
 
 
Abstract: 
Over the years, many design methodologies/tools and layout 
architectures have been developed for datapath-oriented 
designs. One commonly used approach for high-speed 
datapath designs is the full-custom design method targeted to 
bit-sliced or bit-alignment layout architectures. Using this 
approach, designers can fully exploit design properties, such 
as various circuit designs, structural regularities and layout 
structures, to develop high-speed, low-power and high-
density datapath designs. However, the main drawbacks of 
this approach are threefold: (1) extremely high development 
cost, (2) very long development time, and (3) difficult to 
migrate the custom design to a new technology. 

The other approach is the HDL-based synthesis 
method targeted to the standard-cell layout architecture. This 
approach is highly productive and easy to implement. 
However, due to lack of the ability to exploit the regularity 
properties of datapath designs, it’s mostly suitable to produce 
low/medium-speed datapath designs. Another design method 
targeted to mixed standard- and custom-cells is carried out as 
follows. First, it generates a standard-cell design to obtain a 
maximal achievable speed. Second, it performs a cell 
customization process to determine which standard cells need 
to be customized in order to satisfy the given timing 
constraint. This cell customization process is usually 
performed incrementally based on designers’ intuitions and 
experiences. Once designers select a set of standard cells to 
be customized, they will define the specification of the 
custom cells and develop the cells accordingly. Finally, the 
designers will replace the standard cells with the custom ones 
and re-evaluate the speed of the design. The customization 
process will continue until the timing constraint is satisfied.   

In this paper, we present a custom-cell identification 
method for high-speed datapath-oriented designs. The 
proposed method uses an HDL-based standard-cell design 
flow by integrating a custom-cell identification algorithm to 
determine a minimal-cost cell set and the design budgets for 
cell customization. Experimental results on a set of 
benchmarking designs are reported to demonstrate the 
effectiveness of the proposed method. Note that our problem 
is different from the cell-sizing problem. While the cell-
sizing problem is to select and to replace (re-size) cells 
(instances of cells in cell library) one by one, our problem is 
to select and re-design cells in the cell library and to replace 
all instances of the cell in the design at one time. 
1. A High-Performance Mixed Standard-/Custom-cell 

Design Flow 
The custom-cell identification method for high-performance 
mixed standard-/custom-cell datapath-oriented designs is 
defined as: Given an RTL design, a target standard-cell 
library and a given timing constraint, determine a minimal 
cell-set for customization and cells’ design budgets such that 
after replacing the standard cells with those custom cells, the 
final timing of the design satisfies the given timing constraint.  

Figure 1 shows the proposed design flow. The 
inputs to the design flow include an RTL design description 
in Verilog and a timing constraint. First, we perform the 
maximum-timing-driven RTL/logic synthesis to convert the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 RTL design into a hierarchical gate-level design. The main 
objective of the maximum-timing-driven RTL/logic synthesis 
is to achieve a design with the maximum speed. In our 
approach, we use a commercial synthesis tool to synthesize 
the RTL design into a gate-level design with the maximum 
speed option. However, when imposing such a tight timing 
constraint during the synthesis process, the resultant design is 
usually overly constrained and often results in a design with 
excessive area costs. To alleviate this problem, we apply an 
area-driven re-synthesis procedure to minimize the area cost 
while maintaining the achievable maximum speed.  

The area-driven re-synthesis procedure is described 
as below. After synthesizing the RTL design into a gate-level 
netlist, we transform the hierarchical gate-level netlist into a 
super-graph and extract the timing information for each 
super-node (i.e., for each module). We then apply the 
maximal-independent-set based algorithm (MISA) to 
perform slack assignments and thus determine the delay 
budget for each module.  After determining the delay budget 
for each module, we uses a commercial tool to re-synthesize 
the RTL design into a gate-level design by applying the 
obtained delay budget as the timing constraint for each 
module. 
 
 
 
 
 
 
 
 

 
Next, we perform place & route tasks and then back-

annotate the post-layout timing and RC information. If the 
design meets the timing constraints, the design process is 
terminated. Otherwise, we perform the custom-cell 
identification procedure to determine the cells for 
customization and their design budgets.   

The custom-cell identification procedure is performed 
as follows. We first locate the paths that violate the given 
timing constraint. Then, we apply a custom-cell identification 
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Figure 2: A custom-cell identification example. 
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Figure 1: The proposed design flow. 
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algorithm to identify the cells for customization such that 
they will contribute the maximal delay reduction with the 
minimal customization cost. We can perform the custom-cell 
procedure at module/cell levels in a hierarchical fashion. For 
instance, as shown in Figure 2, module M2 is selected for 
customization. We can further apply the custom-cell 
identification algorithm to select cells in the module for 
customization. As shown in Figure 2, cell C2 is selected for 
customization. Note that after we develop a custom-cell of 
C2, we can replace all the standard cells that have the same 
component type as C2 with the custom one (e.g., C2 in M1) 
for timing improvement. Our goal is to determine a minimal-
cost cell set for customization. Finally, based on the post-
layout timing and RC-extraction information, we can 
determine the specifications (e.g., driven loads and delay 
budgets) of the cells for customization. We will discuss the 
algorithm in details in the next section. 

Table 1: The maximum-timing-driven RTL/logic synthesis 
results. 

 Delays 
(ns) 

Max-timing 
(area/#cell) 

Resyn(MISA)
(area/#cell) 

Area 
(%) 

MAC 3.23 18697/7832 16448/7288 12.03 

CPU 2.81 4218/1728 4063/1666 3.67 

MCPU 5.46 16860/5620 15875/5379 5.84 

EWF 2.71 3666/1068 3912/1171 -6.7 

MCU 7.35 18683/7444 17250/7054 7.67 

FIR 4.5 31849/12478 28860/11871 9.38 

Blowfish 3.08 14391/3863 14233/3837 1.1 
2. Experimental Results 
We have tested seven benchmarking designs as shown in 
Table 1. All seven benchmarking designs are RTL designs 
described in Verilog. In the experiment, we used a 0.35um 
cell library. 
 The experiments consist of two parts: (1) the 
maximum-timing-driven RTL/logic synthesis method and (2) 
the custom-cell identification algorithm. For the maximum-
timing-driven RTL/logic synthesis experiment, we used 
Synopsys’s Design Compiler to synthesize the RTL design 
into a gate-level design with the maximum-speed option. 
Then, we used AVANTI’s Apollo to perform the place & 
route design tasks. After that, we back-annotated the 
capacitance load information from the layout, follows by 
using Design Time to perform post-layout timing analysis. 
Subsequently, we invoked the MISA algorithm to determine 
the delay budget for each module in the RTL design. Finally, 
we used Design Compiler to re-synthesize the RTL design 
into a gate-level design. In this re-synthesis process, we 
assigned the pre-determined delay budget as the timing 
constraint to each module. Table 1 shows the results 
produced by our proposed maximum-timing-driven 
RTL/logic synthesis method. The results show that using the 
MISA-based re-synthesis method we can achieve the 
maximum timing with an average of 4.7% area reduction.  

For the custom-cell identification experiment, we 
used the maximum achievable timing (Table 1) as the 
baseline and gradually tightened the timing constraint. 
Finally, we invoked the custom-cell identification algorithm 
to determine the minimum custom-cell set and the design 
budgets. We have compared our heuristic to a branch-and-
bound algorithm to demonstrate the effectiveness of our 

proposed heuristic. Table 2 shows the custom-cell 
identification results for the MAC design using a heuristic 
(Heur) and a branch-and-bound algorithm (BB), where #C/A 
denotes the number of custom cells and the area cost, 
respectively. The result shows that we need to replace two 
cells in this module (cg01 and xr03 as shown in Table 3) with 
area cost of 7.33 to satisfy the timing constraint of 2.74ns.  

Table 3 shows the delay budgets for the custom 
modules/cells of the MAC design in order to satisfy the given 
timing constraint of 2.74ns. For example, the delay from 
input in2 to output carry of the fulladder should be 0.171ns 
for the custom-cell implementation instead of 0.190ns for the 
standard-cell implementation. Table 4 shows the cell 
replacements and load distribution for the MAC design. For 
example, in order to satisfy the timing constraint of 2.74ns, 
we need to replace 163 fulladders in the MAC design and the 
driven loads of those fulladders are ranged between 0.029 to 
0.325pf.   
3. Conclusions 
In this paper, we have presented a new custom-cell 
identification method for high-performance datapath-oriented 
designs targeted to mixed standard-/custom-cell design style. 
By integrating commercial CAD tools and the proposed 
custom-cell identification algorithms, we have developed a 
performance-driven datapath design flow. The experimental 
results have shown that our proposed method can effectively 
identify the custom-module/cell-set for customization as well 
as determine the delay budgets. This provides designers with 
invaluable information to process their cell customization 
task that can greatly reduce the risk of design customization. 

Table 2: The custom-cell identification results (MAC). 

Tconst BB[#C/A] Heur[#C/A] 

2.98  2/7.33  2/7.33 

2.74  2/7.33  2/7.33 

2.49  5/12.66  5/12.66 

2.24 13/34.32  15/41.66 
Table3: Delay budgets for the custom modules/cells of the 

MAC design with constT =2.74ns. 
 Type Input Output Delay budget spec

Custom 
modules

fulladder in2 
in2 
in3 
in3 
in1 
in1 

carry 
sum 
sum 
carry 
carry 
sum 

0.190 => 0.171 
0.200 => 0.180 
0.200 => 0.180 
0.190 => 0.171 
0.220 => 0.198 
0.350 => 0.315 

cg01 in out 0.220 => 0.110 Custom 
cells xr03 in out 0.350 => 0.315 

Table 4: The number of cell replacements and load 
distribution of the MAC design. 

Tconst Mod # of 
replace

Max Cload Min Cload Mean 
Cload 

2.98 fulladder 86 0.204 0.029 0.088 
2.74 fulladder 163 0.325 0.029 0.085 

fulladder 196 0.325 0.029 0.084 2.49
CLA_10 1 0.186 0.186 0.186 
fulladder 221 0.325 0.024 0.083 2.24
CLA_10 1 0.186 0.186 0.186 
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