
Clock-Tree Power Optimization based on RTL Clock-Gating

Monica Donno�

monica.donno@bulldast.com

Alessandro Ivaldi‡
alessandro.ivaldi@polito.it

Luca Benini∗
lbenini@deis.unibo.it

Enrico Macii‡
enrico.macii@polito.it

�BullDAST s.r.l.
Torino, ITALY 10121

‡Politecnico di Torino
Torino, ITALY 10129

∗Università di Bologna
Bologna, ITALY 40136

ABSTRACT
As power consumption of the clock tree in modern VLSI de-
signs tends to dominate, measures must be taken to keep it
under control. This paper introduces an approach for reduc-
ing clock power based on clock gating. We present a method-
ology that, starting from an RTL description, automatically
generates a set of constraints for driving the construction of
the clock tree by the clock synthesis tool. The methodology
has been fully integrated into an industry-strength design
flow, based on Synopsys DesignCompiler (front-end) and
Cadence Silicon Ensemble (back-end). The power savings
achieved on some industrial examples show that, when the
size of the circuits is significant, savings on the power con-
sumption of the clock tree are up to 75% larger than those
achieved by applying traditional clock gating at the clock
inputs of the RTL modules of the designs.

Categories and Subject Descriptors
B.5 [Hardware]: Register-Transfer-Level Implementation;
B.6 [Hardware]: Logic Design; B.7 [Hardware]: Inte-
grated Circuits

General Terms
Design

Keywords
Low-power design, clock-tree synthsis

1. INTRODUCTION
The clock distribution network normally accounts for more
than 40% of the total power budget of a CMOS circuit, as
the clock nets operate at the highest switching frequency of
any other signal and they drive a large fanout. Designing
the clock tree is thus critical not only for performance, but
also for power.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

Early work on clock tree synthesis focused on the generation
of zero-skew trees [10] or minimum wire-length [4] clock dis-
tribution networks. More recently the area of low power
clock tree synthesis has been investigated.
In [5], the authors proposed an approach based on reduced
voltage swings, while in [3] power savings on the clock net-
work were obtained by taking advantage of interconnec-
tion parasitic inductance. Also, solutions based on power-
constrained buffer insertion and simultaneous buffer and
clock wire sizing can provide significant savings [11, 2, 1].
Although these techniques are effective, none of them con-
siders that clock signals are not always needed, and thus
power can be saved by masking off (i.e., gating) the clock
when circuits are idle.
Clock gating can significantly reduce the switching activity
in a circuit and on clock nets; thus, it has been viewed as
one of the most effective logic, RTL and architectural ap-
proaches to power minimization. Unfortunately, if applied
in a uncontrolled fashion, gating can adversely impact clock
power. In fact, in order to amortize its power and area
overhead, clock-gating logic should be shared among sev-
eral flip-flops. If the flip-flops that share a common gated
clock (i.e., a gated-clock domain) are widely dispersed across
the chip, a significant wiring overhead is induced in the clock
distribution network, as each domain must be independently
distributed on dedicated wires. As a result, clock drivers in
each domain are loaded with a much larger capacitance and
power may increase even if switching activity is decreased
[6, 9]. We then conclude that clock gating and clock tree
construction should not be seen as two independent steps
and a synergistic strategy is needed.
Several authors have focused on this problem in the recent
past. In the sequel, we briefly summarize two contributions
that have some common roots with the approach we propose
in this paper.
In [7], Farrahi et al. defined a methodology based on behav-
ioral synthesis to build an activity-driven clock tree. Given a
pre-placement description of the design, the set of active and
idle times, representing the activity pattern for each module,
is extracted from the module’s scheduling table. An activity
pattern is a string of 0s and 1s, indicating idle and active
control steps, respectively. The tree construction algorithm
is heuristic, bottom-up, based on recursive weighted match-
ing, where the cost function is the activity of the resulting
subtree. The objective is to cluster into the same subtree
modules with similar activity patterns, so that the clock

622

36.1

tree can be gated with high probability as close as possi-
ble to the root. The clusters of modules created by the
recursive matching algorithm are translated into proximity
constraints for module placement. Then, the clock tree is
routed as an H-tree. Dynamic programming is finally used
to determine where the gating logic must be inserted.
In [6], Oh et al. present a zero-skew gated clock routing tech-
nique for VLSI circuits that improves upon [7] in two ways.
First, it starts from a placed netlist of modules. Second,
it accurately accounts for the power consumption of control
signals, jointly addressing the routing problem for both the
clock tree and the gated clock control signals. The algorithm
is applicable to a class of processors where activation signals
are obtained from instructions and where the generation of
all activation signals is centralized in a single module placed
close to the center of the die. Clock tree building is done
in two steps. First, possible locations of the internal nodes
are calculated according to [4]. Then, the exact position is
found by a greedy method that merges minimum switched
capacitance nodes; by delaying the merging of high activity
nodes the global activity in the tree is reduced.
Further work on gated clock tree construction can be found
in [9, 8]. The first paper reports on an exploration of the
impact of clock gating on traditional clock tree construction
in the case of realistic benchmarks. The second contribution
extends the work of [7] in the directions indicated by [6].
Experimental data of previous work have shown that the
gated clock technique can significantly reduce the power dis-
sipation in the clock distribution network. Also, it has been
demonstrated the effectiveness of exploiting information on
the clock activation functions during clock tree generation.
However, the described approaches give little attention to
integration issues with existing design flow and they have
not been validated on real-life benchmarks. In this paper, we
propose a novel methodology and algorithms for gated clock
tree construction that are specifically geared towards inte-
gration with existing design flows, both in the front-end (i.e.,
RTL and logic-level clock activation function extraction and
manipulation) and in the back-end (i.e., industrial-strength
clock tree synthesis tools). By taking this approach we can
construct power-optimal gated clock trees for real-life de-
signs and provide a detailed assessment of our methodology
using data extracted from fully placed and routed netlists,
for the first time in the literature.
Results on a set of real-life circuits show that, when the
size of the designs (and thus the structure of the clock tree
is complex), the savings on the power consumption of the
clock tree are up to 75% larger than those achieved by apply-
ing traditional clock gating at the clock inputs of the RTL
modules of the designs.

2. METHODOLOGY OVERVIEW
This section briefly describes the methodology that we are
proposing to build a low power clock tree and clarifies its
rationale. We consider a hierarchical design methodology in
which synchronous modules with a single clock can be iden-
tified; for these leaf modules we build a gated clock tree. The
objective is to achieve a reduction of the power consumption
on the clock tree without re-writing the tool for clock tree
synthesis. The main reason for this choice is to leverage the
capability of current industrial-strength clock construction
tools to take into account a number of constraints of dif-
ferent nature (e.g., geometry, reliability, performance). The

output of our clock-power optimization tool is not a routed
clock tree, but it can be viewed by a set of constraints for
a clock tree synthesis tool that lead to a low-power gated
clock tree, while still accounting for all non-power-related
requirements (e.g., controlled skew, low crosstalk-induced
noise, etc.).
The steps in our approach can be summarized as follows.
We start from two inputs: (i) A hierarchical RTL struc-
tural description of a synchronous circuit, containing a set
of modules for each of which a single clock and a clock ac-
tivation signal is identified. (ii) A placement of the mod-
ules, with specified positions of clock and activation function
pins. This information can be obtained by available com-
mercial clock gating tools (e.g., Synopsys’ PowerCompiler)
and by floorplanners or by RTL-to-placed-netlist synthesis
tools (e.g., Synopsys’ ChipArchitect and PhysicalCompiler),
respectively.
As a first step, the RTL design is simulated to extract the
waveforms of the activation functions. The placement in-
formation and the activation function’s waveforms are then
elaborated by our LPclock algorithms. The algorithm is split
in two phases. In the first phase it builds a clock tree topol-
ogy balancing the reduction in clock switching against clock
and activation function capacitive loading estimates. In the
second phase it inserts clock gating logic in the tree, balanc-
ing its power consumption against the power on the gated
clock sub-tree. The output of LPclock is not a layout of
the clock tree, but a clock netlist, which is then fed to an
industrial-strength clock tree construction tool. After clock
construction, the fully placed and routed gated clock tree
(including the clock nets, buffers, clock-gating gates, and
activation signal nets) is extracted from the layout and ac-
curate analysis can then be performed to assess quality-of-
results.

3. PROBLEM DEFINITION
Given a synchronous digital system S(M, N), where M =
{m1, .., mK} denotes the hierarchical modules inside the de-
sign and N = {n1, .., nL} is the set of the nets of the circuit,
if for each mi ∈ M | i = 1,, K si represents the only clock
entry point, the clock net is given by the set of sinks plus
the source Nclock = {si | i = 1,, K}∪S0. We assume that
the clock network Nclock can be represented by a complete
binary tree T (V,E) whose root is S0 and whose leaves are
the K sinks. Let the area A = xlayout · ylayout be a suit-
able placement for the considered design, then we denote by
(xsi , ysi) the position of the clock sinks in the placement area
and by (xS0 , yS0) the source coordinates. All modules are
characterized by a capacitance Ci = NSi · Cclock where NSi

represents the number sequential elements inside the block
and by an Activation Function ACTFi which is a boolean
function whose value is ”1” when the module does not need
the clock and ”0” otherwise.
For each possible module pair mi, mj with i �= j | i, j =
1, ..., K we define a physical distance as:

D(mi, mj) = |xsi − xsj | + |ysi − ysj |
The physical distance is calculated with the Manhattan met-
ric, which is a good estimator of the wiring length between
clock sinks, as horizontal and vertical directions are the only
one allowed to the routing tools. Physical closeness means
shorter interconnections, hence reduced congestion, less in-
terconnection delay and a smaller parasitic capacitance.

623

Besides the physical distance, a logical distance is defined
as:

L(mi, mj) = (Ci + Cj) · p(i, j)

where

p(i, j) = P (ACTFi = 1, ACTFj = 1)

is the probability for modules i and j to be idle.
If ACTFi and ACTFj are completely independent p(i, j) =
P (ACTFi = 1) · P (ACTFj = 1). Since the independence
is not always verified, this probability is computed exactly
through simulation waveform analysis: The values of both
ACTF are collected over N consecutive clock cycles and
the number of times in which the logic AND of the two
Activation Function takes on the value ”1” is calculated:

p(i, j) =
NAND

N
.

The logical distance measures the similarity of the mod-
ule activities: By merging close activities, the resulting tree
needs the clock signal for a percentage of time comparable
to that of its leaves leading to a reduction of the overall
activity in the tree.
Based on the previous definitions of distance, we formulate
the gated clock tree construction problem as follow: Given
the set of clock sinks K, build a gated clock network repre-
sented by T (V, E) whose cost function is:

dist(i, j) = αf(D(i, j)) + βg(L(i, j))

Parameters α and β allow the tuning of the weight of switch-
ing activity vs. wire-length. On the other hand, f and g ex-
press possible transformations over the distance metric (to
account for uncertainty on wire-length estimation).
The detailed description of the algorithms that are used to
build the clock tree requires further details about the cal-
culation of the Activation Function and the definition of a
power model.

3.1 Obtaining the Activation Function
The clock gating technique exploits high level information
to decide when the clock signal can be shut down. For each
design module an ACFT must then be evaluated. Finding
the set of conditions that allow to turn off the clock is a well
known problem for which many solutions do exist.
For example, in Synopsys PowerCompiler, a simple clock
gating scheme is applied to register banks with an available
enable input. The method is based on the idea that when
the enable input is ”0” the clock is not needed since the
register bank maintains previous stored data: The inverted
enable signal itself is thus the ACTF for the registers. Sim-
ilarly, another example is given by operand isolation [12],
which prevents the switching activity propagation in a mod-
ule performing a redundant operation. Again, identifying
redundant operations requires the computation of an acti-
vation function that is based on a structural analysis of the
transitive fanout of the module.
In our flow, the identification of ACTF s is performed in a
preliminary step using PowerCompiler; however, it could be
done through any other technique the designer may have
access to.

3.2 Power Model
Since our ultimate objective is to reduce clock power con-
sumption, we need a power model to drive the gating logic
insertion. Gated clock schemes obtain power savings by re-
ducing the amount of capacitance that is switched when
logic transitions take place.
While evaluating clock net power consumption, four contri-
butions are considered: The modules and the clock gating
port input capacitance, plus the capacitance switched by the
interconnection in the clock tree and by the interconnection
that feeds the control signal to the gating logic. Consider
the example in Figure 1; let c0 be the unit wire capacitance,
li, lg the interconnection length of the clock tree and of the
control gating logic signal, respectively, Ci and Cg the in-
put capacitance for the module and the gate logic. Power
dissipation is then modeled as:

2(coli + Ci)p(i) + (c0lg + Cg)ptr

where p(i) represents the probability for the module to be
active (p(i) = P (ACTFi = 0)) and ptr is the probability to
have a transition on the control signal net (ptr = Ntr/N−1),
where Ntr is the number of transitions in the Activation
Function evaluated over N consecutive clock cycles.

Figure 1: Power Model.

4. LPCLOCK METHODOLOGY
The LPclock methodology, described in this section, consists
of three main components, as shown in Figure 2.

Figure 2: LPclock Methodology.

624

The hierarchical clustering (hc) component builds the
clock tree structure; the gate move component performs the
gating logic insertion; finally, the power est component takes
care of the estimation of the power consumption, as this in-
formation is needed by the gate move step.
Figure 2 clearly shows that the input parameters to LPclock
are both physical (module placement, technology data) and
functional information (Activation Function).

4.1 Hierarchical Clustering
Given the clock sink set for the considered design, hc builds
a clock net structure based on a fully binary tree subject to
the previously defined cost function:

dist(i, j) = αf(D(i, j)) + βg(L(i, j))

where α and β are numerical values settled by an experimen-
tal sensitivity analysis of the cost function (see Section 6),
while f and g are used as normalization functions for the
physical and logical distances.
By defining f as the maximum layout dimension:

dimmax = max(xlayout, ylayout)

and g as the module total capacitance:

Ctot =

K�
i=1

Ci

the cost function becomes:

dist(i, j) = α

�
1

dimmax
(|xsi − xsj | + |ysi − ysj |)

�
+

β

�
1 − 1

Ctot
(Ci + Cj)p(i, j)

�
.

The function hc builds the tree following a bottom-up clus-
tering strategy, level by level. Each level requires the evalu-
ation of the Distance Matrix, which is the matrix that con-
tains the dist(i, j) values for all possible node pairs at the
considered level. If the current level has N nodes/sinks,
then �N/2� clusters should be constructed to complete the
next level, and each created pair needs the calculation of its
position in the placement, its capacitance and its Activation
Function. Consider, for example, the merging of two generic
nodes ni and nj ; the resulting cluster position is given by:

xcluster =
Cixni + Cjxnj

Ci + Cj
, ycluster =

Ciyni + Cjynj

Ci + Cj

where this formulation balances the wire length so that the
higher capacitance corresponds to the shorter wire in order
to control the skew. The capacitance and the Activation
Function are calculated as:

Ccluster = Ci + Cj

ACTFcluster = ACTFni ∧ ACTFnj .

We implemented two different merging schemes. The first
one is a greedy method that pairs the two nearest nodes, i.e.,
the two nodes with the minimum dist(i, j). The second is
based on maximum weighted matching, where the objective
function is the sum of all dist(i, j) for the current level.

4.2 Gate Moving
Once the clock network is built, we have a complete binary
tree in which both leaves and internal nodes are character-
ized with an Activation Function, but no gating elements
are inserted yet. At this stage, it is possible to think that
at each module input the proper gating logic is introduced
by simply translating in hardware the corresponding Acti-
vation Function. The outlined situation, that we call gated
modules, allows power savings inside the modules and, if the
logic is added as close as possible to the parent node of the
tree, it allows a reduction of the dissipation just in the last
portion of the clock net.
Gate move explores the opportunities for moving gating logic
from the leaves towards the upper level inside the clock tree,
so that the dissipation is reduced also in the clock network.
The implemented algorithm is heuristic; it performs a pos-
torder visit on the clock tree and for each node it tries to
find a local minimum for dissipated power, thus the dissipa-
tion is the cost function for the gate move procedure. The
heuristic works as shown in Figure 3.

Figure 3: Heuristics Implemented by Gate move.

When a node is visited three situations are evaluated. In
principle, the best solution is represented in Figure 3(b);
here, instead of using two gating logic blocks, a unique gat-
ing element is inserted in the upper level to control the whole
subtree. But, if in the considered node the idle state for
one child is considerably longer than for the other, moving
up only the control logic of the child active for the longest
time is more effective. Therefore, also situations like those
shown in Figure 3(c) and 3(d) must be considered. Power
consumption related to each of these three possibilities is
evaluated through the function power est and the optimal
local solution is chosen.
Procedure Power est, which is based on the power model
previously discussed, performs the power estimation by a
combined preorder/postorder visit of the clock tree. The
preorder step is necessary to annotate, for non-gated nodes,
the parent Activation Function, while during the postorder
visit the switched capacitance is calculated. The last step
performed by LPclock is that of translating the planned
clock structure with the inserted gating logic into a Ver-
ilog description in which each internal node in the tree cor-
responds to an AND gate. If there is no gating logic in
the considered node, one of the AND gate inputs is at the
logic value ”1”, otherwise the input is connected to the gat-
ing logic block synthesized from the Activation Function by
Synopsys DesignCompiler.

625

5. THE PROPOSED FLOW
This section describes how the LPclock methodology is im-
plemented on top of and integrated into a common industrial
design flow. We have used the Synopsys tools as front-end
and the Cadence environment as back-end. Yet, we would
like to stress that the LPclock methodology can be mapped
onto other RTL-to-Layout flows with only little effort, as no
conceptual changes are needed; LPclock simply provides, as
output, adequate constraints that can be easily taken into
account by EDA tools that provide clock tree synthesis ca-
pabilities.
We also observe that the initial assumption on the hierar-
chical structure of the input RTL description can be easily
relaxed and the LPclock flow applied to non-hierarchical de-
signs, since strategies do exist to cluster together registers
with some mutual affinity.
The LPclock tool flow is shown in Figure 4.

Figure 4: The LPclock Tool Flow.

Starting from an high-level design description (VHDL or
Verilog), the circuit is first elaborated by DesignCompiler to
obtain a RTL structural representation from which clocked
modules and all nets, included the clock, can be extracted.
The design at the RTL is then simulated to obtain the Acti-
vation Function and then translated into structural Verilog.
A floorplan and a placement are then initialized by Silicon
Ensemble. The placed DEF description, as well as the Ac-
tivation Function, are the LPclock inputs. Introducing the
clock structure elaborated by LPclock in the design requires
a double update: First, in the already generated placement
the +PLACED attribute is changed to +FIXED, in order to avoid
module position changing. Second, the Verilog description
is updated to import the new clock network structure.
Design changes are transfered to Silicon Ensemble and the
clock structure and the gating logic are included in the de-
sign database via incremental placement. The flow then
continues in the traditional way, that is, CTgen is invoked
to perform buffer insertion and to check for timing closure.
It should be pointed out that the insertion of the AND gate
for each internal node in the clock tree prevents any change
on the clock net by CTgen, forcing the tool to preserve the
clock branching structure built by LPclock.

6. EXPERIMENTAL RESULTS
The experiments we carried out with LPclock had a twofold
objective. First, to analyze the behavior of the cost function
w.r.t. parameters α and β. Second, to assess the amount of
power savings our method was able to achieve. The salient
details of the industrial benchmarks we used are shown in
Table 1.

Benchmark # of FF # of Modules # of Clk Sinks
GCD 52 6 4
Dual 35 7 5
Fir 309 43 36
i8237 625 51 31
i8051 1341 78 59

Table 1: Characteristics of the Benchmark Circuits.

The cost function is a weighted linear combination of the
physical distance (coefficient α) and the logical distance (co-
efficient β). To choose the best value for the weight param-
eters, we studied the trend of the α/β and β/α ratios by
varying their values between 1.00 and 20.00, with a step of
0.01. For all considered α and β ratios, we simulated the
benchmark circuits to estimate the capacitance switched by
the clock tree. The results of the analysis, shown in Fig-
ure 5, indicate that the two distance metrics should have
equal weight in the cost function, as α/β = 1.00 seems the
choice of the parameters that minimizes the cost function.

Figure 5: Sensitivity Analysis on α and β.

After choosing the values of α and β, as discussed above, we
have performed some experiments in order to evaluate the
effectiveness of LPclock in reducing power consumption.
To this purpose, we first generated the placed and routed
netlists (including the clock network) of the original bench-
mark circuits, as well as the netlists of the designs with
gated modules (i.e., gating logic inserted at the clock input
of the modules) and with the clock tree structure created by
LPclock. Layout extraction was then performed for all the
designs, and the gate-level netlists back-annotated using the
extracted parameters. Finally, gate-level power estimation
was performed using Synopsys PowerCompiler. The whole
synthesis process was timing driven, and mapping was done
on the 0.18µm HCMOS8 technology library by STMicro-
electronics. Clock tree synthesis with CTGen was performed
using a very tight maximum skew constraint (less than 0.2%
of the clock cycle, which was ranging between 10 and 50
nanoseconds, depending on the benchmark), and no skew
violation was observed for all the benchmarks. This result
clearly indicates the goodness of the constraints on the clock
tree structure provided by LPclock.

626

Table 2 collects clock tree power results. In particular, col-
umn Gated Module shows the power savings w.r.t. the orig-
inal circuit implementation achieved by inserting the gating
logic only at the input of the RTL modules. On the other
hand, column LPclock shows the power savings against the
original design obtained by inserting the gating logic as sug-
gested by LPclock. Finally, column ∆ shows the difference
in the savings between the two approaches.

Benchmark Gated Module LPclock ∆

Dual 17.24% 19.72% +3,02%
Fir 63.86% 65.37% +4.18%
GCD 26.70% 27.74% +1.42%
i8237 13.94% 53.54% +46.03%
i8051 62.11% 90.26% +74.31%

Table 2: Experimental Results.
Data clearly show that the clock trees generated using LP-
clock as preprocessor to CTGen are much superior (in terms
of power) to those generated by CTGen alone for circuits of
significant size, while they are negligible on smaller bench-
marks. This is obvious, as for small circuits the clock tree
tends to have a very simple structure, and thus the advan-
tages that the LPclock approach can provide are very lim-
ited. Instead, for larger benchmarks, savings w.r.t. the use
of traditional clock gating are as high as almost 75%.

7. CONCLUSIONS
Power consumption due to the clock tree is becoming more
and more relevant in modern VLSI designs, due to the fact
that interconnect capacitance tends to dominate over gate
capacitance and clock frequencies tend to grow at a very fast
pace in new technologies.
The problem of minimizing power consumption of the clock
tree has been addressed in the past, and techniques have
been proposed to drive physical design of the clock tree start-
ing from a high-level of abstraction. However, most of the
attempts made so far to attack this problem have not found
a direct validation in industry-strength design flows.
In this paper, we have introduced a methodology for re-
ducing clock power dissipation based on clock gating. The
proposed solution allows us to automatically generate clock
tree routing constraints to be fed to the physical design tool
starting from an RTL description.
Distinguishing feature of the methodology is its capability
of exploiting both logical and physical information of the
given RTL design to optimize the clock tree structure.
Experimental results showed that clock power savings can
be up to 75% higher than those achieved by applying tradi-
tional clock gating at the inputs of the RTL modules.
Future work on the subject of low-power clock tree synthesis
will go in three directions. First, the LPClock flow will be
fully automated and integrated into a RTL-to-layout design
environment offering both power optimization and estima-
tion capabilities. Second, the methodology will be extended
to allow the handling of non-hierarchical descriptions, that
is, designs in which registers are not necessarily confined into
RTL components with well-defined boundaries. This would
be an essential point to allow the application of the LPClock
tool in industrial design settings. Third, we will investigate
solutions that will allow us to raise the entry-level of the
LPClock methodology beyond RTL, i.e., starting from more
abstract views such as behavioral descriptions.

Acknowledgements
This work was supported, in part, by the European Com-
mission, under grant IST-2001-30125 “POET”, by Motorola
SPS, EWDC, Geneva, Switzerland, and by STMicroelec-
tronics, AST, Agrate Brianza, Italy.

8. REFERENCES
[1] J. Cong, C.-K. Koh; K.-S. Leung, “Simultaneous

Buffer and Wire Sizing for Performance and Power
Optimization,” ISLPED-96: ACM/IEEE
International Symposium on Low-Power Electronics
and Design, pp. 271-276, Monterey, CA, August 1996.

[2] V. Adler, E. G. Friedman, “Repeater Insertion to
Reduce Delay and Power in RC Tree Structures,” 31st
IEEE Asilomar Conference, pp. 749-752, Pacific
Grove, CA, November 1997.

[3] Y. I. Ismail, E. G. Friedman, J. L. Neves, “Exploiting
On-Chip Inductance in High Speed Clock Distribution
Networks,” 43rd IEEE Midwest Symposium on
Circuits and Systems, pp. 1236-1239, Lansing, MI,
August 2000.

[4] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, A. B. Khang, “Zero
Skew Clock Routing with Minimum Wirelength,”
IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, Vol. 39, No. 11,
pp. 799-814, November 1992.

[5] J. Pangjun, S. S. Sapatnekar, “Clock Distribution
using Multiple Voltages,” ISLPED-99: ACM/IEEE
International Symposium on Low-Power Electronics
and Design, pp. 145-150, San Diego, CA, August 1999.

[6] J. Oh, M. Pedram, “Gated Clock Routing for
Low-Power Microprocessor Design,” IEEE
Transactions on CAD/ICAS, Vol. 20, No. 6,
pp. 715-722, June 2001.

[7] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, M.
Sarrafzadeh, “Activity-Driven Clock Design,” IEEE
Transactions on CAD/ICAS, Vol. 20, No. 6,
pp. 705-714, June 2001.

[8] C. Chen, C. Kang, M. Sarrafzadeh,
“Activity-Sensitive Clock Tree Construction for Low
Power,” ISLPED-02: ACM/IEEE International
Symposium on Low-Power Electronics and Design,
pp. 279-282, Monterey, CA, August 2002.

[9] D. Garrett, M. Stan, A. Dean, “Challenges in Clock
Gating for a Low Power ASIC Methodology,”
ISLPED-99: ACM/IEEE International Symposium on
Low-Power Electronics and Design, pp. 176-181, San
Diego, CA, August 1999.

[10] R.-S. Tsay, “An Exact Zero Skew Clock Routing
Algorithm,” IEEE Transactions on CAD/ICAS,
Vol. 12, No. 2, pp. 242-249, February 1993.

[11] A. Vittal, M. Marek-Sadowska, “Low-Power Buffered
Clock Tree Design,” IEEE Transactions on
CAD/ICAS, Vol. 16, No. 9, pp. 965-975,
September 1997.

[12] M. Munch, B. Wurth, R. Mehra, J. Sproch, N. Wehn,
“Automating RT-Level Operand Isolation to Minimize
Power Consumption in Datapaths,” DATE-00: IEEE
Design Automation and Test in Europe, pp. 624-631,
Paris, France, March 2000.

627

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

