
Routability Driven White Space Allocation for Fixed-Die
Standard-Cell Placement �

Xiaojian Yang Bo-Kyung Choi Majid Sarrafzadeh

Computer Science Department
University of California at Los Angeles

Los Angeles, CA 90095

xjyang,bkchoi,majid@cs.ucla.edu

ABSTRACT
The use of white space in fixed-die standard-cell placement is an ef-
fective way to improve routability. In this paper, we present a white
space allocation approach that dynamically assigns white space ac-
cording to the congestion distribution of the placement. In the top-
down placement flow, white space is assigned to congested regions
using a smooth allocating function. A post allocation optimiza-
tion step is taken to further improve placement quality. Experimen-
tal results show that the proposed allocation approach, combined
with a multilevel placement flow, significantly improves placement
routability and layout quality.

In our experiments, we compared our placement tool with two
other fixed-die placers using an industrial place and route flow.
Placements created by all three tools have been routed with an in-
dustrial router (Warp Route of Cadence). Compared with a leading-
edge industrial tool, our placer produces placements with similar or
better routability and on average 8.8% shorter routed wirelength.
Furthermore, our tool produces placement that runs faster through
the Warp Route compared with the industrial tool. Compared with
a state-of-the-art academic placement tool (Capo/MetaPlacer), our
placer shows ability to produce more routable placements: for 15
out of all 16 benchmarks our placer’s outputs are routable while
Capo/MetaPlacer only creates 4 routable placements.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Experimentation

Keywords
Physical Design, placement, routability

�This work was supported by NSF under Grant #CCR-0090203

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’02, April 7-10, 2002, San Diego, California, USA.
Copyright 2002 ACM 1-58113-460-6/02/0004 ...$5.00.

1. INTRODUCTION
Achieving auto-routability is one of the main goals in modern

standard-cell placement. Total estimated wirelength, or bounding
box wirelength, was widely used as an objective function to opti-
mize routability. It is commonly believed that a shorter total wire-
length implies better routability. Wirelength optimization has been
extensively studied during the past two decades. Successful place-
ment techniques include min-cut [1], simulated annealing [2], and
analytical approach [3].

Congestion is another important indicator of routability in place-
ment, and it has become dominant for large, tight designs. Previ-
ous works addressed the congestion problem using various meth-
ods. Mayrhofer and Lauther [4] combine congestion function in cut
minimization. Cheng [5] employs a congestion model in simulated
annealing approach. Wang et. al [6] propose a post-processing step
to remove congestion for a wirelength optimized placement. These
methods attempt to reduce congestion by obtaining a placement
with less gathered wires and are successful for improving routabil-
ity.

White space allocation is another way to alleviate congestion
in placement orthogonal to above congestion management tech-
niques. White space is a term associated with fixed-die placement,
which is the common design style in current industry practice. For
fixed-die designs, chip area, core area, rows and available sites are
given before placement and routing. White space, or the empty
space that is not occupied by the standard-cells, varies from 0.1%
to 50% for real designs.

The appearance of the fixed-die style does not dramatically change
the placement methodology — most previous placement techniques
(cut minimization, quadratic approach, simulated annealing) are
still applicable. However, the white space in fixed-die mode in-
troduces new problems in placement. For instance, in fixed-die
placement with large white space, purely minimizing wirelength
tends to place all the cells close to each other. But the congestion
of this “packed” placement is worse than a spread-out placement.
Fixed-die placement tool has to take white space into consideration
to improve routability.

In general, there are two ways to utilize white space in place-
ment: (a) increasing the tolerance in cut minimization to achieve
better partitioning quality [7], or (b) allocating white space to con-
gested area to alleviate congestion. The latter one has not drawn
enough research attention. One previous work is congestion aware
region growing/shrinking by Parakh et al [8]. The idea of white
space allocation is straightforward: since congestion originates from
the discrepancy between routing demand and routing supply, in-

creasing supply, as well as reducing demand, is a natural way to re-
duce congestion. However, the problem of allocating white space
without much loss of placement quality (e.g., wirelength) is not
trivial.

In this paper, we present a fixed-die white space allocation ap-
proach that significantly improves the routability of the placement.
During the placement, white space is dynamically assigned to con-
gested places according to the current congestion distribution. The
proposed white space allocation method, combined with a multi-
level placement flow, yields high quality placements for fixed-die
designs. Experimental results show that, compared to a leading-
edge industrial tool, our fixed-die placer produces placements with
similar or better routability, shorter routed wirelength and less vias.

The remainder of the paper is organized as follows. In Section
2, we give the background and notations of white space allocation.
We then propose the problem and present our solution in Section
3. In Section 4, the process of incorporating white space alloca-
tion into top-down placement is discussed. Experimental results
compared with other fixed-die placers are shown in Section 5. We
conclude in Section 6.

2. BACKGROUND AND DEFINITIONS
In fixed-die standard-cell placement, the core area consists of

rows and spaces between rows1. Each row has a fixed number of
available sites. The total available sites is the summation of the
available sites for all the rows. After the placement stage, every
standard-cell occupies an integer number of sites. The row uti-
lization is the percentage of sites that are occupied by cells. The
relative white space, or white space of the design is the percentage
of sites that are not occupied by cells.

In this paper, we use bin based placement as in [9, 10]. During
the placement, the core area is divided into rectangular bins and
cells are placed at the centers of the bins with overlaps. Bin size
varies during the top-down placement. Bins become smaller and
contain less cells as the placement process goes deeper.

In top-down placement flow, white space is allocated at later lev-
els, where the congestion information acquired from the current
placement can be used to guide allocation. Basically, we tend to
allocate more white space to congested areas.

In a m�n bin mesh, assuming that the congestion of each bin is
known, we want to determine the white space of each bin. Let ci j
be the congestion of the bin at column i and row j, and wi j be the
white space to be assigned into this bin. We use W to denote the
total (relative) white space of the design.

3. WHITE SPACE ALLOCATION
In this work, we propose a two-step white space allocation ap-

proach. We first allocate white space to each row of the bin mesh,
then allocate white space to each bin within rows. We will describe
them in the next two sections.

3.1 Row White Space Allocation
Assume that there are n rows in the design and the total conges-

tion for row j is c j. Let w j be the white space to be allocated to
row j. The capacity constraint is,

n

∑
j�1

w j �W (1)

1In this work, we assume that there is no space between rows. This
is the case for most practical designs.

The total white space assigned to each row should be balanced,
i.e., there is no row containing too much or too little white space2.
Let wmin and wmax be the minimum and maximum white space for
rows, respectively. We then have the following constraints:

wmin � w j � wmax j � 1� ����n (2)

The problem of row white space allocation is to find a function
f such that the white space of each row can be computed by its
congestion (w j � f �c j�). The function should be monotone, i.e.,

wi � w j i f ci � c j

1� i� j � n (3)

We first sort rows according to their congestions. After sorting
the congestions of the rows are in non-decreasing order, i.e.,

c1 � c2 � � � �� cn

Hence,

wmin � w1 � w2 � � � �� wn � wmax

Ideally, we want to achieve w1 �wmin and wn �wmax. A quadratic
function may fit well in this situation. Let f �x� be in the form
f �x� � a1x2 �a2x�a3. According to the above constraints,

a1c2
1 �a2c1 �a3 � wmin (4)

a1c2
n �a2cn �a3 � wmax (5)

a1

n

∑
i�1

c2
i �a2

n

∑
i�1

ci �a3n �W (6)

where ci�wi� i � 1� ����n are known and a1,a2 and a3 are unknown
parameters. The solution of equation (4) (5) and (6) determines
function f �x�.

However, the function f �x� may have extremum inside [c1�cn],
This happens when c1 ��a2��2a1�� cn. In these cases, the func-
tion is no longer monotone within [c1�cn]. We need to relax either
w1 � wmin or wn � wmax to satisfy the capacity constraint.

In the case a1 � 0, we relax the constraint w1 � wmin to w1 �

wmin and take the point �cn�wmax� as the extremum of the quadratic
function. We replace (5) by

cn ��
a2

2a1
(7)

The solution of (4), (6) and (7) determines the function that is
monotone within �c1�cn�.

Similarly, in the case a1 � 0, we relax the constraint wn � wmax
to wn � wmax and take the point �c1�wmin� as the extremum of the
quadratic function. We replace (4) by

c1 ��
a2

2a1
(8)

The solution of (5), (6) and (8) determines the function that is
monotone within �c1�cn�.

The obtained quadratic function is used to compute white space
for each row according to the congestion of this row. The white
space of the row is then assigned to each bin.

2The reason of bouding white space in rows will be discussed in
Section 4.2

3.2 Bin White Space Allocation
Unlike row white space allocation, there is no maximum or min-

imum white space limitation for bin white space allocation. The
white space for a bin can be zero, if the bin is not congested. If a
bin is highly congested, its neighbor bin is likely to be congested
as well. This prevents one congested bin from being assigned too
much white space.

For each bin, it is reasonable to allocate white space proportional
to the ratio of the congestion to the total congestion, i.e., wi j �
w jci j�c j . Other ratios can be used, for instance, the ratio of the
bin congestion square to the total square of the bin congestion. The
specific model used to allocate bin white space varies and should
take congestion model into consideration.

4. USING WHITE SPACE ALLOCATION IN
PLACEMENT

Several factors need to be considered when incorporating white
space allocation into top-down placement. Congestion estimation
and detailed placement approach are two of them. Congestion es-
timation can be fast and rough [5, 11], or accurate but relatively
slow [12]. Estimates can be obtained at the early placement stages
[13]. White space allocation based on fast congestion estimation
can be used frequently in the placement process since it takes lit-
tle extra time, whereas allocation guided by accurate congestion
estimation is computationally expensive and should be avoided as
possible. The detailed placement approach also affects the usage
of white space allocation. In general, placement quality (e.g. wire-
length) degrades after white space allocation, since the locations of
the cells are changed without considering the wirelength. There-
fore, the allocation must not be the final step of the placement. A
detailed placement optimization, usually a low temperature anneal-
ing step, is a good solution to the loss of quality in white space
allocation.

In this section, we will first describe our placement flow used for
our fixed-die placer in Section 4.1. Then we will discuss the white
space usage in the context of this specific placement flow in Section
4.2. A post allocation optimization step will be presented in 4.3.

4.1 Placement Flow
We take a top-down placement flow which combines several tra-

ditional techniques. The placement process is mainly composed
by partitioning (cut minimization) and simulated annealing (wire-
length optimization). The given circuit is recursively bipartitioned
into subcircuits/clusters in the top-down flow, and these clusters
are placed into the bins. For bisection we use the state-of-the-art
multilevel partitioner [14]. After every few partitionings, a cluster
based low temperature simulated annealing is applied to improve
the wirelength. The cluster size and the bin size become smaller as
the placement process goes deeper. Once the average cluster size is
small enough, a detailed placement process takes control. The steps
in the detailed placement includes: adjusting the bins to match the
rows, annealing to improve placement quality, removing overlap to
obtain the legal placement, and local improvement.

For this specific placement flow, we use the white space alloca-
tion two times in the placement, both are in the detailed placement
stage. The congestion information at this stage is more accurate.
The first allocation is made after bin adjustment. At this moment,
the number of rows in the bin mesh is the same as the number of
standard-cell rows for the design. The second allocation is made
after the annealing improvement step, and before the overlap re-
moval. The entire placement flow with white space allocation steps
is shown in Figure 1.

Input: Placement with overlapped cells at m�n bins
Output: White space wi j�1� i�m�1� j � n� for each bin.
W � 1� row utilizationn
wmin � 0�01�n
wmax � �1�0�9 � row utilization��n
Estimate congestion using wire probability within bounding box.
Obtain congestion for bin �i� j� as ci j .
Sum up congestion for each row: c j � ∑m

i�1 ci j
c1 �minimum�c j��1� j � n
cn �maximum�c j��1� j � n
Solve equation system (4) (5) and (6)
if c1 ��a2��2a1�� cn then

if a1 � 0 then
Solve equation system (4) (6) and (7)

else
Solve equation system (5) (6) and (8)

end if
end if
for each row j do

w j � a1c2
j �a2c j �a3

Assign white space to bins: wi j � w j � ci j�c j�1� i� m
end for

Figure 2: White space allocation algorithm

4.2 Use of White Space Allocation
In the top-down placement flow, we allocate white space only

two times although the allocation introduces almost no overload
for our placement approach. One reason is that we may replace it
with a better approach which does good congestion estimation thus
takes longer time.

Congestion estimation method also impacts on the performance
of the white space allocation. Different congestion models, or dif-
ferent ways to calculate congestion for each bin, will lead to dif-
ferent white space distribution. In this work, we use a modified
congestion model originally proposed in [5]. It is based on the
wire probability within the bounding box of the net. Congestion
for each bin is computed by the horizontal and vertical wires pass-
ing through this bin, and is scaled using the average congestion
over all the bins. The estimation takes almost no overload for the
placement process.

The maximum and minimum white space in row white space
allocation (discussed in Section 3) affect the white space distribu-
tion as well. Their values relate to (a) the worst congestion of the
entire core area, and (b) the row utilization of the design. For in-
stance, a tight design with highly congested area needs a larger
maximum row white space. The existence of maximum and min-
imum row white space is important. If the row white space is
too large, it is difficult to make good allocation for multiple con-
gested regions. Moreover, excessive row white space may consid-
erably increase the wirelength of the placement. If the row white
space is too small, it will degrade the quality of simulated anneal-
ing by imposing unnecessary row balance penalty. Generally, it
is hard to find a direct function for maximum and minimum row
white space. In this work, we experimentally set the minimum row
white space to 0�01�n, and set the maximum row white space to
�1�0�9 � row utilization��n, where n is the number of rows.

Figure 2 shows the algorithm for white space allocation in our
placement flow.

4.3 Post Allocation Optimization
The optimization steps after two allocations are crucial for the

recursive
bisection annealing

cluster
white space
allocation

cell annealing
with white

space in bins

second allocation
overlap removal
local improvement

row adjustment

Figure 1: Our placement flow with two white space allocations.

successful allocation, as white space allocation changes the cur-
rent placement and results in loss of placement quality. We use a
simulated annealing based step after the first allocation, and a fast
greedy algorithm after the second allocation. Both steps improve
the total wirelength by swapping or moving cells. We describe the
first approach in this section.

white space

cells

(a) Bin width is determined by
cell width and white space

(c) Swapping cells between
two binsbin center with overlap

(b) Cells are placed at the

Figure 3: Simulated annealing after white space allocation.

As shown in Figure 3, after the white space allocation, each bin
is assigned some white space. The width of a bin is determined
by the white space and the total widths of cells in this bin. Before
simulated annealing, the locations of bins are computed based on
the actual cell width in each bin. We name it bin spreading step.
This step will be repeated periodically in simulated annealing. All
the cells are placed at the centers of the bins with overlaps. For each
move in annealing, cells are either swapped between two bins or are
moved from one bin to another. The calculation of row overflow
penalty should take the white space of this row into consideration,
i.e., penalizing the rows for which the total cell width plus white
space is greater than the row capacity.

5. EXPERIMENTAL RESULTS
We have implemented the white space allocation algorithm and

have incorporated it into our previous standard-cell placement tool
named Dragon [10]. To test our approach, we combined an indus-
trial router — Cadence Warp Route (Silicon Ensemble version 5.3)
— into our place and route flow. We compare our placer (Dragon)
with Cadence QPlace (Silicon Ensemble version 5.3, running in
congestion driven mode) and Capo/MetaPlacer3 from UCLA PD
tool set (September 2001 version) [7]. All three placers read the
same LEF/DEF files and write DEF files as the placement output.
The Warp Route then reads the placements and does both global
and final routing4.

3It is the only academic fixed-die placer as we know.
4For Capo/MetaPlacer, there is a quick legalization step between
placement and routing as described in [7]. This step usually takes a
couple of seconds and does minor changes on the placement. The
reason of this legalization step is probably that Capo/MetaPlacer
does not place all the cells exactly on sites (according to personal
communication with the author of Capo/MetaPlacer).

To obtain appropriate benchmarks for our experiments, we in-
vestigate both MCNC and IBM-PLACE benchmarks [15]. MCNC
benchmarks are old and most circuits in the suit are small. IBM-
PLACE benchmarks are in reasonable size, but lack physical infor-
mation. We scale the cells in IBM-PLACE according to the cell
sizes in TSMC 0.18µm standard-cell library5, add routing layer in-
formation, and translate the benchmarks into LEF/DEF format. We
then use Cadence Silicon Ensemble to floorplan the circuits and
create design instances using different row utilizations. Specifi-
cally, for each circuit we use two row utilizations in floorplanning
and create a relatively easier instance and a relatively harder one.
The row utilizations for the created test cases are ranging from 85%
to 95%6. The statistics of the circuits are listed in Table 1.

circuits cells nets rows core�row� white routing
utilization space layers

ibm01-easy 12,028 11,753 132 85.12% 14.88% 4
ibm01-hard 130 88.00% 12.00% 4
ibm02-easy 19,062 18,688 153 90.42% 9.58% 5
ibm02-hard 149 95.28% 4.72% 5
ibm07-easy 44,811 44,681 233 89.95% 10.05% 5
ibm07-hard 226 95.30% 4.70% 5
ibm08-easy 50,672 48,230 243 90.03% 9.97% 5
ibm08-hard 236 95.16% 4.84% 5
ibm09-easy 51,382 50,678 246 90.24% 9.76% 5
ibm09-hard 240 95.12% 4.88% 5
ibm10-easy 66,762 64,971 321 90.22% 9.78% 5
ibm10-hard 313 95.08% 4.92% 5
ibm11-easy 68,046 67,422 281 90.11% 9.89% 5
ibm11-hard 273 95.33% 4.67% 5
ibm12-easy 68,735 68,376 347 85.22% 14.78% 5
ibm12-hard 338 90.06% 9.94% 5

Table 1: Tested circuit statistics, including number of cells,
number of nets, number of rows, row utilization, white space
ratio, and number of routing layers. Core utilization and row
utilization are the same since there is no space between rows.
Each circuit is floorplanned twice using a higher row utilization
and a lower one, resulting a relatively harder design instance
and a relatively easier one.

Table 2 shows the comparison of routability using different white
space allocation method. We compare (a) placement with the routabil-
ity driven allocation approach proposed in this paper, (b) place-
ment with no white space allocation (packed placement), and (c)
placement with uniformly distributed white space. From the table

5Obtained from Artisan Components Inc.
6We failed to find “hard” test cases with 70% to 80% utilization (or
less). All the circuits except ibm01 are not routable if we use four
routing layers. Whereas in five layer cases, 70% or 80% utiliza-
tion makes placement and routing so easy that it is meaningless to
compare wirelength.

one can see that, although the packed placement have the short-
est wirelength among three placements, its routability is deterio-
rated. Evenly distributing white space is slightly better than no
white space at all, but it is of little help on alleviating congestion.
Allocating white space according to the congestion produces the
best routability among three approaches.

Table 3 shows the comparison between Cadence QPlace, our
placer (Dragon) and Capo/MetaPlacer. For each placement, we
report total bounding box wirelength and runtime. Note that the
runtime of QPlace is on Sun workstation and runtime of Dragon
or MetaPlacer is on PC/Linux7. The routing result can be one of
the three types: successful routing without violation, finished rout-
ing with some violations, or failed routing (too many violations or
routing takes too much time). We also report the total routed wire-
length and number of vias if the routing is successful or finished.
Due to the intensive runtime of our experiments, we run each place-
ment and routing only once.

Compared with other two placers, our placer (Dragon) produces
placements with similar or better routability on all the tested cir-
cuits. Out of 16 circuit instances, Dragon creates 15 routable (zero
violation) placements while QPlace and MetaPlacer create 13 and
4, respectively. For the only instance that both QPlace and Dragon
fail (ibm12-hard), the number of violations for our placement is less
than that of QPlace’s. Routing time is another metric of routabil-
ity. For most test cases, the placements by our placer require less
routing time than those by QPlace.

For almost all the test cases, our placer (Dragon) produces place-
ments with shorter wirelength and less vias after final routing. Fig-
ure 4 illustrates the comparison on total routed wirelength between
QPlace’s outputs and Dragon’s. On average Dragon improves the
total routed wirelength by 8.8% and reduces the vias by 4.0%, com-
pared with QPlace.

sc
al

ed
 f

in
al

 w
ir

el
en

gt
h

ibm02 ibm07 ibm08 ibm09 ibm10 ibm12ibm11

QPlace
Ours

ibm01

Routing Comparison between QPlace and Our Placer (Dragon)

0.8

0.9

1

0.8

0.9

1

Figure 4: Routed wirelength comparison between QPlace and
our placer. Wirelengths are scaled with QPlace’s result as unity.

6. CONCLUSION
We have present an approach for routability driven white space

allocation. Experimental results show that it is an effective way for
fixed-die placement. The proposed method, combined with a mul-
tilevel placement flow, creates high quality placements compared
with a leading-edge industrial tool and a state-of-the-art academic
placement tool.

A promising aspect of our approach is that the routability is im-
proved by white space allocation alone. Previous work on con-
gestion optimization, such as moving highly connected cells out of
congested area, can work with our approach concurrently. It is rea-
sonable to expect that a combined congestion optimization would
give better routability than merely using white space allocation.
7Our experiments show that for placement applications, our PC is
usually 1.5-1.8 times faster than our Sun workstation.

The benchmarks and our placement tool are available through
our research group webpage http://er.cs.ucla.edu.

7. ACKNOWLEDGMENTS
The authors are grateful to the reviewers and to Ryan Kastner,

Helen Hu for their helpful comments.

8. REFERENCES
[1] M. A. Breuer. “A Class of Min-cut Placement Algorithms”.

In Design Automation Conference, pages 284–290.
IEEE/ACM, 1977.

[2] C. Sechen and A. Sangiovanni-Vincentelli. “TimberWolf3.2:
A New Standard Cell Placement and Global Routing
Package”. In Design Automation Conference, pages
432–439. IEEE/ACM, 1986.

[3] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich.
“GORDIAN: VLSI Placement by Quadratic Programming
and Slicing Optimization”. IEEE Transactions on Computer
Aided Design, 10(3):365–365, 1991.

[4] S. Mayrhofer and U. Lauther. “Congestion-Driven Placement
Using a New Multi-partitioning Heuristic”. In International
Conference on Computer-Aided Design, pages 332–335.
IEEE, 1990.

[5] C. E. Cheng. “RISA: Accurate and Efficient Placement
Routability Modeling”. In International Conference on
Computer-Aided Design, pages 690–695, 1994.

[6] M. Wang, X. Yang, and M. Sarrafzadeh. “Congestion
Minimization During Placement”. IEEE Transactions on
Computer Aided Design, 19(10):1140–1148, 2000.

[7] A. E. Caldwell, A. B. Kahng, and I. L. Markov. “Can
Recursive Bisection Alone Produce Routable Placements?”.
In Design Automation Conference, pages 477–482.
IEEE/ACM, June 2000.

[8] P. N. Parakh, R. B. Brown, and K. A. Sakallah. “Congestion
Driven Quadratic Placement”. In Design Automation
Conference, pages 275–278. IEEE/ACM, June 1998.

[9] M. Sarrafzadeh and M. Wang. “NRG: Global and Detailed
Placement”. In International Conference on Computer-Aided
Design. IEEE, November 1997.

[10] M. Wang, X. Yang, and M. Sarrafzadeh. “Dragon2000: Fast
Standard-cell Placement for Large Circuits”. In International
Conference on Computer-Aided Design, pages 260–263.
IEEE, 2000.

[11] X. Yang, R. Kastner, and M. Sarrafzadeh. “Congestion
Reduction During Placement Based on Integer
Programming”. In International Conference on
Computer-Aided Design, pages 573–576. IEEE, 2001.

[12] J. Lou, S. Krishnamoorthy, and H. S. Sheng. “Estimating
Routing Congestion using Probabilistic Analysis”. In
International Symposium on Physical Design, pages
112–117. ACM, April 2001.

[13] X. Yang, R. Kastner, and M. Sarrafzadeh. “Congestion
Estimation During Top-down Placement”. In International
Symposium on Physical Design, pages 164–169. ACM, April
2001.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
“Multilevel Hypergraph Partitioning: Application in VLSI
Domain”. In Design Automation Conference, pages
526–529. IEEE/ACM, 1997.

[15] NuCAD. “IBM-PLACE benchmark”.
http://www.ece.nwu.edu/nucad/ibm-place.html.

circuit RD allocation packed placement even allocation
wirelength routing wirelength routing wirelength routing

ibm01-easy 0.576 Success 0.499 Failure 0.509 Failure
ibm02-easy 1.539 Success 1.420 Failure 1.446 Failure
ibm07-easy 3.548 Success 3.159 Failure 3.222 Finished�107�
ibm08-easy 3.659 Success 3.327 Finished�20� 3.508 Finished�2�

Table 2: Comparison between routability of placements by three white space allocation approaches: routability-driven (RD) alloca-
tion, no allocation (packed placement) and evenly distributed allocation. Routing results include successful, finished (with number
of violations reported) and failure (because of too many violations or time out).

Placement Routing
Circuits Placer wire run result viola- wire vias run

length time tions length time

QPlace 0.59 3 Success 0 0.86 133478 20
ibm01-easy Dragon 0.58 16 Success 0 0.86 136734 34

MetaPlacer 0.56 2 Failure - - - -
QPlace 0.59 3 Finished 12 0.87 150736 189

ibm01-hard Dragon 0.56 15 Success 0 0.87 138216 59
MetaPlacer 0.56 2 Failure - - - -

QPlace 1.59 6 Success 0 2.26 305559 45
ibm02-easy Dragon 1.54 40 Success 0 2.09 301759 96

MetaPlacer 1.55 5 Finished 13 2.23 308476 97
QPlace 1.57 6 Success 0 2.27 316706 110

ibm02-hard Dragon 1.44 63 Success 0 2.01 299451 89
MetaPlacer 1.52 5 Failure - - - -

QPlace 3.79 11 Success 0 4.96 572734 91
ibm07-easy Dragon 3.55 42 Success 0 4.33 551659 79

MetaPlacer 3.73 11 Failure - - - -
QPlace 3.66 12 Finished 3 4.92 621698 323

ibm07-hard Dragon 3.32 43 Success 0 4.29 573506 172
MetaPlacer 3.60 11 Failure - - - -

QPlace 3.97 14 Success 0 5.29 706225 94
ibm08-easy Dragon 3.66 104 Success 0 4.70 663061 55

MetaPlacer 3.94 11 Finished 73 5.32 750222 950
QPlace 3.78 14 Success 0 5.06 734843 244

ibm08-hard Dragon 3.41 112 Success 0 4.40 671800 80
MetaPlacer 3.77 11 Failure - - - -

QPlace 3.45 13 Success 0 4.08 566603 37
ibm09-easy Dragon 3.10 85 Success 0 3.63 557879 36

MetaPlacer 3.18 13 Success 0 3.65 551005 41
QPlace 3.25 12 Success 0 3.88 580501 55

ibm09-hard Dragon 3.07 80 Success 0 3.61 565941 54
MetaPlacer 3.23 13 Success 0 3.74 570913 65

QPlace 6.47 19 Success 0 7.87 908325 105
ibm10-easy Dragon 6.00 125 Success 0 7.10 879314 100

MetaPlacer 6.26 16 Finished 5 7.56 942912 428
QPlace 6.28 19 Success 0 7.61 925169 132

ibm10-hard Dragon 5.97 122 Success 0 7.06 900879 101
MetaPlacer 6.35 16 Failure - - - -

QPlace 5.15 16 Success 0 6.21 742832 71
ibm11-easy Dragon 4.78 90 Success 0 5.43 723892 49

MetaPlacer 4.99 16 Success 0 5.75 738919 88
QPlace 4.97 16 Success 0 6.00 777997 104

ibm11-hard Dragon 4.55 90 Success 0 5.27 738743 79
MetaPlacer 4.99 16 Success 0 5.92 769981 157

QPlace 9.31 22 Success 0 11.69 1156874 247
ibm12-easy Dragon 8.54 152 Success 0 10.38 1099080 186

MetaPlacer 8.65 20 Finished 86 10.88 1179568 1193
QPlace 8.53 22 Finished 39 10.87 1204868 588

ibm12-hard Dragon 8.46 154 Finished 1 10.72 1168918 572
MetaPlacer 8.35 20 Failure - - - -

Table 3: Comparison between Cadence QPlace, our placer (Dragon), and MetaPlacer. Both bounding box wirelength and routed
wirelength are in meters. Runtime for QPlace is in minutes on Sun Ultra10 workstation with 400MHz CPU. Runtime for our placer
and MetaPlacer is in minutes on Pentium machine with 733MHz CPU. Runtime for each routing is in minutes on the same Sun
workstation. Routing results include successful, finished (with violation) and failure (because of too many violations or time out).

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

