Timing-Driven Routing for FPGAs Based on
Lagrangian Relaxation ’

Seokjin Lee
Department of Electrical and Computer
Engineering
The University of Texas at Austin
Austin, TX 78712

seokjin@cs.utexas.edu

ABSTRACT

As interconnection delay plays an important role in deter-
mining circuit performance in FPGAs, timing-driven FPGA
routing has received much attention recently. In this paper,
we present a new timing-driven routing algorithm for FP-
GAs. The algorithm finds a routing with minimum critical
path delay for a given placed circuit using the Lagrangian
relaxation technique. Lagrangian multipliers used to relax
timing constraints are updated by subgradient method over
iterations. Incorporated into the cost function, these multi-
pliers guide the router to construct routing tree for each net.
During routing, the exclusivity constraints on each routing
resources are also taken care of to route circuits successfully.
Experimental results on benchmark circuits show that our
approach outperforms the state-of-the-art VPR router.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing; J.6 [Computer Applications]: Computer-Aided
Engineering—-computer-aided design(CAD)

General Terms

Algorithms, Experimentation

Keywords

FPGA, timing-driven routing, Lagrangian relaxation

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have become
very popular for rapid system prototyping, logic emulation
and reconfigurable computing because of their low manufac-
turing cost and time. The problem of routing FPGAs can

*This work was partially suppoerted by the National Science
Foundation under grant CCR-9912390

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISPD’02, April 7-10, 2002, San Diego, California, USA.

Copyright 2002 ACM 1-58113-460-6/02/0004 ...$5.00.

D. F. Wong
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712

wong@cs.utexas.edu

| R I I N O
programmable [§ [S] s}
switch ‘/E = = /0
O module
L L L
0
(8] (s} (s}
logic
S L L L "module
(s} (s} (s} > wire
segments
|:| L L L
0

Figure 1: A typical FPGA architecture.

be considered as that of finding routing resourses to be as-
signed to signals. While meeting overall timing constraints,
the router needs to assign all signals to routing resourses
successfully.

Because of limited amount of the routing resourses, a key
issue in routing of FPGAs has been to distribute the con-
nections among the routing channels so that the maximum
channel density is minimized. Several approaches [4, 10,
15] focused mainly on minimizing the use of resources have
been proposed. As interconnection delay plays an impor-
tant role in determining circuit performance, timing-driven
routing has received much attention recently. Various algo-
rithms [5, 8, 11, 12, 13, 17] considering timing constraints
have been proposed.

In timing-driven routing problems, the timing constraints
are specified by the delays from the primary inputs to the
primary outputs [9], so there is a designated delay bound
for each path from the primary input to the primary out-
put. For a directed path, the slack is defined as the dif-
ference between the required times and actual propagation
times along that path. In most of timing-driven routing al-
gorithms, slacks of paths are calculated to get delay bounds
on paths. Slacks are distributed to each net according to
weight functions in [8], the ratio of actual delays to slacks
were used in heuristics of [11]. PathFinder algorithm [12]
seeks balance between eliminating congestion and minimiz-
ing delay of critical paths using the slack ratio which is de-
fined as the ratio of the longest path containing a net to
the critical path delay. The VPR is a well known FPGA
placement and routing system [13]. The VPR router, based

4 12
1 LL13 9 311
2 10
)
0
C | €
d - -t f
1
8 16
5 L27 »13 L4 15
6 14

— netl
=-==-net2

Figure 2: An example of routing in FPGA with
2 tracks(4 wire sements) per channel and 1 pro-
grammable switch module. In each logic mod-
ule, the left/bottom pins are input pins, and the
right /top pins are output pins.

on a careful implementation of the PathFinder algorithm, is
known to be the best routing tool to date.

In this paper, we present an effective timing-driven rout-
ing algorithm for FPGAs. Our algorithm solve the problem
of minimizing delay of critical paths subject to arrival time
constraints. In our approach, the timing constaints are han-
dled in a mathematical programming framework based on
the Lagrangian relaxation. The Lagrangian relaxation ap-
proach transforms the routing problem into a sequence of
subproblems called the Lagrangian subproblems. Each sub-
problem can be greatly simplified by exploiting the network
topology [6]. At each iteration of our algorithm, change
in delay of each source-sink pair of a net is reflected on
the value of its corresponding Lagrangian multiplier. Incor-
porated into the cost function, these multipliers guide the
router. We conduct experiments on MCNC benchmark cir-
cuits, and demonstrate the performance of our approach by
comparison with VPR [13].

The rest of this paper is organized as follows. In Section
2, we describe the FGPA routing problem. In Section 3, we
formulate the timing-driven FPGA routing problem. Our
timing-driven routing algorithm is presented in Section 4.
We present experimental results in Section 5 and conclude
the paper in Section 6.

2. THE FPGA ROUTING PROBLEM

As shown in Figure 1, a typical FPGA consists of three
major components: logic modules, routing resources, and
input/ouput(I/O) modules. The logic modules contain com-
binational and sequential circuits and implement logic func-
tions. The routing resources consist of prefabricated wire
segments and programmable switches. Routing of a FPGA
is performed by programming the switches to connect the
wire segments. Due to their high RC delays and large area,
routability of switch modules is usually limited. Different
from the interconnection tracks in custom ICs, a wire seg-
ment in an FPGA cannot be shared by different nets. This
constraint on routing resources is called exclusivity con-
straint. Together with performance constraints, these fea-

Figure 3: A routing graph and the routing of two
nets corresponding to the example of Figure 2.

tures make FPGA routing a very challenging problem.

A net in a circuit is usually routed by connecting several
wire segments with switches, and the problem of routing
FPGAs can be considered to be that of assigning nets to
routing resources to route all nets successfully while satis-
fying overall performance constraints [12]. An example of
FPGA routing is shown in Figure 2. In this example, netl
is a net connecting pin3, pin9, and pinl3, and it is routed
by connecting segments a and g with these pins. Similarly,
net2 is routed by connecting pin8, pinl0, segment d, and
segment f. In other words, netl is assigned to segments
a, g, and switches connecting them, and net2 is assigned
to segment d, f, and switches connecting them. Suppose
there is another net in our example, and it connects pin7
to pin2. The shortest routed path can be achieved by con-
necting segment g or h with segment ¢ or d. But, segment
g and d are already used to route other nets, and segment
h and segment ¢ cannot be connected because there is no
switch between these segments in the switch module. Net3
needs to be routed by connecting more than 2 segments. If
net3 belongs to a critical path of the circuit, this routing
can degrade the performance of the circuit. This problem
can be solved if we assign netl to segment b and h, instead
of segment a and g. In that case, segment g will be available
to use and there is a switch that connects this segment with
segment c.

The routing architecture of an FPGA can be modeled
with a routing graph G,(V;, E,), which is a directed graph.
The set of vertices V, represents the input pins and the
output pins of logic modules, and the wire segments. The
set of edges E, represents the feasible connections between
the nodes. A route of a net in an FPGA corresponds to a
subtree in G,. This subtree is called a routing tree for the
net. The root of the routing tree is the source of the net,
and all the leaf nodes are the sinks of the net. Because no
resource can be shared by different nets, the routing trees
for the nets are vertex disjoint. Figure 3 shows G, of the
FPGA shown in Figure 2. It shows the routing trees of netl
and net2.

Given a routing graph and a netlist, the FPGA routing
problem is to find vertex disjoint routing trees in G, for all
the nets while satisfying performance constraints.

logic
modules

primary primary

Figure 4: Timing graph of a placed netlist.

3. TIMING-DRIVEN FPGA ROUTING

In this section, we consider the timing-driven FPGA rout-
ing problem. As in VPR [13], we use Elmore delay [7] to
model components in FPGAs for the purpose of delay cal-
culation. The source-to-sink delay of a wire-switch chain
along the routing resources can be calculated from RC val-
ues specified by the architecture of FPGAs. Delay through
an input-output pair in a logic module can be calculated by
the architecture specific values of input driver capacitances,
output resistances, and delay from input pin to output pin.
Delays through input/output modules can be obtained sim-
ilarly.

In timing-driven routing, the timing constraints on a cir-
cuit are specified as the arrival times at the primary inputs
or outputs of storage elements, and the required times at the
primary outputs or inputs of storage elements [9]. But, espe-
cially for a large circuit, the number of possible signal paths
from primary inputs to primary outputs can be exponential
in number of nets. By partitioning the constraints on de-
lays along paths into constraints on delay of each source-sink
pair, we can handle this difficulty. For a given placed netlist
with a set of inputs and outputs, our goal is to route all
nets such that the delay of critical paths is minimized while
delay constraints and exclusivity constraints are satisfied.

To perform timing analysis for the timing-driven routing,
we construct a timing graph G¢(Vi, E;) which is a directed
acyclic graph from the input netlist. As shown in Figure 4,
the vertices of timing graph correspond to primary inputs,
primary outputs, and inputs and outputs of logic modules.
The edges of the timing graph correspond to the source-
sink pairs of each net or input-output pairs of logic mod-
ules. Note that an edge in G; is different from a net in the
netlist. Because we decompose timing constraints along the
paths into those on source-to-sink delays, each source-sink
pair corresponds to an edge in G even for the net with mul-
tiple fanouts. Figure 5 shows an example. In this example,
source-sink pair (pin3, pin9), and (pin3, pinl2) belong to
different paths. For consistency in our notations, two fic-
titious node s and ¢ are introduced. Node s is connected
to all the primary inputs, and all the primary outputs are
connected to node ¢.

Let E's be the subset of F; connected to node s, and Er
be the subset of E; connected to node t. Let Enr be all the
other edges. The arrival time at node u is denoted by a,,. Let
Dy, be the delay along the edge (u,v). For an edge (u,v),
D, represents the routing delay of source-sink pair (u,v) of
a net or the delay between input-output pair (u,v) in a logic

o]

[138} ~e

Figure 5: A multiple fanout net and its correspond-
ing edges in timing graph.

module. Let T} be the routing tree for net k. For a source-
sink pair (u,v) of net k, Dy, can be expressed in terms of
resistances and capacitances of the routing resources along
the path as follows:

Dy, = Z d; (1)

i€path(u,v)

where path(u,v) is the set of nodes along the path from
source u to sink v in Ty, and d; denotes the delay contribu-
tion of node ¢ to the delay along the path (u,v). Dy, denotes
the arrival time of each primary input. Then the problem
of routing with minimimum critical path delay under tim-
ing and exclusivity constraints is to find the vertex disjoint
routing trees T' = {T1, T4, ... , T} for all the nets such that

Minimize a;
Subject to

ay < ay Y(u,t) € Er

ay + Dyy < ay V(U;U) € Eym

Dsy < av V(S,U) € Egs

4. ALGORITHM DESCRIPTION

In this section, we solve the problem of minimizing the
critical path delay under timing and exclusivity constraints
using Lagrangian relaxation. Lagrangian relaxation is a gen-
eral technique for solving optimization problems with diffi-
cult constraints. In Lagrangian relaxation, constraints are
relaxed and added to the objective function after multiplied
by constants called Lagrangian multipliers. By doing this
we have a new optimization problem called the Lagrangian
subproblem for each fixed vector of the Lagrangian multi-
pliers. For a given vector of the Lagrangian multipliers, the
optimal solution of a Lagrangian subproblem gives the lower
bound close to the optimal objective function value of the
original problem. The problem of finding such a vector is
called the Lagrangian dual problem. By solving the La-
grangian subproblem with a vector obtained by solving the
Lagrangian dual problem, we can obtain the lower bound
close to the optimum value of the objective function of the
original optimization problem. More details can be obtained
in [1, 2].

In Section 4.1, we present the Lagrangian relaxation frame-
work to solve the timing-driven routing problem. In Section

Algorithm LR _ROUTE

Input: Timing graph G¢(V;, E¢) and
Routing graph G,(V;, E,)

Output: A routed netlist

begin

1. Initialize A as an arbitrary vector in A

2. Call NET_ROUTE with A to solve LS}.

3. Compute a,, for each u € V4.
Set each a, to the smallest possible value
that satisfies the timing constraints in a
topological order from s to ¢.

4. Update Ay for each (u,v) € E;.

. Project A to the nearest vector in A.

6. Repeat Step 2-5 until no shared resource exists.

(a¢ — L") < error bound.
end

[}

Figure 6: Algorithm LR_ROUTE

4.2, we show the algorithm that solves the Lagrangian sub-
problems by routing nets for a given vector of the Lagrangian
multipliers.

4.1 Lagrangian Relaxation

We relax the timing constraints in the original problem.
The exclusivity constraints are handled by the net router
which solves the Lagrangian subproblem. Each of the con-
straints is multiplied by the corresponding Lagrangian mul-
tiplier, and added to the objective function. Let

Ly(a, T)= a¢ + Z Aut(au — at)

(u,t)EEp
+ Z Auv (au + Dyy — afv)
(u,v)EEN
+ Z Asv (st - au)
(s,v)EEg

This relaxed objective function is called the Lagrangian func-
tion, and the Lagrangian subproblem associated with the
fixed set of Lagrangian multipliers A is

LSy : Minimize Ly(a,T)
Because the minimum value of Ly(a, T') for any vector A
is a lower bound on the optimal objective function value of

the original problem, the lower bound close to the optimal
objective value of the original problem is obtained by solving

L" = 1§1§%(L>\(a,T)

which is known as the Lagrangian dual problem.

There are conditions on the Lagrangian multipliers A cor-
responding to the optimal solution of the original problem,
and they can be derived using the Kuhn-Tucker optimal-
ity condition [2]. This condition implies OL(\)/0a, = 0
Yu € V;. By applying the Kuhn-Tucker condition to the La-
grangian function, we obtain the following optimality con-
ditions on A:

1=) A (2)

(u,t)€EEp
Y dww = D e VweVi—{s,t} (3)
(w,v)EE} (u,w)EE}

Due to unique structure of our problem, we can greatly
simplify LS by applying these conditions. By rearranging
the terms, the Lagrangian function Ly (a, T') can be written
as

LA(OHT): (1 - Z Aut)at

(u,t)€EET
+ (Z Aun) - Z)\uw)aw
(w,u)EE: (u,w)EE}
+ > AwDuy

(u,v)EEgUE \f

When A satisfies the optimality conditions, Lx(a, T') is sim-

plified to
IN(T) = >

(u,w)EEgUE

Then LS, is simplified to

AUUDM’U

LS4 : Minimize L4\(T)

LS doesn’t have the a,, terms and solving LS} is equivalent
to solving LS}.

To solve the Lagrangian dual problem, an iterative ap-
proach is used. At each iteration, we solve LS, by solving
LS} for a given A, and then update the Lagrangian multi-
pliers for the next iteration using the solution of the current
iteration. The Lagrangian multipliers for (r + 1)th iteration
are updated by the subgradient method [1, 2] as follows:

Mdt = max{0,\; + 0r(au — a¢)} V(u,t) € Ex
Al = max {0, A5y + 0r(ay + Dyy — ay)} V(u,v) € Enm
>‘:t)+1 = ma'x{07)‘:u +97‘(DSU _a”)} \V/(S,’U) € ES

where 0, is a step size with the property that lim, §, — 0,
and lim,) 6, — oco. Let A be nonnegative A which satisfies
the optimality conditions (2) and (3). Because we solve LS}
instead of LSy, updated A is projected to the nearest vector
in A at each iteration. Figure 6 summerizes our algorithm.
With a given vector A, algorithm NET _ROUTE solves LS.
The NET ROUTE algorithm is presented in the following
section. By solving LS} with the optimal A found by the
algorithm, we can find the routing such that critical path
delay can be minimized.

4.2 Routing Nets

In this section, we consider solving the simplified La-
grangian subproblem LS} with a given vector A. By routing
each net using an appropriate cost function, we can solve
this problem. The objective function L\ (T') of this problem
implies that the edges in the timing graph need to be routed
such that the Elmore delay weighted with the Lagrangian
multipliers is minimized for a given A, because D, denotes
the routing delay of an edge (u,v). While routing, however,
exclusivity constraints also need to be satisfied so that all

Algorithm NET_ROUTE
Input: A placed netlist, A, G, (V;, Er)
Output: A routed netlist
begin
1. for each net k£ do
2. Rip up routing for net k
3. for each sink v of net k do
4. Maze route from source to sink,
where cost at node i is
Ci = Auod; + i
for each node i of V,
5. Update p; for all #’s
in path(u,v)

end

Figure 7: Algorithm NET ROUTE

the nets should be routed successfully. To handle the exclu-
sivity constraints, a decision variable for each node in G, is
defined as follows:

1, if the routing tree T} for net k uses node ¢
Tik = .
0, otherwise

From LS} and exclusivity constraints, the net routing prob-
lem is that of constructing the routing trees T for all nets
in the placed netlist for a set of given multipliers A,,’s such
that

Minimize E(u,v)GESUEM)\uvDuv
Subject to

YeZik <1 VieV,

This problem can be solved by Lagrangian relaxation. Let

Lﬂ(w) = Z Auvl)uv + Z [lzz(z Tik — 1)

(u,v)EEgUE\ i€V k
= Z Z AuwvDuv + Z MiZTik ¢ — Z Hi
k (u,v)EEY 1E€EVr 1€V

where E}, is a set of source-sink pairs belonging to the rout-
ing tree T}, for net k. Note that > ;. wi is a constant term.
NET_ROUTE algorithm constructs the routing trees for all
nets that minimize

LL(w) = Z Z)\uvDuU + Z HiZik (4)

k| (u,v)€E, i€V

Our net routing algorithm is similar to the PathFinder
algorithm [12]. Given a routing graph, NET_ROUTE it-
eratively constructs a minimum cost routing tree for each
net. It rips up one net at a time, and reroutes with updated
cost. While routing a net, each source-sink pair is routed
sequentially in decreasing order of A,,. Initially, nodes in
routing graph are allowed to be shared by multiple nets. Af-
ter each iteration, the cost of sharing resources is gradually
increased, and only the nets with higher criticality try to
use the nodes with higher costs.

In the placed netlist, each net can have multiple sinks,
and each source-sink pair (u,v) of the net has correspond-
ing Lagrangian multiplier Ay,. Each routing resource ¢ has

corresponding Lagrangian multiplier p;. To achieve feasi-
ble routing that minimizes L, (z), NET_ROUTE uses the
Lagrangian multipliers as weights for the cost of using re-
sources. From equation (1), AuwyDuv term of (4) can be
expressed as

AvvDuw = Z Auvdi

i€path(u,v)

Hence, each node i on the path(u,v), its contribution to (4)
is given by

Ci = Auodi + i

In this equation, the first term is delay control term, and
the second term is congestion control term. Source-sink
pairs belonging to more critical paths have larger Ay,’s, and
NET_ROUTE constructs routing tree with costs that biased
more to the delay cost than to congetion cost for those pairs.

In PathFinder algorithm, the congestion-sensitive term is
defined as

ci = b xp;

where b; is a base cost for a routing resource, and p; is a
penalty term for congestion control. Each ¢; can be inter-
preted as a Lagrangian multiplier, and it plays the same role
as ui, but it is updated in a different way from the subgra-
dient method. In our current implementation, we adopted
multiplier ¢; for congestion control, and we set p; = ¢;. Fig-
ure 7 summarizes the algorithm NET ROUTE.

S. EXPERIMENTAL RESULTS

The proposed timing-driven routing algorithm was im-
plemented in C on a SUN SPARC workstation. The ex-
periments are performed on 17 large circuits from MCNC
benchmark [16]. The placed netlists were generated using
the placer in VPR [14]. We assumed a symmetrical-array-
based FPGA [3], where each logic block contains four 4-
input lookup tables and four flip-flops. We set Fs = 3 and
F. = W, where W is the number of wire segments of each
channel. F, denotes the number of connections for each
wiring segment entering the switch box. F. denotes the
number of tracks to which each logic block pin can connect.
For the purpose of comparison, we used identical intrinsic
delay values and timing models of VPR.

We performed routing on each circuit with fixed chan-
nel width. We obtained this fixed number of tracks per
channel by running VPR on timing-driven mode. The crit-
ical path delays and runtime were compared after running
LR _ROUTE on each circuit with these channel width. Re-
sults are shown in Table 1. LUTs/FFs column shows the
number of LUTs and flip-flops in each circuit. The criti-
cal path delays of the circuits routed with LR_ ROUTE and
VPR are shown under delay column. We also compared run-
time for routing each circuit, and it is shown under runtime
column. Among 17 benchmark circuits, LR_ROUTE yields
better results for 13 circuits, and the critical path delays are
shorter up to 33% with comparable runtime.

6. CONCLUSION

In this paper, we introduced LR_ ROUTE, a new timing-
driven routing algorithm for FPGAs. In our algorithm, we

Circuit LUTs # of delay(ns) runtime(s)
/FFs | Tracks VPR LR ROUTE VPR LRROUTE

alu4 1522 33 46.6 46.2 58 57
apex2 1878 43 61.5 49.3 61 46
apex4 1262 41 45.4 48.9 29 41
bigkey 1707 24 41.7 27.8 53 62
clma 8383 51 125.0 96.4 531 464
des 1591 24 43.5 48.1 44 42
diffeq 1497 29 48.8 48.6 32 31
dsip 1370 25 29.6 27.6 53 78
elliptic 3604 40 77.1 71.3 151 256
ex1010 4598 44 83.5 75.2 248 351
ex5p 1064 43 44.8 43.7 22 34
frisc 3556 43 81.5 84.3 121 171
misex3 1397 37 42.5 49.4 50 49
pde 4575 61 96.5 95.0 304 465
5298 1931 28 98.7 91.5 71 85
seq 1750 35 55.9 47.0 55 67
spla 3690 56 94.7 74.0 203 234

Table 1: Critical path delay and runtime comparison between VPR and LR_ROUTE

handled the timing constraints in a mathematical program-
ming framework based on Lagrangian relaxation. Experi-
mental results show that the new router outperformed the
state-of-the-art VPR router.

7. REFERENCES

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications. Prentice
Hall, 1993.

[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty,
Nonlinear Programming: Theory and Algorithms, 2nd
ed. New York: Wiley, 1993.

[3] S. Brown, R. Francis, J. Rose, Z. Vranesic,
Field-Programmable Gate Arrays, Kluwer Academic
Pub., 1992.

[4] S. Brown, J. Rose, Z. Vranesic, “A Detailed Router for
Field-Programmable Gate Arrays,” IEEE Trans. on
Computer-Aided Design, May 1992, pp. 620-627.

[6] Yao-Wen Chang, D. F. Wong, Kai Zhu, and
C. K. Wong, “On a New Timing-Driven Tree
Problem,” in Proc. Intl. Conf. on Computer-Aided
Design, 1994, pp. 380-385.

[6] C.-P. Chen, C. C. N. Chu, D. F. Wong, “Fast and
Exact Simultaneous Gate and Wire Sizing by
Lagrangian Relaxation,” in Proc. Intl. Conf. on
Computer- Aided Design, 1997, pp. 614-621.

[7] W. C. Elmore, “The transient response of damped
linear network with particular regard to wideband
amplifiers,” J. Appl. Phys., vol. 19, 1948, pp. 55-63.

[8] J. Frankle, “Iterative and Adaptive Slack Allocation
for Performance-driven Layout and FPGA Routing,”
in Proc. ACM/IEEE Design Automation Conference,
1992, pp 536-542.

[9] R. B. Hitchcock, Sr., G. L. Smith, D. D. Cheng,
“Timing Analysis of Computer Hardware,” IBM J.
Research and Development, vol. 26, No.1, Jan. 1982,
pp. 100-105.

[10] J. S. Swartz, V. Betz, J. Rose, “A Fast

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Routability-Driven Router for FPGAs,” Proc.
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 1998, pp. 140-149.

Y .-S. Lee, C.-H. Wu, “A performance and routability
driven router for FPGA'’s considering path delay,” in
Proc. Design Automation Conference, 1995, pp.
557-561.

L. McMurchie, C. Eberling, “PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGASs,” in Proc. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 1995,
pp. 111-117.

V. Betz, J. Rose, “VPR: A New Packing, Placement
and Routing Tool for FPGA Research,” in Proc. the
7th Annual Workshop on Field Programmable Logic
and Applications, 1999, pp. 213-222.

V. Betz, VPR and T-VPack User’s Manual,
University of Toronto, 2000

Y.-L. Wu, M. Marek-Sadowska, “Graph Based
Analysis of FPGA Routing,” In Proc. of Euro-DAC,
1994, pp. 104-109.

S. Yang, “Logic Synthesis and Optimization
Benchmarks, Version 3.0,” Tech. Report,
Microelectronics Center of North Carolina, 1991.

K. Zhu, Y.-W. Chang, D. F. Wong, “Timing-Driven
Routing for Symmetrical-Array-Based FPGAs,” in
Proc. Intl. Conf. on Computer Design, 1998, pp.
628-633.

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

