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ABSTRACT
The determination of the set (or window) of segments that
are inductively coupled to a significant degree with a given
segment plays a fundamental role in window-based tech-
niques for the extraction of the susceptance of interconnect
structures. We present a measure that quantifies the degree
of coupling between segments in a window, thereby paving
the way for an adaptive scheme for determining the coupling
window associated with each segment. This measure has the
properties that: (i) it is well-correlated with the simulation
error that is inherent in window-based susceptance extrac-
tion techniques, and (ii) it can be computed efficiently using
incremental and computation reuse techniques.

Categories and Subject Descriptors
B7.2 [Integrated Circuits]: Design Aids—Simulation, Ver-
ification

General Terms
Algorithms
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1. INTRODUCTION
With the continual increase in clock frequencies and global

interconnect lengths and decrease in signal transition times,
the accurate modeling of inductance effects is becoming more
and more important. The partial inductance matrix L ob-
tained from the PEEC model [1] is large and dense. Direct
simulation of the full L matrix is usually impractical, owing
to the enormous demands it places on computation time and
memory. Moreover, it is now being recognized that the sus-
ceptance matrix K = L−1 is often (approximately) sparse [2,
3]; sparsification of K based on this observation can yield
considerable savings in inductance (or more precisely sus-
ceptance) extraction, and simulation.
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If K is exactly sparse, each wire is coupled with only a few
other wires in terms of susceptance. We will therefore refer
to the set of those wires as the coupling window associated
with the wire of interest. It has recently been shown that
all the entries of the matrix K can be reconstructed just
from the entries of the sub-matrices in L that correspond to
the coupling windows, without having to invert the entire
L matrix. To generate the non-zero entries of K, we only
need to invert these sub-matrices, which are usually very
small [4].

In summary, if K is exactly sparse, and if the sparsity
pattern in K is known, its nonzero entries can be computed
with much reduced computation as compared with invert-
ing L [4]. However, in practice, K is never exactly sparse.
Moreover, the sparsity pattern in K is not known a priori.
Of course, deducing the sparsity pattern in K by inverting
L is out of the question as this is precisely the operation
that we are trying to avoid. In practice, the (approximate)
sparsity pattern in K can be deduced from proximity argu-
ments: It is realistic to assume that a wire influences and is
influenced by only “nearby” wires; this argument has been
used in a number of earlier approaches [5, 3, 6, 7]. A more
sophisticated technique, developed in the context of capac-
itance extraction, adaptively determines the coupling win-
dow for each wire [8]. All these techniques can be viewed
as applying sound heuristics for the coupling window deter-
mination, and hence the sparsity pattern in K. While these
heuristics often work well, it would be desirable to have a
systematic, quantitative, approach for determining the cou-
pling window. Moreover, the measure used to determine
the coupling window must correlate well with the error in
simulation that results from the use of this coupling window.

The main contribution of this paper is a quantitative mea-
sure that enables the systematic determination of the cou-
pling window. This measure has the properties that:

• It correlates well with the simulation error that arises
from windowing.

• It can be computed very efficiently using incremental
techniques.

We describe this measure and discuss its properties in §2.
In §3, we show how this measure can be computed efficiently.
Numerical results are presented in §4.

2. DETERMINING SPARSITY IN THE SUS-
CEPTANCE MATRIX

Our objective is a systematic, quantitative, technique for
determining of the coupling window associated with a wire.
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Figure 1: A comparison between the normalized
simulation error and the trend predicted by the rele-
vant entry of the windowed mutual susceptance ma-
trix. A severe mismatch is evident.

Clearly, there is a trade-off between coupling window size
and accuracy. A smaller coupling window offers increased
computational savings in the (approximate) computation of
the susceptance: By inverting a matrix composed of only
those entries in L that correspond to the coupling window,
we may compute approximately the corresponding entries of
the K matrix. To be precise, these are the “windowed” sus-
ceptance entries; we will therefore denote any entries of the
windowed susceptance matrix with a “hat”, i.e., by K̂ij . Of
course, the use of the windowed susceptance entries leads to
errors in simulation. A reasonable technique for determining
the coupling window would be to begin with a small window
size, and increment it until the simulation error is accept-
able. Of course, the simulation error cannot be directly used
because it requires, by definition, simulation with the full L
matrix. Thus, the key to a systematic determination of the
coupling window size is a measure which has the following
properties:

P1. It correlates well with the simulation error.

P2. It can be computed with reasonable computational ef-
fort.

The main contribution of the paper is the presentation of
such a measure.

A first attempt at postulating such a measure is as follows:
“Begin with a small-sized coupling window, and compute the
corresponding windowed susceptance entries. Increment the
coupling window size, and inspect the new mutual suscep-
tance entry that corresponds to the interaction of the wire
under consideration with the new wire that has been in-
cluded. Stop when the new entry is small.”

The measure underlying this approach, i.e., the size of the
new entries in the windowed susceptance matrix, satisfies
properties [P2]. However, it does not possess property [P1],
that is it fails to be well-correlated with the simulation er-
ror. This is illustrated by an example consisting of 55 wires.
Suppose that we wish to determine the coupling window of
wire 28. Figure 1 shows the normalized values of the win-
dowed mutual windowed susceptance between wire 28 and
the wire that is being added, as a function of the window
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Figure 2: A comparison between the normalized
simulation error and the trend predicted by the nor-
malized difference between the exact and windowed
mutual susceptance values.

size. Also shown in this plot is the normalized simulation
error as a function of window size. The simulation error is
defined as the value, averaged over a number of switching
patterns, of the quantity

�
j

� |vj(t) − v̂j(t)| dt� |vj(t)| dt
,

where vj(t) is the exact voltage profile at wire j, and v̂j(t)
is the voltage profile at wire j obtained from the simula-
tion that uses the windowed susceptance matrix K̂. Clearly,
there is poor agreement between the trend predicted by the
mutual susceptance values and the exact simulation error.

Remarkably, it turns out that the difference between the
diagonal entries of the windowed susceptance matrix K̂ and
the exact susceptance matrix K, plotted as a function of
window size, tracks very well the simulation error. For in-
stance, consider Figure 2 which contains a plot of the nor-
malized difference between the exact and windowed self-
susceptance values of wire 28, shown as a function of the
window size. It is clear that this quantity, as a function
of the window size, accurately tracks the normalized sim-
ulation error, also shown in the figure. Of course, the dif-
ference between the exact and windowed self-susceptance
values cannot be directly used (as it requires knowledge of
the exact susceptance matrix). However, the actual val-
ues of this difference are not important; what is crucial is
that they predict the simulation error trend. Thus, when
the windowed self-susceptance values do not change signif-
icantly with window size, it is evident that the simulation
error values will also not change significantly. With most
reasonable heuristics, proximity arguments are used to de-
cide on which wires should be included in a coupling win-
dow. With such heuristics, the change in the simulation
error with window size decreases monotonically, i.e., a small
change in the simulation error implies a small value for the
simulation error. Thus, the change in the difference between
the exact and windowed self-susceptance values can be used
as an excellent predictor for determining an acceptable win-
dow size. The important point is that the change in the
difference between the exact and windowed self-susceptance
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Figure 3: Growing of the coupling window using
proximity arguments.

values equals the change in the windowed self-susceptance
values themselves, and does not require the knowledge of the
exact self-susceptance values themselves. Thus the change
in the windowed self-susceptance values can be used as an
excellent predictor of window size.

3. EFFICIENT COMPUTATION OF COU-
PLING WINDOW

We now briefly discuss how the procedure for determining
the window size can be incorporated into a susceptance ex-
traction procedure. In a typical extraction procedure, wires
are first divided into segments. Fat wires may have to be
meshed at the crosssection to capture skin effect and prox-
imity effect. For each segment, proximity and geometrical
information are used to grow the coupling window associ-
ated with the segment. Figure 3 illustrates the idea. While
the growth of the coupling window is indicated in only one
direction, there are typically six directions in which the win-
dow can be extended. If the change in the self-susceptance
value of the segment of interest falls below a pre-determined
threshold, a suitable coupling window is deemed to have
been determined.

A straightforward implementation of the procedure for de-
termining the coupling window for each segment requires
a matrix inversion each time the coupling window is up-
dated. Although the window sizes are relatively small, the
computational cost of these inversions can accumulate to be
formidable. This issue can be addressed using two related
techniques:

1. Suppose that we have computed the windowed suscep-
tance matrix K̂n = L−1

n associated with a segment for
a certain coupling window size, and suppose that the
coupling window grows in size by one (for simplicity).
Thus we need to invert the matrix Ln+1 to obtain the
new windowed susceptance matrix K̂n+1. The matrix
Ln+1 is simply the matrix Ln padded with extra ele-
ments that correspond to the self and coupling induc-
tances with the added segment. This observation can
be used to reduce the computation of L−1

n+1 by an order
of magnitude. This will be described further in §3.1.

2. Suppose that we have completed the determination of
the coupling window (and the associated windowed
susceptance matrix) for segment i, and we move on
to an adjacent segment i + 1 (see Figure 4). From
proximity arguments, it is clear that the coupling win-
dow for segment i+1 will have a significant number of
segments in common with that of segment i. This fact

i+1i

window for wire i

window for wire i+1overlap

Figure 4: Computation reuse between neighboring
segments.

can be used to “reuse” numerical calculations. We will
discuss this further in §3.2.

3.1 Incremental computation of susceptance
matrix

Suppose a window size of n is not acceptable, and we need
to add one more segment. (While we consider the addition
of one segment for simplicity, the following development can
be extended to the addition of multiple segments.)

Then the inductance matrix of the new window is:

Ln+1 =

�
Ln m
mT l

�
, (1)

where Ln is the inductance matrix of the original window,
l is the self inductance of the added segment, and m is the
mutual inductance between the newly-added segment and
segments in the original window. It can be shown that

L−1
n+1 =

�
L−1

n + 1
k
vvT − 1

k
v

− 1
k
vT 1

k

�
, (2)

where

v = L−1
n m and k = l − mT L−1

n m (3)

Eqn. (2) can be used to update the windowed suscep-
tance matrix efficiently. To get L−1

n+1 from L−1
n , we need

to calculate v, k,v/k, and 1
k
vvT . These calculations need

only 2(n2 +n) multiplication operations that is an order-of-
magnitude smaller than the computation required for eval-
uating L−1

n+1 from scratch.

We observe that L−1
n+1 > 0, and therefore k > 0. Thus

every diagonal entry of L−1
n + 1

k
vvT is larger than the corre-

sponding entry of L−1
n . Thus the windowed self-susceptance

increases monotonically with window size.

3.2 Computation reuse between neighboring
segments

Suppose that we have completed the determination of the
coupling window Ci for segment i, and we wish to determine
the coupling window Ci+1 for a nearby segment i + 1. From
proximity arguments, it is clear that Ci and Ci+1 will have
many segments in common. Thus, Ci+1 can be obtained by:

1. First removing all segments from Ci that are not signif-
icantly coupled with segment i+1, i.e., those segments
that are not needed in Ci+1.
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Table 1: Extraction time (in seconds).
Number of segments 40K 100K

adaptive window with di-
rect inversions

2079 5144

adaptive windowing with
incremental inversion and
computation reuse

270 680

2. Next adding other segments that are significantly cou-
pled with segment i + 1.

This procedure is illustrated in Figure 4.
The first step of this procedure can be performed as fol-

lows. Beginning with the coupling window Ci for segment i,
we use proximity arguments to remove segments, and each
time efficiently update the windowed susceptance matrix us-
ing the techniques from §3.1. To illustrate, suppose that
we wish to remove segment 1, so that we wish to compute
Ln+1(2 : n + 1, 2 : n + 1)−1 from L−1

n+1, where we have used
A(i : j, m : n) to denote the sub-matrix at the intersection
of rows i to j and columns m to n of A.

Using Eqn. (2), we have

Ln+1(2 : n + 1, 2 : n + 1)−1 = L−1
n+1(2 : n + 1, 2 : n + 1)

−L−1
n+1(2 : n + 1, 1)L−1

n+1(1, 2 : n + 1)/L−1
n+1(1, 1). (4)

Thus, Ln+1(2 : n + 1, 2 : n + 1)−1 can be computed from
L−1

n+1 efficiently, with only (n2+n) multiplication operations.
(The same idea can be used to remove any segment from Ci,
not just segment 1.)

The procedure of removing segments is continued until the
change of the self-susceptance of segment i+1 is larger than a
pre-determined threshold, indicating that the segment that
was removed is significantly coupled to segment i + 1.

Step 2 in the above procedure can be performed efficiently,
using techniques that are essentially the same as the ones
described in §3.1 for growing the coupling window.

4. NUMERICAL RESULTS
We present numerical results obtained from Matlab im-

plementations of the adaptive susceptance extraction pro-
cedure. Two sets of results are presented. The first corre-
sponds to an implementation where the coupling windows
are determined adaptively, but with the windowed suscep-
tance matrices computed using direct matrix inversions. The
second set corresponds to the more efficient implementation
based on the incremental and computation reuse techniques
from §3.

The implementations were tested on two randomly gen-
erated interconnect structures consisting of 40,000 segments
and 100,000 segments respectively. A relative change in self-
susceptance of 0.01% was used as the threshold to determine
whether a segment should be included in a coupling window.
The extraction times for an Intel Pentium IV 1.4GHz system
are shown in Table 1. It is clear that the techniques of §3
cut down the computation by a factor of seven, when com-
pared with an implementation that employs direct matrix
inversions.

We also investigate how the relative change threshold for
the self-susceptance influences the window size and the sim-
ulation error. Figure 5 consists of two plots; the one shown
in solid lines demonstrates the dependence of the simulation
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Figure 5: Simulation error and window size as a
function of the relative change threshold.

error on the threshold, and validates the observation made
in §2 that the change in the windowed self-susceptance val-
ues serves as an excellent predictor of simulation error. The
plot in dotted lines shows window size as a function of the
threshold. A natural trade-off between the simulation er-
ror and the window size (and therefore extraction time) is
evident. While the threshold can be any positive number,
the window sizes are discrete, resulting in piecewise constant
curves.
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