Design Hierarchy Guided Multilevel Circuit Partitioning’

Yongseok Cheon and D. F. Wong
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712

ABSTRACT

In this paper, we present a new multilevel circuit partition-
ing algorithm (dhml) which is guided by design hierarchy.
In addition to flat netlist hypergraph, we use user design
hierarchy as a hint for partitioning because it already has
some implications on connectivity information between log-
ical blocks in the design. Using design hierarchy in par-
titioning is nontrivial since hierarchical elements in design
hierarchy does not necessarily have strong internal connec-
tivity, hence we need to determine whether it is preferable
to break up or preserve the hierarchical elements. In order
to identify and select the hierarchical elements with strong
connectivity, Rent exponent is used. Then, the selected hi-
erarchical elements are used as effective clustering scopes
during multilevel coarsening phase. The scopes are dynami-
cally updated (enlarged) while building up a clustering tree
so that the clustering tree resembles the densely connected
portions of the design hierarchy.

We tested our algorithm on a set of large industrial designs
in which the largest one has 1.8 million cells, 2.8 million nets,
and 11 levels of hierarchy. By exploiting design hierarchy,
our algorithm produces higher quality partitioning results
than the state-of-the-art multilevel partitioner hMetis[7].
Furthermore, experimental results show that dhml yields sig-
nificantly more stable solutions, which is helpful in practice
to reduce the number of runs to obtain the best result.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids; J.6 [Computer
Applications]: Computer-Aided Engineering—computer-
aided design (CAD)

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Circuit partitioning, design hierarchy, clustering, Rent’s rule

*This work was partially supported by the National Science
Foundation under grant CCR-9912390.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

1SPD’ 02, April 7-10, 2002, San Diego, California, USA

Copyright 2002 ACM 1-58113-460-6/02/0004 ...$5.00.

30

1. INTRODUCTION

Circuit partitioning is a critical optimization problem in
many areas of VLSI design automation because the parti-
tioning solutions have great impacts on automatic place-
ment and routing procedures. The attempts to solve this
NP-complete problem have concentrated on finding heuris-
tic algorithms which yield near-optimal solution in poly-
nomial time. Some of the best known approaches include
the iterative improvement methods such as Kernighan-Lin
(KL), Fiduccia-Mattheyses (FM) algorithms and their varia-
tions[5, 9, 1]. Recently, a new multilevel partitioning scheme
has been introduced in order to improve partitioning results
of iterative improvement approaches especially for bigger de-
signs[2, 7, 8]. The multilevel partitioning is believed to be
the most effective approach to produce the best partitioning
quality in smaller run time.

Generally a multilevel partitioning consists of 1) multi-
level clustering (coarsening), 2) initial partitioning at the
coarsest level, and 3) multilevel FM refinement with un-
clustering (uncoarsening). During the coarsening phase, the
problem size is gradually reduced over the levels while cap-
turing strong connectivity in the circuit netlist. Then, the
initial partition at the coarsest level is propagated to lower
levels, at which FM partitioning is performed to improve
the current initial partition which has been inherited from
the upper level. At each level, only a small number of passes
are needed for FM refinement since the initial partition from
upper level already has quite good quality.

In multilevel partitioning, the levels are determined in the
coarsening phase while identifying and grouping the strongly
connected vertices. Through the successive level-by-level
clustering, a multilevel clustering tree C is constructed. The
clustering tree C and design hierarchy tree D is similar in
that both are the representations of multilevel hierarchical
groupings. The proposed work is motivated by that the well-
grouped hierarchical elements in D can be used to guide
the clustering tree construction. Since the design hierarchy
already has some implications on connectivity information
between the logical blocks in the design in most cases, it can
be beneficial to build up the clustering tree as similar to the
design hierarchy as possible. However, we do not blindly fol-
low every grouping in D, rather we identify and select some
good hierarchical elements (i.e., the hierarchical elements
with higher internal connectivity) to use them as cluster-
ing scopes. Rent exponent is used as a quality indicator to
find the good hierarchical elements, which are called posi-
tive scopes. After completion of each one-level clustering,
a clustering scope is updated to a larger scope if clustering
process in the scope turns out to be saturated so that the
vertices in the current scope now have chances to be merged
with others in the larger scope at the next level clustering.

Design
hierarchy tree
D

Netlst . . .
hypergraph
G

Multilevel
clustering tree

Partitioned
clustering tree

coarsening phase uncoarsening &

refinement phase

B N R s L S Sy S

RULLDLELE

Figure 1: Design guided multilevel circuit partitioning problem.

By this scope restriction, we expect entire clustering phase
to produce a clustering tree which is biased to preserve the
well-grouped logical blocks in the design hierarchy.

For FPGA applications, a few partitioning methods uti-
lizing design hierarchy have been reported recently[10, 3, 4].
They mainly focus on problem size reduction using design-
based clustering. The hierarchical elements are selectively
preserved if they are feasible — both size and pin count
are smaller than the limit of each FPGA device. For non-
feasible hierarchical elements, some operations are applied
to intelligently break up the elements. Under the size and
pin count constraints, usually their goal is to find a set of
the good feasible blocks which maximizes device utilization,
i.e., minimizes the number of FPGA’s used. However, their
frameworks are not directly applicable to general partition-
ing problems, and they may preserve the hierarchical ele-
ments with loosely connected internal cells unless the exter-
nal pin count exceeds the upper bound. Moreover, they are
not easy to be transformed into the multilevel scheme.

This paper proposes a new multilevel circuit partitioning,
dhml, that benefits from design hierarchy. It takes a user
design hierarchy as well as a netlist hypergraph, and builds
up a clustering tree that resembles the design hierarchy (See
Figure 1). With this guidance in multilevel clustering phase,
experimental results show that dhml yields higher quality so-
lutions than the conventional multilevel partitioner. Speed-
up has been also achieved in a sense that near-optimal so-
lutions are more frequently obtained in multiple runs since
dhml’s partitioning solutions are more stable. Aggressively
reduced number of levels in clustering phase also contributes
the speedup.

2. PROBLEM FORMULATION

DEFINITION 1. A circuit is modelled by a network of leaf
cells represented by hypergraph G(V,), where V is a set of
leaf cells and € is a set of hyperedges (nets). A set of leaf
cells which is a subset of V is defined as a cluster.

DEFINITION 2. A design hierarchy provided by designer
is represented by a rooted tree. A design hierarchy tree D
is a collection of nodes and arcs such that a node is either a
leaf cell or a hierarchical element which contains other nodes
as children.

31

NoTATION 1. For a given netlist hypergraph G = (V, £)
and design hierarchy D,
1) S(v) = the size of a leaf cell v.
2) S(H) = 3 ,cx S(v) = the sum of sizes of leaf cells con-
tained in a cluster H. S(D) =}, ., S(v) = Stotal-
3) |H| = the number of leaf cells in a cluster H.
4) E(v) = the pin count of a leaf cell v.
5) E(H) = the external pin count of a cluster H.

PrROBLEM 1. Given a design hierarchy D and G = (V, £),
the partitioning problem is to partition V into k disjoint sub-
sets V1, -+, Vi, with the objective of minimizing Ele E(V;).
If k = 2, we call the problem bipartitioning.

3. DESIGN HIERARCHY

Figure 1 shows an example of design hierarchy. We use
Rent exponent as a quality indicator to determine which
hierarchical element has a strong internal connectivity.

3.1 Rent’sRuleand Rent Exponent

Rent’s rule is an empirical formula which describes the
general relationship between the number of cells and the
number of external nets in a subcircuit (or cluster).

E=P.B" (1)

where 7 is the Rent exponent or Rent parameter with r <1,
E is the number of external nets of a cluster, P is the average
number of pins per cell, and B is the number of cells in the
cluster.

Rent’s rule has been widely used for interconnection com-
plexity estimation. Hagen et al.[6] defined intrinsic Rent
exponent to characterize the quality of a partitioning algo-
rithm. The intrinsic Rent exponent of a given partitioning
tree is the representative value of the quality measure for
the corresponding partitioning algorithm. Also, there have
been a few clustering algorithms to identify strongly con-
nected cells by using Rent exponent as a projected quality
measure[12, 11]. In the Rent’s rule based clustering algo-
rithm, the locality of Rent exponent is more emphasized to
select the best merging combinations from candidate neigh-
bors.

Our approach is inspired by the combination of global
and local connectivity information. Since a design hierarchy

r=0.0147 r=0.778

Figure 2: Implication of local Rent exponent.

tree is given, we can estimate the global quality of the tree
by computing a representative value of Rent exponent, 7.
Contrary to the partitioning trees, design hierarchy trees
usually do not have regular patterns in sizes and number
of nodes. Hence, Rent exponent extraction method in [6]
may not be feasible because data points gathering for linear
regression is not totally controllable. Hence we have used
the average value of all Rent exponent of the hierarchical
clusters in D weighted by size. The representative value
obtained from the above is not so useful unless it is combined
with local measure. As used in [12, 11], local Rent exponent
is beneficial to exploit local connectivity information.

The equation (1) can be rewritten for a hierarchical ele-
ment H as follows.

E(H) = Py - |H|" (2)

Let P(H) be the total number of pins of cells in H, i.e.,
P(H) = >, .y E(v). Also, let I(H) be the total number
of internal pins in H, i.e., I(H) = P(H) — E(H). Since
Py = P(H)/|H| = (I(H) + E(H))/|H|, from equation (2),

In E(H) — In((I(H) + E(H))/|H|)
In|H|
In(E(H)/(I(H) + E(H)))
In |H|

r(H)

3)

+1 (4)

From the equation (4), we note that Rent exponent also
captures some information on the internal connectivity. It
is obvious that if all pins are contributed to external nets,
i.e., E(H) = P(H), r(H) =1 which is the maximum value.
From the viewpoint of internal connectivity, small Rent ex-
ponent implies relatively high connectivity inside and large
Rent exponent implies low connectivity. In [10], a similar
measure — S/T quality (ratio of size to external pin count)
— was used to estimate the connectivity quality of hierar-
chical elements. However, it does not capture the internal
connectivity, which is more helpful to identify the hierarchi-
cal elements that have more strongly connected cells inside.

As shown in Figure 2, a hierarchical element H with small
r implies that it contains relatively more strongly connected
cells inside. Thus it is preferable to preserve the internal
connectivity. On the other hand, a hierarchical element H
with large r implies that it has relatively more connections
with outside cells, which means it is preferable to remove
the grouping by H so that the cells in H can have chances
to be chosen as strongly connected neighbors from outside
of H.

For a hierarchical element H, the weighted average of
Rent exponents, 7 is used as a threshold value to determine
whether the corresponding Rent exponent r(H) is small or

32

Procedure construct_cluster_tree

Input: bottommost netlist hypergraph G = (V, £)
h-level design hierarchy tree D
Output: k-level clustering tree C
. Extract scope tree D" from D
. for each leaf cell v € V do
Determine a clustering scope H(v) in D’
. Go(Vo,&0) =GV, E), k=0
do
Gr41 = cluster_one_level(Gy)
k=k+1
. while |Vi| > a and |Vi|/|Vi-1] < B

Figure 3: Clustering tree construction procedure.

large. A hierarchical element H is said to be a positive scope
if r(H) < 7, a negative scope otherwise. With the guidance
of preliminary knowledge of connectivity information from
design hierarchy, multilevel clustering is performed while re-
stricting the clustering scopes to good hierarchical groupings
— positive scopes.

4. MULTILEVEL PARTITIONING

In this section, we provide a multilevel clustering algo-
rithm which is guided by the Rent exponents which imply
the local connectivity quality of the design hierarchy. Then,
the entire partitioning algorithm, dhml, is presented.

4.1 Design Hierarchy Guided Clustering

As shown in Figure 1, coarsening phase of the multilevel
partitioning consists of successive bottom-up clustering pro-
cedures from a set of leaf cells. During the coarsening phase,
large nets are contracted to smaller nets and a sequence
of successively smaller hypergraphs are constructed. Thus,
several vertices at the current level merge to form a bigger
vertex at upper level, eventually forming a k-level tree C.

The main purpose of multilevel clustering is to create a
small hypergraph such that a good bisection of the small
hypergraph is not significantly worse than the bisection di-
rectly obtained from the original hypergraph[7]. This qual-
ity preservation ensures that the top-down refinement later
does not need much effort to improve the initial partition
inherited from the upper levels. Although best initial parti-
tion at the coarsest level does not always guarantee the best
partition at the finest level with leaf cells, there are more
chances to reach higher quality final solution if we build up
a higher quality clustering tree. Fortunately we have an ad-
ditional grouping information in user design hierarchy tree
D, which is originally based on functional decomposition.
Design hierarchy D and Rent exponents of hierarchical el-
ements in D give a guidance for the multilevel clustering
procedure.

Clustering is defined as a merging process on the exist-
ing vertices to form smaller number of bigger vertices. In
multilevel partitioning schemes published, pairwise merging
has been widely used[7, 8, 2]. We have performed extensive
experiments with various clustering methods, and FC(First
Choice) coarsening proposed in [8] turned out to be the most
effective. Thus, we are using a connectivity cost and merg-
ing policy similar to FC in hMetis. Even though we are
using the same idea as the one in hMetis to form bigger ver-

Design
hierarchy tree
D

I3 : negative scope
O : positive scope

VAVLWAN

Scope tree D' H(u) = H1
H(v) = H2
H4

- o = o = e - V‘
u v
@ H1 and H2 are saturated!
Restructured scope
tree after one level H(UY) = H3
clustering
H(v') = H4
H4
Vv

Figure 4: Design hierarchy restructuring.

tices, entire clustering scheduling is quite different because
of the existence of guidance from the design hierarchy D.

Figure 3 summarizes our multilevel clustering tree con-
struction procedure. As an initialization process, the origi-
nal design hierarchy tree D is restructured such that all the
negative scopes are removed from D (See Figure 4). The
resulting tree only with the hierarchical elements which are
positive scopes are called scope tree. In general, the vertices
in a negative scope have more freedom to be merged with
others outside of the scope. Meanwhile, the vertices in the
positive scope are restricted to be merged with those within
the scope. Next, for each leaf cell v, we determine a cluster-
ing scope in D' (Step 2, 3). Initially the immediate parent
of v in D’ is chosen as a clustering scope of v, and denoted
by H(v). If there is no positive scope for v in D, the root of
D is assigned to H(v), which means that scope restriction
is not used for such v.

Then, starting from the bottommost netlist hypergraph,
we successively construct the upper level hypergraph until
the number of vertices is reduced enough or clustering pro-
cess is saturated (Step 4-8). In step 8, o and 3 represents a
desirable size at the coarsest level and a threshold value of
slow reduction rate respectively. In our experiment, o = 100
and B = 0.9 have been used.

The main clustering procedure is presented in Figure 5.
First, we arrange the vertices in V; so that cluster v cannot
be matched before u if H(u) C H(v). If the vertices have
clustering scopes with level(height) k in D, then the vertices

33

Procedure cluster_one_level

Input: hypergraph G; = (V;, &)

Output: contracted hypergraph Gi41

1. Compute {Wy, | Wi, = {v | v € Vi, H(v)’s level is k}}
2. for k=1 to h do

3. while there exist unmatched vertices in W;, do
4. Randomly select an unmatched v in Wy
5 Find w € V; that maximizes clus_cost(v, w)

such that H(w) C H(v)

6. if there is no such w

7. Create a singleton cluster v’ in Vi1
8. else if w is unmatched

9. Create a cluster v in V;41 with (v, w)
10. else if w is matched in existing v’ € V;41
11. Append v to v’

12. H(v') = H(v)

13. Remove saturated hierarchical elements in D’
and update H(v") accordingly

Figure 5: Main clustering procedure.

are grouped together in Wy, (Step 1).

Next, matchings are performed from the lowest level W,
at which the scopes are the smallest. For each level of the
scope, we randomly select a cluster v which has not yet been
matched to contribute one of the upper level vertices. For
the cluster v, we consider the neighbors which are connected
to v by some nets in V; and are located inside of H(v). We
have an upper bound of size p so that the resulting upper
level vertex should be smaller than p. In step 5, with the
restricted scope and the size upper bound, the best neighbor
w is chosen that maximizes a clus_cost(v,w) defined as
Ycefelvee,weey 1/(le] — 1) which is adopted from [7]. Using
the restricted scope, only potentially good neighbors in H (v)
are searched to be merged with v. If the best neighbor w
is not yet contributed to form any upper level vertices, v is
merged with w and a new vertex v’ € V;41 is created (Step
8-9). If the best neighbor w has been already matched with
others and contributed to form an upper level vertex v’, v
is appended to v’ which w belongs to (Step 10-11). In case
that there is no such best neighbor for v, a new singleton
vertex v’ only with v is created (Step 6-7).

Like FC coarsening in [7], only-unmatched-neighbor con-
dition is relaxed, and even the matched neighbors are also
considered unless the size of the resulting upper cluster vi-
olates the maximum allowable size, . In our experiments,
1 has been set to b X Siotqr, where b is the balance ratio
parameter for a partitioning problem. If both matched and
unmatched vertices are considered as neighbors, the number
of vertices in successive coarse hypergraphs may decrease by
a large factor, potentially limiting the effect of multilevel re-
finement. Hence, usually the reduction rate is controlled by
a certain constant, e.g. 1.7 to ensure sufficiently many levels
in a clustering tree for refinement procedure to effectively
improve the quality. However, we have removed the reduc-
tion rate control to take full advantage of the guidance of
design hierarchy, and matching procedure is performed un-
til every lower level vertices is contributed to an upper level
cluster. As a result, the number of levels is usually signif-
icantly less than that of the conventional multilevel parti-
tioning. Nevertheless, our experimental results show that it

Algorithm dhml
Input: netlist hypergraph G = (V, £)

design hierarchy tree D
Output: bipartition Py = {Vi,V>2}
1. Perform Rent exponent computation on D
2. construct_cluster_tree(G, D)
3. for i =1 to max do
4. Generate a random initial bipartition R on Gy
5. (); = FMbipartition(Gy, R)
6
7
8

. P, = best bipartition among @Q;’s
. for i =k —1 down to 0 do
P, = FMbipartition(GiJrl, Pi+1)

Figure 6: The dhml multilevel partitioning.

does not degrade the quality since our clustering procedure
builds up a clustering tree with better connectivity quality
in spite of having fewer levels due to the correct guidance
from design hierarchy.

The clustering scope of v', H(v') must be updated for
next round clustering on V;y1. It is obvious that H(v') is
set to H(v) for a new vertex v’ created in step 7 and 9 since
H(w) C H(v). Due to the initial ordering by scope level in
step 1, H(v') C H(v) is also guaranteed, so we choose H (v)
for the new clustering scope of v’ (Step 12).

After the completion of one-level clustering, the existing
clustering scopes are examined and updated for next level
in step 13. As the global saturation condition is examined
in construct_cluster_tree, for each clustering scope, local
saturation condition is checked and the scope is removed to
enlarge the scope if necessary as shown in Figure 4. Let
¢k (X) be the set of vertices which belong to X at level k.
A clustering scope X is said to be saturated at level k and
removed if either |c;(X)| < a(X) or |ex(X)|/|ck—1(X)]
B(X) (in our experiments, a(X) = [S(X)/p] and B(X)
0.7). Consequently for every cluster v in ¢, (X), H(v) is
updated with the parent of X in the scope tree D', which is
larger but still is a good grouping in D. Whenever one level
clustering is done, we check and remove the local saturation
in this manner until global saturation condition holds.

4.2 Design Hierarchy Guided Multilevel Par-
titioning

Figure 6 describes dhml, our multilevel bipartitioning al-
gorithm using design hierarchy guided clustering. As a first
step, the algorithm computes Rent exponent for each hi-
erarchical element. Then, as shown in the previous section,
design hierarchy tree D is used to guide multilevel clustering.
After completion of clustering, we have a k-level clustering
tree. At the coarsest level k, FM bipartition is applied for
max times with random initial bipartition, and the best cut
quality partition is chosen to be propagated down to succes-
sive lower levels as the initial partition (In our experiments,
maz = 20). The initial partitioning phase (step 3-5) is very
fast since there are only a few vertices to be partitioned at
the coarsest level. In step 7 and 8, uncoarsening and FM
refinement is performed with the current best partition from
upper levels as the initial partition. The number of passes
to improve the current partition is only one or two in most
cases because the initial partition from the coarser levels has
already good quality.

v

We also can extend the algorithm dhml to multi-way parti-
tioning by applying this bipartitioning recursively. For each
bipartitioning, a partial design hierarchy tree is extracted
from the original entire design hierarchy tree D, in which
the leaf cells are the cells that belong to the current parti-
tion. This partial tree is used to guide the sub-partitioning
in the same way described previously.

5. EXPERIMENTAL RESULTS

We implemented our algorithm in C++/STL and evalu-
ated the performance on six large scale industrial circuits,
which are real circuits used in industries.! The characteris-
tics of design hierarchies and netlist hypergraphs for these
circuits are shown in Table 1, where the largest circuit ind6
has about 1.8 million cells, 2.8 million nets, and 11 levels of
hierarchy. The fourth column shows the height of each de-
sign hierarchy tree and the number of hierarchical elements.
We first describe the stability of our algorithm, and then the
cut quality is shown as the number of partitions varies.

Circuit || No. cells | No. nets | h/No. hier. nodes
ind1 15186 19152 6/302
ind2 136340 | 183340 9/10427
ind3 224908 | 187595 5/57590
ind4 414633 | 414013 13/94796
indb 1213105 | 1317889 13/33277
ind6 1841147 | 2788461 11/35449

Table 1: The characteristics of the circuits.

As pointed out in [1], a common weakness of partitioning
methods based on iterative improvement is that the solu-
tion quality is not stable. Conventional multilevel partition-
ers cannot be ruled out of this unstableness since they also
use move-based approaches which depend on the initial so-
lutions. However our algorithm which is guided by design
hierarchy shows more stable solution ranges while having
better minimum solution as shown in Figure 7. That im-
plies dhml will have more chances to achieve near-optimal
solutions in smaller number of runs. Also, the average solu-
tion is very close to the minimum solution, which is useful
in real CAD tools because hundreds of runs cannot be per-
formed in the practical CAD tools.

Table 2 summarizes the cut set size comparison of dhml
and hMetis.? For fair comparison, hMetis results are based
on FC coarsening and FM refinement options. As shown
in the table, dhml produces up to 16% improved results in
terms of the minimum cut set sizes in half runs of hMetis.
The CPU time per run is about the same as that of hMetis
even though we have some additional steps to use design
hierarchy information since clustering scope restriction and
level reduction help to reduce the runtime. In the case of
ind1, the minimum cut set size of 64 was obtained in every
run of dhml. Moreover, due to the design hierarchy guided

!Note that we cannot use the standard partitioning bench-
mark circuits from MCNC and ISPD-98 since the design
hierarchy information are not given. Moreover, the indus-
trial circuits we use are significantly larger than the standard
benchmark circuits.

*Note that 256-way partitioning is meaningful since sys-
tems with more than 200 FPGA’s are commercially available
these days.

Circuit 2-way 16-way 256-way

dhm1(5 runs) | hMetis(10 runs) | dhml(5 runs) | hMetis(10 runs) | dhml (5 runs) | hMetis(10 runs)
ind1 64 69 437 483 - -
ind2 133 134 1203 1294 14633 16137
ind3 292 305 1454 1551 7450 7508
ind4 202 208 3394 3498 12013 13999
indb 1376 1352 7410 7950 22474 24454
ind6 55 56 8275 8265 33472 35075

Table 2: Minimum cut set size comparison of dhml vs. hMetis with 5% balance ratio at each bipartitioning.

450
400
350 l
300 ;

250

150 Z
100 E

50 L

*

dhml ‘hMelis dhml ‘hMetis dhml ‘hMetis dhml ‘hMetis dhml ‘hMens

ind1 ind2 ind3 ind4 indé

Figure 7: The ranges of 2-way partitioning solu-
tions(cut set size).

clustering, all the minimum cuts have been achieved at the
coarsest level (i.e., no further improvement was needed in
refinement phase), where problem size has been reduced to
1/150. In most cases, the initial partitions at the coarsest
level show 20%-50% better qualities than hMetis, which jus-
tifies superior quality of the multilevel clustering tree guided
by design hierarchy. Also, the number of levels in dhml is
reduced to 55%—75% of that in hMetis while the number of
passes for FM refinement at each level is not increased.

6. CONCLUSIONS

A new multilevel partitioning framework that takes ad-
vantage of user design hierarchy has been presented. As a
guidance of design hierarchy, clustering scope restriction is
used to construct a multilevel clustering tree. The clustering
scopes are selectively determined by Rent exponent compu-
tation and updated dynamically while the clustering tree
being built up. Due to the benefit from the guidance by the
design hierarchy which has implications on connectivity be-
tween functional blocks, the proposed algorithm generates
better multilevel clustering tree while the number of levels
is aggressively reduced. Our experiments on large scale real
circuits show that dhml yields more stable and higher quality
partitioning solutions in smaller runs than hMetis does.

7. ACKNOWLEDGMENTS

We would like to thank Axis systems Inc. for their valuable

35

support. We also thank Chwen-Cher Chang, Youlin Liao,
Richard Sun, and Ren-Song Tsay for helpful discussions.

8. REFERENCES

[1] C. J. Alpert and A. B. Kahng. Recent directions in
netlist partitioning: a survey. Integration, the VLSI
Journal, pages 1-81, 1995.

C. Alpert, J. Huang, and A. B. Kahng. Multilevel
circuit partitioning. IEEE Trans. on Computer-Aided
Design, vol. 17, no. 8, pages 655—667, 1998.

D. Behrens, K. Harbich, and E. Barke. Hierarchical
partitioning. In Proc. IEEE Int’l Conf.
Computer-Aided Design, pages 470-477, 1996.

[4] W. Fang and A. C.-H. Wu. Multi-way FPGA
partitioning by fully exploiting design hierarchy. ACM
Trans. on Design Automation of Electronic Systems,
vol. 5, no. 1, pages 34-50, 2000.

C. M. Fiduccia and R. M. Mattheyses. A linear time
heuristic for improving network partitions. In Proc.
ACM/IEEE Design Automation Conference, pages
175-181, 1982.

L. Hagen, A. B. Kahng, F. J. Kurdahi, and

C. Ramachandran. On the intrinsic Rent parameter
and spectra-based partitioning methodologies. IEEE
Trans. on Computer-Aided Design, vol. 13, no. 1,
pages 27-37, 1994.

G. Karypis, R. Aggarwal, V. Kumar, and S. Sheckhar.
Multilevel hypergraph partitioning: Application in
VLSI domain. In Proc. ACM/IEEE Design
Automation Conference, pages 526-529, 1997.

G. Karypis and V. Kumar. Multilevel k-way
hypergraph partitioning. In Proc. ACM/IEEE Design
Automation Conference, pages 343-348, 1999.

B. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning of electrical circuits. Bell
System Technical Journal, vol. 49, no. 2, pages
291-307, 1970.

H. Krupnova, A. Abbara, and G. Saucier. A
hierarchy-driven FPGA partitioning method. In Proc.
ACM/IEEE Design Automation Conference, pages
522-525, 1997.

C. Liang and C. Ho. A new optimization driven
clustering algorithm for large circuits. In Proc.
European Design Automation Conf., pages 28-32,
1993.

T. K. Ng, J. Oldfield, and V. Pitchumani.
Improvements of a mincut partition algorithm. In
Proc. Int’l. Conf. on Computer-Aided Design, pages
470-473, 1987.

2]

3]

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

