

Abstract:
Over the years, many design methodologies/tools and layout
architectures have been developed for datapath-oriented
designs. One commonly used approach for high-speed
datapath designs is the full-custom design method targeted to
bit-sliced or bit-alignment layout architectures. Using this
approach, designers can fully exploit design properties, such
as various circuit designs, structural regularities and layout
structures, to develop high-speed, low-power and high-
density datapath designs. However, the main drawbacks of
this approach are threefold: (1) extremely high development
cost, (2) very long development time, and (3) difficult to
migrate the custom design to a new technology.

The other approach is the HDL-based synthesis
method targeted to the standard-cell layout architecture. This
approach is highly productive and easy to implement.
However, due to lack of the ability to exploit the regularity
properties of datapath designs, it’s mostly suitable to produce
low/medium-speed datapath designs. Another design method
targeted to mixed standard- and custom-cells is carried out as
follows. First, it generates a standard-cell design to obtain a
maximal achievable speed. Second, it performs a cell
customization process to determine which standard cells need
to be customized in order to satisfy the given timing
constraint. This cell customization process is usually
performed incrementally based on designers’ intuitions and
experiences. Once designers select a set of standard cells to
be customized, they will define the specification of the
custom cells and develop the cells accordingly. Finally, the
designers will replace the standard cells with the custom ones
and re-evaluate the speed of the design. The customization
process will continue until the timing constraint is satisfied.

In this paper, we present a custom-cell identification
method for high-speed datapath-oriented designs. The
proposed method uses an HDL-based standard-cell design
flow by integrating a custom-cell identification algorithm to
determine a minimal-cost cell set and the design budgets for
cell customization. Experimental results on a set of
benchmarking designs are reported to demonstrate the
effectiveness of the proposed method. Note that our problem
is different from the cell-sizing problem. While the cell-
sizing problem is to select and to replace (re-size) cells
(instances of cells in cell library) one by one, our problem is
to select and re-design cells in the cell library and to replace
all instances of the cell in the design at one time.
1. A High-Performance Mixed Standard-/Custom-cell

Design Flow
The custom-cell identification method for high-performance
mixed standard-/custom-cell datapath-oriented designs is
defined as: Given an RTL design, a target standard-cell
library and a given timing constraint, determine a minimal
cell-set for customization and cells’ design budgets such that
after replacing the standard cells with those custom cells, the
final timing of the design satisfies the given timing constraint.

Figure 1 shows the proposed design flow. The
inputs to the design flow include an RTL design description
in Verilog and a timing constraint. First, we perform the
maximum-timing-driven RTL/logic synthesis to convert the

 RTL design into a hierarchical gate-level design. The main
objective of the maximum-timing-driven RTL/logic synthesis
is to achieve a design with the maximum speed. In our
approach, we use a commercial synthesis tool to synthesize
the RTL design into a gate-level design with the maximum
speed option. However, when imposing such a tight timing
constraint during the synthesis process, the resultant design is
usually overly constrained and often results in a design with
excessive area costs. To alleviate this problem, we apply an
area-driven re-synthesis procedure to minimize the area cost
while maintaining the achievable maximum speed.

The area-driven re-synthesis procedure is described
as below. After synthesizing the RTL design into a gate-level
netlist, we transform the hierarchical gate-level netlist into a
super-graph and extract the timing information for each
super-node (i.e., for each module). We then apply the
maximal-independent-set based algorithm (MISA) to
perform slack assignments and thus determine the delay
budget for each module. After determining the delay budget
for each module, we uses a commercial tool to re-synthesize
the RTL design into a gate-level design by applying the
obtained delay budget as the timing constraint for each
module.

Next, we perform place & route tasks and then back-

annotate the post-layout timing and RC information. If the
design meets the timing constraints, the design process is
terminated. Otherwise, we perform the custom-cell
identification procedure to determine the cells for
customization and their design budgets.

The custom-cell identification procedure is performed
as follows. We first locate the paths that violate the given
timing constraint. Then, we apply a custom-cell identification

A Custom-Cell Identification Method for High-Performance Mixed
Standard/Custom-Cell Designs

Jennifer Y.-L Lo, Wu-An Kuo, Allen C.-H. Wu and TingTing Hwang
Computer Science Department, Tsing Hua University

Hsin-Chu, Taiwan 30043

Figure 2: A custom-cell identification example.

M2M1I O

C1
C2 C3

C4

C1
C2 C3

C4

RTL Spec.

Max-Timing-Driven
RTL/Logic Synthesis

Hier. Gate-Level
Design

Place & Route

Back-Annotation &
Post-Layout Timing Analysis

Custom-Cell Identification

Custom-Cell List &
Design Budgets

Figure 1: The proposed design flow.

Design Budgeting

Meet Timing
Constraints?

Done Area-driven
Re-synthesis (MISA)

Yes

No

This research was supported by grants of NSC 91-2215-
E-007-040 and NSC90-2215-E-007-043.

1530-1591/03 $17.00 2003 IEEE

algorithm to identify the cells for customization such that
they will contribute the maximal delay reduction with the
minimal customization cost. We can perform the custom-cell
procedure at module/cell levels in a hierarchical fashion. For
instance, as shown in Figure 2, module M2 is selected for
customization. We can further apply the custom-cell
identification algorithm to select cells in the module for
customization. As shown in Figure 2, cell C2 is selected for
customization. Note that after we develop a custom-cell of
C2, we can replace all the standard cells that have the same
component type as C2 with the custom one (e.g., C2 in M1)
for timing improvement. Our goal is to determine a minimal-
cost cell set for customization. Finally, based on the post-
layout timing and RC-extraction information, we can
determine the specifications (e.g., driven loads and delay
budgets) of the cells for customization. We will discuss the
algorithm in details in the next section.

Table 1: The maximum-timing-driven RTL/logic synthesis
results.

 Delays
(ns)

Max-timing
(area/#cell)

Resyn(MISA)
(area/#cell)

Area
(%)

MAC 3.23 18697/7832 16448/7288 12.03

CPU 2.81 4218/1728 4063/1666 3.67

MCPU 5.46 16860/5620 15875/5379 5.84

EWF 2.71 3666/1068 3912/1171 -6.7

MCU 7.35 18683/7444 17250/7054 7.67

FIR 4.5 31849/12478 28860/11871 9.38

Blowfish 3.08 14391/3863 14233/3837 1.1
2. Experimental Results
We have tested seven benchmarking designs as shown in
Table 1. All seven benchmarking designs are RTL designs
described in Verilog. In the experiment, we used a 0.35um
cell library.
 The experiments consist of two parts: (1) the
maximum-timing-driven RTL/logic synthesis method and (2)
the custom-cell identification algorithm. For the maximum-
timing-driven RTL/logic synthesis experiment, we used
Synopsys’s Design Compiler to synthesize the RTL design
into a gate-level design with the maximum-speed option.
Then, we used AVANTI’s Apollo to perform the place &
route design tasks. After that, we back-annotated the
capacitance load information from the layout, follows by
using Design Time to perform post-layout timing analysis.
Subsequently, we invoked the MISA algorithm to determine
the delay budget for each module in the RTL design. Finally,
we used Design Compiler to re-synthesize the RTL design
into a gate-level design. In this re-synthesis process, we
assigned the pre-determined delay budget as the timing
constraint to each module. Table 1 shows the results
produced by our proposed maximum-timing-driven
RTL/logic synthesis method. The results show that using the
MISA-based re-synthesis method we can achieve the
maximum timing with an average of 4.7% area reduction.

For the custom-cell identification experiment, we
used the maximum achievable timing (Table 1) as the
baseline and gradually tightened the timing constraint.
Finally, we invoked the custom-cell identification algorithm
to determine the minimum custom-cell set and the design
budgets. We have compared our heuristic to a branch-and-
bound algorithm to demonstrate the effectiveness of our

proposed heuristic. Table 2 shows the custom-cell
identification results for the MAC design using a heuristic
(Heur) and a branch-and-bound algorithm (BB), where #C/A
denotes the number of custom cells and the area cost,
respectively. The result shows that we need to replace two
cells in this module (cg01 and xr03 as shown in Table 3) with
area cost of 7.33 to satisfy the timing constraint of 2.74ns.

Table 3 shows the delay budgets for the custom
modules/cells of the MAC design in order to satisfy the given
timing constraint of 2.74ns. For example, the delay from
input in2 to output carry of the fulladder should be 0.171ns
for the custom-cell implementation instead of 0.190ns for the
standard-cell implementation. Table 4 shows the cell
replacements and load distribution for the MAC design. For
example, in order to satisfy the timing constraint of 2.74ns,
we need to replace 163 fulladders in the MAC design and the
driven loads of those fulladders are ranged between 0.029 to
0.325pf.
3. Conclusions
In this paper, we have presented a new custom-cell
identification method for high-performance datapath-oriented
designs targeted to mixed standard-/custom-cell design style.
By integrating commercial CAD tools and the proposed
custom-cell identification algorithms, we have developed a
performance-driven datapath design flow. The experimental
results have shown that our proposed method can effectively
identify the custom-module/cell-set for customization as well
as determine the delay budgets. This provides designers with
invaluable information to process their cell customization
task that can greatly reduce the risk of design customization.

Table 2: The custom-cell identification results (MAC).

Tconst BB[#C/A] Heur[#C/A]

2.98 2/7.33 2/7.33

2.74 2/7.33 2/7.33

2.49 5/12.66 5/12.66

2.24 13/34.32 15/41.66
Table3: Delay budgets for the custom modules/cells of the

MAC design with constT =2.74ns.
 Type Input Output Delay budget spec

Custom
modules

fulladder in2
in2
in3
in3
in1
in1

carry
sum
sum
carry
carry
sum

0.190 => 0.171
0.200 => 0.180
0.200 => 0.180
0.190 => 0.171
0.220 => 0.198
0.350 => 0.315

cg01 in out 0.220 => 0.110 Custom
cells xr03 in out 0.350 => 0.315

Table 4: The number of cell replacements and load
distribution of the MAC design.

Tconst Mod # of
replace

Max Cload Min Cload Mean
Cload

2.98 fulladder 86 0.204 0.029 0.088
2.74 fulladder 163 0.325 0.029 0.085

fulladder 196 0.325 0.029 0.084 2.49
CLA_10 1 0.186 0.186 0.186
fulladder 221 0.325 0.024 0.083 2.24
CLA_10 1 0.186 0.186 0.186

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

