on Figure 4:

1) 1 memory arbiter vs. 3 memory arbiters
2) 2 uE’s vs. 3 uE’s
3) IP lookup on ARM vs. on uE
4) memory arbiter schedule: Hierarchical v. Round Robin
5) memory arbiter utilization time: 8 vs. 4 cycles
6) Scratch memory access time: 9 vs. 18 cycles
7) IP lookup table format: 4-bit vs. 8-bit IP lookups
8) with or without Tx CRC function in transmit thread
9) control port polling: fast vs. slow

This set of design modifications includes change in each of
the layers of MESH — software, schedulers, and resources.

Contention on the processor and memory busses is
accounted for in the memory arbiter, as well as base
memory and bus latency, modeled with a constant time
value. There are four primary software application functions
running on the processing elements, a receive function, an
IP address lookup function, a transmit function, and a
control port function. The IP address lookup function
performs a shortest prefix match lookup on the packet
destination address, using the IP lookup table[10] stored in
SRAM. The control port function resides on the ARM,
while the other functions usually reside on two or three of
the microengines. This creates a separation of the control
and data plane, and makes use of the heterogeneous

processor resources.
The ISS model is composed of the actual multiprocessor

system model, the application software, and cross compilers
to generate binaries for the processor cores. The
multiprocessor system model is derived from a GNU ISS
model of the ARM processor. A processor model of the
microengines is written in “C” as well as the memory
arbiter, shared memories, FIFO’s, the testbench, and other
system logic. A GNU cross compiler is used to generate
executable binaries for the ARM processor, from “C” code.
The cross compiler in the Intel IXP1200 Developers
Workbench[12] is used to generate microengine binaries
from IXP microcode (IXP assembly language).

Using the notation of section 2.1, the high-level
simulation has thread relationships labeled as follows and
shown in Figure 5:

• ThP1, ThP2, ThP3: rate-based models of uEs 1-3
• ThP4: a rate-based model of the ARM processor
• ThP5: a rate-based model of the memory arbiter
• ThP6: a rate-based model of the system testbench
• UP1, UP2, UP3: schedulers local to microengines 1-3
• UP4: scheduler local to the ARM processor
• UP5: scheduler on the memory arbiter
• UL1: logical scheduler; co-operation of UP1- UP4
• ThL1, ThL2: Rx and Tx packet functionality
• ThL3: IP routing functionality
• ThL4: control port functionality

UL1 and UP5 are shown coupled because the memory
arbiter co-operates with the logical scheduling of the rest of
the system (as discussed later). Design changes 1,2,3,6
involve adding or subtracting a physical thread (ThPi) from
the system, changes 7-9 involve adding, subtracting or
modifying a logical system thread (ThLi), and changes 1,4,5
involve modifying one of the scheduler threads (UPi and so
ULi). The MESH model captures the same system behavior
as the ISS with less detail. In particular, the models of the
programmable cores are simplified considerably. The ISS
models a programmable core with detailed micro
architectural functional units, such as the pipeline,
instruction decode, arithmetic units, and register file. In
contrast, the MESH model does not actually execute the
instruction stream, but rather models the effects (i.e.,
behavior) of the instruction stream. The application
software is a logical thread executed by the simulator host
directly, instead of being compiled into a binary executable
and run by the ISS processor model.

In order to tie the software application execution to a
time base for performance modeling, the high-level
software applications must be instrumented with ‘consume’
statements. These are callbacks to the schedulers indicating
the amount of computational work a software function
requires to execute relative to a high-level description of the
computation power of the underlying resource[2]. The

SRAM

Figure 4 Network Processor System Architecture

SDRAM

Scratch
RAM

Memory
Arbiter

ARM

uE1 uE2 uE3

CSR’s

Memory Bus

Processor Bus

I/O Bus

SoC

1) 1 or 3 Arbiters/Busses
4) Arbiter Scheduling Policy

3) ARM -

2) 3rd uE -
IP Route

5) Arbiter/Bus
Utilization Time

6) Optimized
Scratch
Memory Bus

7) IP Lookup
Table Format

8) Tx CRC
SW function

IP Route
9) SW
polling rate

RxFIFOs

TxFIFOs

Figure 5 Example Thread Relationships
ThP1 ThP5 ThP6

UP1

ThP2

UP2

ThP3

UP3

ThP4

UP4

UP5UL1

ThL1 ThL2 ThL3 ThL4

scheduler tracks the software execution, monitoring the
amount of resource processing power used. The software
applications were instrumented by correlating the
performance of the baseline MESH model with the baseline
ISS model. Each high-level resource has a computational
budget and a frequency of execution, representing the
computational power of the processor. In our example, 16
clock cycles in the ISS are equal to unit frequency in
MESH. Every programmable core runs at the same system
clock frequency, in order to match the ISS architecture,
although this is not required to be the case[2]. The testbench
and interface to the system are identical for both models.

In the network processor system, the primary shared
resource causing interacting behavior between processors is
the shared memory. If one processor is reading or writing
memory, another must stall until the memory bus returns to
the idle state. This access is determined by the memory
arbiter. In the ISS, accesses to shared memory are explicitly
modeled in the hardware architecture. In the MESH model,
shared memory accesses must also be instrumented in the
software application. The high-level memory arbiter affects
the consume budget of each processor, creating stalls during
contention, in order to capture the performance behavior of
the low-level system. Thus the scheduling aspect of the
memory arbiter (UP5) affects the logical sequencing (UL1)
of the software application threads by ordering and delaying
the shared memory accesses.

4. Design Exploration Experiments
These experiments focus on demonstrating a designer’s

ability to expediently explore a broader design space at the
higher (MESH) level of Figure 1. The performance of the
network processor design is evaluated based on the
maximum number of packets per second the architecture is
able to forward. All packets are 64-bytes in length, the
worse case scenario. The packet destination address is
adjustable in the testbench, and the lookup match length is
determined by the routing table entries, as well as the packet
destination address. The binary design decision experiments
were run across a range of fixed match length destination
addresses. The design space exploration experiments were
run with a random Poisson distribution of match lengths.

Since the network processor is natively interleaved at the
single ISS cycle rate, substantial error is introduced by
reducing the interleaving rate. Consider two accesses to a
shared resource by two processors executing at identical
rates. Since contention results in access delay, the apparent
access time varies according to the offset of the accesses
with respect to each other. Two processors executing at the
same rate with zero offset might experience a modeling
delay up to that of the access period (assuming a fair
arbitration scheme) — considerably more than would be in
a real system. Conversely, if the processors are perfectly
rate-interleaved with each other but are 180 degrees out of
phase, a contentionless access pattern results. This is also
not realistic in a performance sense.

In order to compensate for this error, a functional
approximation of the memory arbiter was developed.
Functional approximation increases state and functional
complexity in the model in exchange for decreased
interleaving. Functional approximation utilizes more
system-wide information than would be available to the
actual design element being modeled. The memory arbiter
was calibrated across several design points of the ISS

model. The results in this paper reflect the more detailed,
exponential functional model of the memory arbiter. A less
detailed, first order functional model yields similar results in
allowing the MESH model to characterize the design space
[6]. Future research will address more automated techniques
for developing functional approximation.

We measured the average speed-up over the header
match lengths for both the MESH and ISS models. Table 1
summarizes the average and maximum error for the MESH
with respect to the ISS model for nine design modifications
(the first and last columns of Table 1 are discussed later). Of
the nine experiments, seven have average percent error less
than 5%, and seven have maximum percent error less than
5%. This error is due to limitations in the functional
approximation of the memory arbiter and inaccuracies in
instrumenting the software applications. Design change 3
has rather large percent error because that change to the
software application running on the ARM was instrumented
by a completely uncalibrated guess by the designer.

4.1 Binary Classification of Performance
Significantly while the error is sometimes significant, it

is never enough to recommend an incorrect design decision.
In this set of experiments, each of the nine modifications in
section 3 were tested individually according to performance
improvement or degradation, ignoring the magnitude of the
error. Modifications were made to both the MESH and the
cycle-accurate ISS models, in order to verify the results.

Figure 6 is a representative result, showing the increase
in performance as the bus utilization is decreased from 8 to
4 cycles per transaction (design change #5). The horizontal
axis is ‘Lookup Match Length,’ a data dependent parameter,
and the vertical axis is the number of thousands of packets

Design
Change
Index

ISS Avg.
Speed- up

MESH
Avg.

Speed- up

Avg %
Error

Max%
Error

Binary
Decision
Correct

1 9.5% 11.4% 1.9% 3.8% Y

2 -4.1% -3.3% 1.0% 3.5% Y

3 -74.0% -66.4% 27.3% 39.2% Y

4 2.1% 0.8% 1.6% 3.7% Y

5 8.6% 9.3% 2.1% 4.2% Y

6 7.0% 8.7% 1.8% 3.5% Y

7 21.7% 19.3% 1.9% 3.5% Y

8 -0.7% -0.4% 2.2% 4.0% Y

9 -13.0% -8.9% 5.0% 8.1% Y

Table 1 Summary of Binary Design Decisions

200

250

300

350

400

450

500

550

600

650

0 1 2 3 4 5 6 7 8 9 1 0

Lookup Match Length

p
ac

ke
ts

/s
ec

 i
n

 t
h

o
u

sa
n

d
s

(K
p

p
s)

ISS - 8
MESH - 8
ISS - 4
MESH - 4

 Baseline

 Modified

Figure 6 System Performance Gain

per second (Kpps) forwarded by the network processor. The
MESH results are in yellow and the ISS results are in blue.
Visually, the performance of both models corresponds very
closely, as the lines nearly overlap one another. The lower
pair of curves denotes the performance before the design
modification, while the upper pair indicates the performance
after the change. This shows an increased performance at
each match length predicted by both models.

Table 1 summarizes all nine design modifications
according to whether the modification can be evaluated
correctly in terms of performance improvement or
degradation. The design change index is the modification as
listed in section 3. The binary decision is made based on
whether the “speedup” of both models is in the same
direction — when the binary decision is correct, both
models agree that the design change either improved or
negatively impacted performance. All nine design
modifications were correctly indicated by the MESH model.
Eight of the nine modifications were correctly identified
using the first order functional approximation of the
memory arbiter (one was indeterminate) [6]. Significantly,
these experiments show that correct design decisions can be
made even with a substantial absolute percent error.

4.2 Design Space Exploration
The design space was then explored across successive

design changes, in the order of their speedup ranking.
Figure 7 shows performance as design enhancements are
added. The sequence A-F shows a particular design
exploration path using two uE’s. Points As-Fs were created
along the same design path, except using three uE’s (design
change 2) instead of two. The graph shows the number of
thousands of packets per second (Kpps) forwarded by the
network processor vs. a design change step for both MESH
(yellow) and ISS (blue). Adding the third microengine
initially produces a performance degradation (also shown in
Table 1). However, in combination with other changes, such
as increasing the number of memory arbiters, a performance
improvement is seen. The MESH model predicts an optimal
specific combination of five design modifications (Fs)
which is one of the two optimal design change sets found in
the detailed, low-level model (Es, Fs).

Thus, the MESH model correlates to the underlying
system that it represents, giving designers the ability to
manipulate the coarse-grained, heterogeneous design
elements in a broad design space in order to achieve a
system with optimal performance.

Finally, we ran an exhaustive search of the design space.
Using six of the nine design modifications, 64 designs were
evaluated. The results, not plotted, show a convergence
upon a region of optimal system architecture. For each
memory arbiter, the top five MESH designs select five of the
top seven ISS designs. Across all 64 design points of the
exponential memory arbiter, the average percent error is
only 1.8% and the maximum percent error is only 6.7%.
This emphasizes that high-level approaches do not need to
reach an absolute optimal design. Rather, with convergence
upon a region in the less detailed design plane of Figure 1,
resulting designs can then be modeled in greater detail.

5. Conclusion
The design of SoCs with the potential for hundreds of

programmable heterogeneous processing elements requires
modeling early in the design process, enabling decisions
regarding the performance impacts of coarse-grained
hardware, software and scheduler design elements. Current
approaches using functional modeling are too high level and
do not capture performance; ISS models are too low level,
requiring fully developed software. We defined our formal
basis for layered software-on-hardware modeling as a
general means for modeling the performance of these future
SoCs. Using an embedded chip multiprocessor as an
example, we showed that MESH effectively tracks
heterogeneous design trade-offs when design changes are
classified as good or bad with respect to performance. This
approach allows designers to trade off accuracy for broader
design space exploration.

6. Acknowledgements
This work was supported in part by ST Microelectronics

and the General Motors Collaborative Research Lab at
CMU. This material is based upon work supported by the
National Science Foundation under Grant 0103706. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. We thank Chris
Eatedali for his suggestions.

7. References
[1] J. Paul, D. Thomas. “A layered, codesign virtual machine

approach to modeling computer systems,” DATE 2002.
[2] N. Tibrewala, J. Paul, D. Thomas. “Modeling and Evaluation

of Hardware/Software Designs,”CODES 2001.
[3] B. Grattan, G. Stitt, F. Vahid. “Codesign-extended applica-

tions.” CODES 2002.
[4] K. Richter, R. Ernst. “Event model interfaces for heteroge-

neous system analysis,” DATE 2002.
[5] F. Gharsalli, S. Meftali, F. Rousseau, A. Jerraya. “Automatic

generation of embedded memory wrapper for multiprocessor
SoC,” DAC 2002.

[6] A. Cassidy. “High-Level Performance Modeling and Design
Exploration,” CMU-CSSI 02-38 Tech Report. October 2002.

[7] C.L. Seitz. “System timing.” Introduction to VLSI Systems. C.
Mead, L. Conway. Reading, MA: Addison-Wesley, 1980.

[8] B. Zeigler, H. Praehofer, T. Kim. Theory of Modeling and
Simulation 2nd Edition. San Diego: Adademic Press. 2000.

[9] E. Lee, A.Sangiovanni-Vincentelli. “A framework for com-
paring models of computation,” IEEE Trans. CAD, Dec. ‘98.

[10] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. “Scal-
able high speed IP routing lookups,” SIGCOMM ‘97.

[11] Intel Corp. IXP 1200 Network Processor Datasheet. Aug. ‘01.
[12] Intel Corp. Intel IXA Software Development Kit. Ver. 2.0.

300

350

400

450

500

550

600

0 1 2 3 4 5 6 7

Design Changes

p
ac

ke
ts

/s
ec

 i
n

 t
h

o
u

sa
n

d
s

(K
p

p
s)

Best Designs ISS

Best Design MESH

 ISS
 MESHA

As

Bs
B

 C

 Cs

D

 Ds

E
F

 Es Fs

Figure 7 Optimal System Architecture

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

