
The A to Z of SoCs

Reinaldo A. Bergamaschi

IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

John Cohn

IBM Microelectronics, Burlington, VT, USA

Abstract| The exploding complexity of new chips and the
ever decreasing time-to-market window are forcing fundamen-
tal changes in the way systems are designed. The advent
of Systems-on-Chip (SoC) based on pre-designed intellectual-
property (IP) cores has become an absolute necessity for em-
bedded systems companies to remain competitive. Designing
an SoC, however, is extremely complex, as it encompasses a
range of diÆcult problems in hardware and software design.
This paper explains a wide range of SoC issues including mar-
ket drivers and trends, technology and integration aspects,
early architecture de�nition, methodology, hardware and soft-
ware design and veri�cation techniques.

I. Introduction

In the last 20 years embedded systems have become the

most widespread carriers of advanced hardware and software

technologies. In this period the technologies implementing

embedded systems evolved from microcontrollers and discrete

components to fully integrated systems-on-chip (SoC). SoCs

and related technologies are the engines of embedded systems

today and in the foreseeable future.

New and very demanding applications (in terms of process-

ing power) have appeared in the last 20 years, fueled by the

boom of the PC, the Internet, and the home, oÆce and wire-

less environments. These applications demanded processing

power (for ever expanding software) and levels of hardware

integration much greater than could be o�ered by integrat-

ing discrete components on a printed circuit board. Product

cycles continue to shrink as evidenced by the adoption rate

of consumer electronics items. While color TV took over 10

years to sell 1 million units, DVD players took just over 1 year

[1]. This puts strong requirements on productivity increases

and cost reduction.

CMOS technologies have evolved signi�cantly in the last

several years, allowing chip capacity to follow Moore's law

and produce chips with over 70 million gates and gate delays

of around 21ps [2]. Large gate counts and high operating

frequencies allied with new chip architectures led to consid-

erable increases in processing power. At the same time, new

design tools and methodologies were developed, which were

able to take advantage of complex process technologies and

deliver highly complex chips.

The concept of systems-on-chip is unique in leveraging the

new technologies and architectures in order to provide the

processing power and productivity increases needed by the

new applications.

Systems-on-chip started with the idea of integrating all

components in a board into a single chip. To increase the

productivity for future designs, the approach of reusable com-

ponents was adopted. However, in the early days of SoCs,

components were not really designed for reuse. The lack of

standard deliverables as well as multiple interface protocols

made it diÆcult for components to be taken from one de-

sign and reused in the next without modi�cations. Gradually

component design evolved to include more parameterization,

deliverables such as synthesis scripts and test vectors, and

standard interfaces. This evolution led to a new industry de-

voted solely to the development of intellectual property cores

(IPs), as the reusable building blocks of systems-on-chip [3].

IP components or cores are usually available in three forms:

hard, �rm and soft cores. Hard cores are provided as black

boxes, usually in layout form and with an encrypted simu-

lation model. Due to their high performance and/or design

complexity, these cores need to be provided as an optimized

layout in a given technology, with known performance. Ex-

amples of hard cores are microprocessors, phase-locked loops,

and mixed signal blocks. Firm cores are provided as a syn-

thesized netlist, that is, after logic synthesis and technology

mapping, but without layout information. These are cores

which users do not have to re-synthesize, but are given the

netlist in a hardware-description language (HDL), which can

be simulated and changed it if necessary. Soft cores are given

as register-transfer level HDLs, and the user is responsible for

its synthesis and layout. Usually along with the soft cores,

the IP providers also supply synthesis and layout scripts and

timing assertions.

The majority of embedded applications can be imple-

mented on architectures built using common architectural

0-7803-7607-2/02/$17.00 ©2002 IEEE

blocks and customized with application speci�c components.

Hence it was logical for SoC providers to develop these com-

mon architectural blocks formed by a CPU communicating

with peripherals and memory over one or more shared busses.

The common architectures typically include a CPU, memory

and peripherals communicating over a fast bus (for the CPU

and memory) and a slow bus (for the peripherals). This ini-

tial con�guration can be extended with an MPEG decoder

for video applications, or with an Ethernet controller for com-

munications applications. These common architectures and

the supporting technologies (IP libraries and tools) are called

platforms and platform-based designs [4], [5].

In practice, a platform consists of the following: list of cores

and their descriptions (in HDL for soft and �rm cores, and

GDSII for hard cores), the top-level RTL HDL specifying the

interconnections amongst the cores based on the chosen refer-

ence architecture, synthesis scripts for running logic synthesis

on the cores, timing assertions, device drivers for peripheral

components and software tests for testing the complete chip.

The factors above led to the current state-of-the-art in

SoCs as IP-based, Platform-based systems-on-chip. These

SoCs are systems that contain IP blocks such as embedded

CPUs, embedded memory, real world interfaces (e.g., PCI,

USB, Ethernet), mixed-signal blocks, and software compo-

nents, such as device drivers, real-time operating systems and

application code.

This paper presents an overview of the main issues and

steps in designing an SoC, from the technology challenges, to

initial concept and feasibility phases to physical design and

software issues.

II. Technology Aspects

IP-based, Platform-based SoCs have �rmly established

themselves as the engines of high-performance embedded sys-

tems. Although the SoC concept is about rising the level of

design abstraction, it is getting increasingly diÆcult to mask

the complexities of deep sub-micron technology scaling. This

section outlines the principle challenges of performance scal-

ing, power, signal integrity, technology integration and cost

associated with SoC design.

Performance scaling

One of the largest obstacles to increasing SoC performance

is the divergence of device and interconnect performance scal-

ing. Global interconnect delays are increasing relative to de-

vice performance due to increases in wire resistance and lat-

eral capacitance. Where once it was possible to assume that

all IP on a chip was within a single clock cycle, it may now

be necessary to accommodate interconnect delays at an ar-

chitectural level using asynchronous signaling or pipelining.

In a bus-based SoC this may require the splitting of a sin-

gle logical bus into multiple local regions or the addition of

pipelining into emerging bus speci�cations.

Power

Power dissipation has emerged as one of the fundamen-

tal limits to SoC complexity. Despite gradual lowering of

supply voltages, total chip active power is increasing due to

increased transistor density coupled with increased switching

speed. Smaller device geometries, thinner gate oxides and

lower device thresholds also contribute to increases in leak-

age or stand-by power. Moreover, these power increases drive

up system cost signi�cantly by complicating chip packaging,

system cooling and power supply or battery life.

Modern SoCs use a number of techniques to manage both

active and leakage power. Signi�cant power reductions can

be attained through clock gating and voltage islands. Parts

of the chip (islands) which must run fastest are powered by

higher voltages, while those that can run slower are powered

by lower voltages. In addition, voltage and frequency scal-

ing can be used to save power while adjusting for changing

performance requirements [6]. New methods and tools must

be developed to take advantage of these new power reduction

techniques.

Signal integrity

In addition to performance and power, SoC designers are

faced with a growing list of signal integrity or noise concerns.

The dominant noise concerns in a modern SoC are coupling

noise, power supply noise and substrate noise. Coupled noise

is signal injected through the mutual capacitance of adjacent

wires. Power noise is supply voltage variation caused by large

current transients passing through supply resistance and in-

ductance, and substrate noise is signal injected into the sub-

strate by switching transistors. Each of these noise sources

can cause unintended variation in system timing and/or func-

tion. The magnitude of each of these e�ects is increasing with

process scaling [7].

Signal integrity concerns a�ect both IP developers and SoC

chip integrators. IP developers must analyze and characterize

their IP to describe its noise tolerance. Suppliers of mixed sig-

nal and DRAM IP must take particular care to manage noise.

Often mixed signal IP is designed with separate power buss-

ing and decoupling to minimize power noise and substrate

di�usion guard rings to minimize injection of substrate noise

[8].

SoC integrators are responsible for analyzing the signal

integrity of the global routing and mitigating problems by

separating or shielding noise sensitive signals. Global analog

signals may require extra care in the form of di�erential rout-

ing and/or custom wire width tuning. In some cases it may

become necessary to protect against noise at an architectural

level by adding parity or other error mitigation techniques to

SoC bus protocols. Similar care must be taken to ensure suÆ-

cient power bus width and decoupling capacitance to provide

adequate power noise immunity at the chip and package level.

Technology integration

One of the main drivers of SoC has been the integration

of several chips onto a single silicon die. Integration can re-

duce design cost by lowering packaging cost, improving per-

formance and reducing physical size. However, technology

integration has its own set of great challenges.

Integrating process features from two or more separate

technologies often requires signi�cant trade-o�s in technology

capabilities. For example the substrate temperatures found

on fast logic chips is not optimum for DRAM process. As a re-

sult, embedded DRAM generally needs more frequent refresh

than stand-alone DRAM [9]. Similarly, process optimizations

and supply voltage limits for high performance logic are of-

ten at odds with those which would optimally be used for

high precision analog design [10]. Mixing IP can also raise

issues of electrical compatibility. Signal integrity becomes a

signi�cant concern when placing sensitive analog or DRAM

elements onto the same chip as fast logic.

Chip cost is also an issue when integrating mixed technolo-

gies. Because all elements share a common silicon substrate,

certain processing steps required for one piece of IP (e.g.,

silicon-germanium RF transistors or trench isolation steps for

embedded DRAM) must be applied to the entire chip. These

extra steps can dramatically increase the cost per areas of

logic on the chip making the SoC less cost competitive [11].

System-on-Package

One increasingly attractive alternative to system-on-chip

is system-on-package (SoP). Through advances in packaging

technology, the traditional electrical overhead of chip to chip

interconnection has been reduced. It is now possible to inte-

grate multiple dies together using interconnections that ap-

proach the density and delay characteristics of on chip in-

terconnections. Advances in silicon package [12] and chip

stack [13] technology have made it possible to vertically stack

multiple dies using specially modi�ed
ip chip or wire-bond

techniques.

These SoP techniques allow individual system components

to be in the best available technology. The cost savings as-

sociated with being able to separately yield theses smaller

chiplets can in some cases o�set the increase in complexity

of multi-chip packages [14]. This is particularly true if one of

more IP blocks may require multiple design passes to ensure

functionality, as is often the case in analog IP design.

Design cost

While cost has always been an issue in SoC design, process

complexity has reached a point where design cost may be a

bigger limiter than physics in SoC performance and function.

With mask costs increasing to more than a million dollars per

design pass [15], designers may soon �nd it diÆcult to justify

custom SoCs for all but the highest volume applications.

For this reason there is a growing need for the development

of reusable platform-based designs based on embedded FP-

GAs [16], gate arrays or programmable fabrics[17] which will

allow for low cost customization.

III. How to design an SoC

This section describes the various steps in digital SoC

design as currently practiced in industry. The IP-based,

platform-based SoC design business environment is typi-

cally divided into companies who own the applications and

the speci�cations (such as telecom companies) and silicon

providers who own the IP libraries, the platforms, and the

design services. In addition, more vertically organized com-

panies also exist which develop both the applications and the

silicon implementations.

Figure 1 illustrates the methodology
ow and major steps

in SOC design. It normally starts with an initial con-

tact between the party controlling the application and the

SoC/Silicon provider. Together they decide on the major

functions, constraints and requirements for the SoC. This

initial step is followed by early design de�nitions and estima-

tions, then detailed architecture design, mapping to platform,

chip-level (hardware) design and release to manufacturing.

The embedded software development starts even before a

simulatable model of the hardware is available and proceeds

Embedded Software
Development

Initial Contact

Arch. Definition / Die Size Estimation / Package Analysis

System
Specification

Core Library

Architecture Design

Map to Platform

Chip−level Design

Release to Manufacturing Chip

Fig. 1. SoC Design Methodology Flow

in parallel with the hardware development. Details of each

step are given in the following sections.

A. Early decisions: architecture de�nition, die size

estimation, packaging selection

In this stage the early decisions on the architecture are

made. This includes creating the block diagram of the chip

and making sure that the major hardware functions needed

in the application are supported in the platform. Die size,

package selection and power analysis are required in order to

estimate the �nal manufacturing cost.

Die size estimation is based on the overall cell count and

I/O requirements. Overall cell count is based on the esti-

mated total number of gates, corrected for wireability and

an empirically-derived correction factor [18]. A given pack-

age type can comport a range die sizes and can support a

given maximum number of IOs.

Early Power Analysis is also considered when choosing

packaging and estimating costs. At this early stage, power

is analyzed in the context of package type, substrate, num-

ber of power planes, switching frequency of o� chip drivers,

available chip power and ground pins [19].

These estimations use approximate algorithms, designer

experience and empirical data based on previous designs.

They are needed in order to reach a �nal agreement between

the client and the silicon provider on the schedule and cost

(and for the contract to be signed).

B. Architecture Design

Once the early decisions are made, the designer can then

design the architecture of the SoC in much greater detail.

This step involves the following actions.

The functionality and requirements may come in di�erent

forms: (1) a high-level description of the system, (2) A legacy

SoC with new requirements, or (3) a textual speci�cation. In

the case where the client and the silicon provider are di�erent

parties, it is unlikely that a full high-level description of the

system is provided. This happens because either such com-

plete description (including software and hardware functions)

does not exist, or because the software (application) part is

proprietary and the client may not let the silicon provider

have access to it. In this case, approximations of the work

load and instruction traces may be used.

One of the early decisions at this stage is the partition-

ing between hardware and software. In practice this is done

manually and to a large extent dictated a priory by the speci-

�cation. For example, if there are software applications which

were written for a previous system that need to run in the

new system as well, or if there are legacy requirements on

the hardware, that e�ectively dictates the hardware/software

partitioning.

Once a platform is chosen, the designer has to verify that

functionality, performance and customer requirements satis-

�ed by the platform. If there are required functions which

are not part of the platform, they need to be added either by

inserting new IP cores from the library or by creating user-

de�ned logic blocks. Alternatively, if the required IP core is

not available in the silicon provider's library, the client has

the option of licensing it from a third party IP vendor.

The designer starts with a platform speci�cation and a tar-

get architecture and explores the space of architecture modi�-

cations that are possible using the platform and the available

cores. For example, in the case of video applications, should

the design use a single high-speed bus for both the CPU and

the MPEG subsystem to communicate to memory, or should

it use two busses for higher throughput by allowing the CPU

and the MPEG decoder to access memories simultaneously.

This design space exploration involves detailed performance

analysis and simulation in order to be validated [20]. Dif-

ferent modeling approaches above the RT level can be used

here, namely, bus-functional models, instruction-set simula-

tors, memory models, co-simulation tools.

C. Mapping Architecture to Platform

Once the architecture is de�ned, it can then be mapped

onto the chosen platform. This will result in the top level

RTL HDL description for the SoC, plus descriptions for all

user-de�ned logic blocks. The IP descriptions are taken from

the library.

Although the mapping uses an existing platform as a ba-

RTL

Synthesis scripts
Assertions
Constraints

+

Platform RTL
(edited)

User Logic

Core Library

Soft)
(Hard, Firm,

Floorplanning

Clock Synthesis

Test Synthesis

Timing Analysis

Verification

Logic Synthesis
+

Physical Design
=

Physical Synthesis

Detailed Layout

��������
��������
��������

��������
��������
��������

Fig. 2. Chip design methodology
ow

sis, it is very common that the RTL for this platform needs

to be edited to conform with design speci�cations from the

architecture de�nition phase. This involves editing the RTL

description manually (text or schematic diagram) which can

be quite complex since it requires designers to understand

the functionality of tens to hundreds of pins in several cores

[21].

In this mapping process, the designer has to enforce all

architectural decisions in the netlist, including:

� Interrupt subsystem: de�ne priorities of all interrupt re-

questers and interconnect them correctly.

� DMA subsystem: choose DMA channel assignments and

channel sharing (multiple devices connected to one channel)

and interconnect them accordingly.

� Address maps: pass the peripheral devices address map

values as parameters to each core.

� Clock domains: de�ne all valid domains and clock genera-

tion scheme.

� Inputs and Outputs: de�ne all chip I/Os, I/O logic, test

control logic.

� Document the system: pass address maps, interrupt prior-

ities, DMA channels, I/Os, to software developers.

D. Chip-Level Design

The chip design methodology overview
ow is illustrated

in Figure 2. It starts with the complete RTL description,

formed by three parts, namely: the platform RTL properly

edited and parameterized, the user-de�ned logic HDL and the

HDL for the cores. Firm cores are read in but usually not

touched by logic synthesis unless there is a timing problem.

Soft-cores are fully synthesized. Hard cores are treated as

black boxes by all synthesis and veri�cation stages, being

�nally integrated during the detailed layout phase.

Soft and �rm cores come with speci�c synthesis scripts and

assertions. Synthesis is �rst run on each core separately and

then run on the whole design (this time not going inside the

cores), but just handling the glue logic in between cores.

Floorplanning is performed throughout the design process,

but most speci�cally in the beginning, and updated as nec-

essary, as the synthesis progresses. Timing Analysis is also

performed at various stages. Clock trees and scan chains also

need to be taken into account in the initial
oorplan.

Veri�cation includes both functional and equivalence

checking. Formal methods are used in both cases [22], [23].

Floorplanning

Floorplanning deserves special attention in SoC design be-

cause of the many placement requirements imposed by di-

verse IP blocks such as hard cores and tight timing con-

straints. At an early stage,
oorplanning derives rela-

tive/�xed positions for major design blocks and pass infor-

mation forward to the design team on major design con-

straints and critical wires, to help synthesis and physical de-

sign achieve wiring and timing closure.

It is an iterative process involving the following steps: get

physical data for all design cores (for soft cores, this has to

be an estimation), understand the system architecture with

respect to busses and clock domains, understand the chip im-

age and package limitations, plan and assign I/Os, place large

cores manually (complete automatically if supported), ac-

count for clock trees, test logic, power, analog blocks, switch-

ing noise and blockage constraints.

Some manual placement is needed to satisfy known con-

straints. For example, when cores (hard or soft) connect

directly to the I/Os, then it is often bene�cial to place them

right at the edge of the die, close to the corresponding I/O

pins. Similarly, when cores with tight timing constraints

connect directly to each other, they should also be placed

together. The designer will manually enforce these require-

ments, and then let an automated
oorplanning tool com-

plete the task [24].

Clock Distribution

Clock distribution in SoCs is particularly diÆcult because

of the large die size, high frequency and blockages due to

hard cores. For high frequency designs (>200MHz) it is im-

portant to minimize clock skew and clock distribution wire

length. In IBM's SoC methodology, it was found that the use

blockage blockage

blockage blockage

blockage blockage

balanced
2 stages,

strategy
routingSCB−2

SCB−2 SCB−2

SCB−2

SCB−2

SCB−3

SCB−1

SCB−1

(a) (b)

subnets

Fig. 3. (a) Structured Clock Bu�er Tree, (b) SCB distribution in the
presence of blockages

of Structured Clock Bu�er (SCB) trees resulted in lower skew

and wire lengths for a variety of chip designs and styles, when

compared to traditional balanced clock distribution networks

[25].

The SCB methodology uses a clock tree from the center of

the chip to its quadrants using large bu�ers and few levels of

bu�ering, as shown in Figure 3a. The routing is balanced to

produce the same delay down to the end bu�ers. From the

end bu�ers (reaching quadrants or regions on the chip), sub-

net trees are created to take the clock signal to the individual

registers. These trees are created using balance clock routing

which produce approximately equal capacitance. The auto-

mated clock tool [25] can layout the SCB trees automatically

given user input on the number of levels, maximum latency

and skew.

In case of SoCs with large hard cores creating block-

ages, the SCB approach has to work around the blockages

by changing the number of levels and position of the large

bu�ers. Figure 3b shows an example, where due to blockages

in the center and quadrants of the chip, the simple 1-to-2-to-

4 SCB tree was not possible, and the solution was to build a

tree with more stages and smaller bu�ers, such as a 1-to-6-

to-17 SCB tree.

Physical Synthesis

Once an initial
oorplan and clock trees are de�ned, one

can proceed with detailed logic synthesis and physical design.

Typically, the steps of synthesis and layout were performed

in sequence, followed by capacitance extraction from the lay-

out, back-annotation and re-synthesis. This loop can take a

long run time and several iterations to achieve timing closure.

The main problem is that traditional logic synthesis uses av-

erage wire-load estimations based on the fanout of each gate,

and is not aware of placement locations, resulting in poor

quality electrical optimizations. Conversely, physical design

algorithms usually optimize the placement for minimum to-

tal wire length, and is not aware of local timing and wiring

constraints.

Physical synthesis is the name given to the relatively new

area of combined logic synthesis and physical design [26]. The

approach consists of interleaving logic synthesis and place-

ment transformations, such that when synthesis considers

a part of a network, it has more precise knowledge about

the placement and individual wire lengths (estimated using

Steiner trees) and can thus optimize it more eÆciently.

In an SoC context the problem of synthesis and physical

design is akin that of a hierarchical design. Hard cores are

treated as black boxes with �xed pin capacitances and asser-

tions. Firm cores are pre-synthesized but may be subject to

partial changes during physical synthesis if placement deci-

sions require partial re-synthesis. Soft cores are fully synthe-

sized using physical synthesis plus pin capacitance limits and

assertions derived from the environment (during the early

oorplanning phase).

Once the individual cores are done, the top-level design is

then run through physical synthesis, using information span-

ning the hierarchy. For example, for computing the Steiner

tree of a net originating inside a core, it needs to be able to

look inside the hierarchy, obtain the placement of the source

gate and compute the Steiner tree based on the placement of

the sink gates of the net (which may lie at the top-level or

inside other components), and use that to compute the net

capacitance and timing.

E. Embedded Software Design

With the growing complexity of embedded applications,

software has become at least as complex to design and as

costly as the hardware. The domain of software in embedded

systems is illustrated in Figure 4. The user interfaces with an

embedded system through the applications software, which

calls functions available in the real-time operating system

(RTOS). The RTOS contains both high-level functions to be

used by the application code as well as low-level functions,

called device drivers, to communicate with the hardware.

Figure 4 also shows the path of a simple example of a

printf function when called from the application code. This

printf is decomposed by the compiler using functions provided

by the RTOS, such as printchar to print one character at a

time. This printchar calls a function putchar which is part of

the device driver for the serial interface peripheral core (e.g.,

Software

Applications

UART’s buffer

copy char over
the bus into

print
string

putchar routine from
UART device driver

Serialize char
to serial port
Generate interrupt

Hardware

printf

printchar

Kernel
RTOS

EBC
Core

HSMC
Core

UART
Core

IIC
Core

SRAM/ROM

SDRAM

Serial Port

IIC Port

EBC
Device Driver

HSMC
Device Driver

Device Driver

IIC
Device Driver

UART

Interrupt
Service Routines

Fig. 4. Embedded software domain

Universal Asynchronous Receiver Transmitter - UART). The

putchar routine writes the character into a speci�c register

inside the UART core. The UART hardware then is respon-

sible for serializing the character bits into a serial line.

The hardware parameters are passed to software via header

�les. The real hardware/software interface is a combination

of setting hardware parameters, communicating them to the

software developers and using low level software to control

the hardware (change parameters, get status, set registers).

In embedded system design this hardware/software interface

assumes the faces of: memory maps, initialization/reset/boot

code, device drivers, interrupt service routines, IO pin shar-

ing.

Software development starts as early as possible. Before

a hardware description is available, programmers can use

a C/C++ model of the hardware in order to start the ap-

plication development and test interactions with the RTOS.

Later on, as the hardware description becomes available, a

co-simulation environment can be used, where the hardware

is simulated in a hardware simulation environment, and the

software in the host system. This allows for testing the hard-

ware/software interfaces and device drivers.

Device Drivers

Device drivers represent the interface between the operat-

ing system (OS) and the I/O devices in an embedded sys-

tem. The purpose is to hide the hardware from the up-

per software layers, by providing a set of functions to con-

trol the operation of the peripheral devices and their inter-

actions with the OS. Such functions include: initialization

services (e.g., setup baud rates, timer periods); con�guration

services (e.g., set values into registers); I/O interface ser-

vices (e.g., send/receive characters, start/stop timers, con-

trol DMA transfers); interrupt service routines (to respond

to hardware initiated interrupts). The device driver code is

part of the OS and linked with the OS kernel [27], [28].

F. Co-Veri�cation Approaches

A di�erentiating aspect between SoCs and application-

speci�c integrated circuits (ASICs) is the need in the former

for co-veri�cation of hardware and software. Hardware and

software may start development approximately at the same

time, and may proceed reasonably independent for some time

until the point where hardware and software interactions need

to be tested.

On the hardware side, testing is done mostly at the RT

level. RTL simulation is cycle accurate and can test actual

device operation. In order to use the actual application soft-

ware to drive the RTL simulation, one needs to cross compile

it for the processor modeled as RTL, and load the instruc-

tions in the HDL memory model (which is part of the RTL

simulation). This allows some software testing but it is ex-

tremely slow. RTL simulation is appropriate for hardware

testing but far too slow for any serious software testing.

The other extreme is to test the system completely in soft-

ware. In this case, the interfaces to the hardware are modeled

as C functions, which are called by the application software,

compiled and run on the host system. This scheme is ap-

propriate for testing the application software independent of

the hardware. Only limited testing of the interactions with

hardware is possible.

In between these extremes lie the co-veri�cation ap-

proaches. They are simulation environments which allow the

designer to split the system into parts which should be simu-

lated as hardware in HDLs, and parts simulated as software

as code running in an instruction set simulator (ISS) or host

system. In the case of an ISS modeling the CPU, full details

on the processor internals are not modeled, but it may be

possible to account for pipelining stages, superscalar archi-

tectures and cache misses. In the case of software running

on a host system, no modeling of the real CPU details is

possible.

The co-veri�cation tools are responsible for the commu-

nication between the diverse simulation environments. The

co-simulation kernel handles the synchronization and data

transfers between the HW and SW environments, that is,

between HDL simulation and the CPU execution (ISS or

host system). The CPU execution environment provides a

trapping mechanism that allows C function calls to be made

when certain addresses are accessed by the executing soft-

ware. These trapping mechanisms direct memory-mapped

accesses from the HDL or the CPU to the program memory

or the HDL memory (or vice versa) depending on the ad-

dress maps. Both CPU and HDL issue memory accesses. In

advanced co-simulation environments, the user can control

which simulation gets access to which memory addresses.

Bus activity related to load/store is usually handled be-

tween the CPU and the program memory, which is very fast.

Bus activity related to non-CPU memory-mapped devices

and ports is passed to the HDL simulator. Total system

simulation throughput is gated by the frequency of call outs

to the HDL simulation [29].

IV. Conclusions

This paper presented an overview of the most important

issues involved with SoC design, including challenges associ-

ated with deep sub-micron technology scaling, and details on

the SoC design methodology and tools. One important aspect

of an SoC is that it is signi�cantly more complex to design

than a traditional ASIC. Although both SoCs and ASICs can

be very large, ASICs are simpler to design because its opti-

mization metrics are usually area and delay, whereas SoC

design involves a multi-domain optimization problem. For

example, even if the clock period target of the SoC is met,

it may not work properly because of wrong architectural de-

cisions, ineÆcient software or signal integrity problems due

to mixed signal IP. In SoC design the high-level design deci-

sions (e.g., architecture, software) are much more interdepen-

dent on the low level design decisions (logic synthesis, layout,

technology), than in ASIC design. This cross-domain opti-

mization problem makes the SoC design much more complex

which requires specialized tools and methodologies.

References

[1] R. Wawrzyniak, \Systems-on-a-chip: A brave new world." Semico
Research Corporation Report SC101-1-99, September 1999.

[2] \IBM ASIC CU-08 technology notes," 2002. Available for down-
lod from http://www-3.ibm.com/chips/techlib/techlib.nsf/ /prod-
ucts/ASIC Cu-08.

[3] A. Rincon, W. Lee, and M. Slatery, \The changing landscape of
system-on-a-chip design," IBM MicroNews, vol. 5, 3rd Quarter
1999.

[4] A. Sangiovanni-Vincentelli and G. Martin, \Platform-based de-
sign and software design methodology for embedded systems,"
IEEE Design & Test of Computers, vol. 18, pp. 23{33, Novem-
ber/December 2001.

[5] D. Senzig, \The IBM PowerPC 44GP system-on-chip," IBM Mi-
croNews, vol. 6, 4th Quarter 2000.

[6] K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B. Brock,
K. Ishii, T. Nguyen, and J. Burns, \A 0.9V to 1.95V dynamic
voltage-scalable and frequency-scalable 32b PowerPC processor,"
in Proceedings of the International Solid State Circuits Confer-
ence, IEEE, February 2002.

[7] K. L. Shepard and V. Narayanan, \Conquering noise in deep sub-

micron digital ICs," IEEE Design & Test of Computers, vol. 15,
pp. 51{62, January/March 1998.

[8] B. R. Stanisic, N. K. Verghese, R. A. Rutenbar, L. R. Carley, and
D. J. Allstot, \Addressing substrate coupling in mixed-mode ICs:
Simulation and power distribution synthesis," IEEE Journal of
Solid-State Circuits, vol. 29, pp. 226{237, March 1994.

[9] S. C. et. al., \Integration of trench DRAM into a high-performance
0.18mm logic technology with copper BEOL," in Technical Digest
of the International Electron Devices Meeting, 1998.

[10] M. H. et. al., \Design considerations for gigabit ethernet 1000Base-
T twisted-pair transceivers," in Proceedings of the IEEE Custom
Integrated Circuits Conference, IEEE, May 1998.

[11] \Toshiba shows 100-nm SoC that supports eDRAM," 2001. Silicon
Strategies, June 13.

[12] H. B. Pogge, \The next chip challenge: E�ective methods for viable
mixed technology SoCs," in Proceedings of the 39th ACM/IEEE
Design Automation Conference, pp. 84{87, ACM/IEEE, June
2002.

[13] J. Dufresne, S. Ouimet, and T. R. Homa, \Hybrid assembly tech-
nology for
ip-chip-on-chip (FCOC) using PBGA laminate assem-
bly," in Proceedings of Electronic Components and Technology
Conference (ECTC'00), 2000.

[14] \IBM researcher stumps for system on package designs," 1999. EE
Times, http://www.eetimes.com/semi/news/OEG19991208S0022,
Dec 8.

[15] \Chip industry tackles escalating mask costs," 2002. EE Times,
http://www.eetimes.com/semi/news/OEG20020617S0050, Jun 17.

[16] P. S. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Creman, and
B. Troxel, \A hybrid asic and fpga architecture," in Proceedings of
the IEEE International Conference on Computer-Aided Design,
IEEE, November 2002.

[17] \Gigascale silicon research center publications." Available for
download from http://www.gigascale.org/pubs/.

[18] \Die size estimation," 2000. IBM Microelectronics Application
Note. Restricted access through http://www.edge.ibm.com.

[19] \Power estimation in ASICs," 2001. IBM Microelectronics Appli-
cation Note. Restricted access through http://www.edge.ibm.com.

[20] J. Darringer, R. Bergamaschi, S. Bhattacharya, D. Brand, A. Herk-
ersdorf, J. Morrell, I. Nair, P. Sagmeister, and Y. Shin, \Early anal-
ysis tools for systems-on-a-chip designs," IBM Journal of Research
and Development, vol. 46, November/December 2002. To appear.

[21] R. A. Bergamaschi and W. R. Lee, \Designing systems-on-chip us-
ing cores," in Proceedings of the 37th ACM/IEEE Design Automa-
tion Conference, (Los Angeles), pp. 420{425, ACM/IEEE, June
2000.

[22] A. Kuehlmann and F. Krohm, \Equivalence checking using cuts
and heaps," in Proceedings of the 34th ACM/IEEE Design Au-
tomation Conference, pp. 263{268, ACM/IEEE, June 1997.

[23] I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Hey-
man, A. Landver, P. Paanah, Y. Rodeh, G. Ronin, and Y. Wolf-
sthal, \Rulebase: Model checking at IBM," in Proceedings of
the International Conference on Computer-Aided Veri�cation,
pp. 480{483, 1997.

[24] J. Y. Sayah, R. Gupta, D. D. Sherlekar, P. S. Honsinger, J. M.
Apte, S. W. Bollinger, H. H. Chen, S. DasGupta, E. P. Hsieh,
A. D. Huber, E. J. Hughes, Z. M. Kurzum, V. B. Rao, T. Tabtieng,
V. Valijan, and D. Y. Yang, \Design planning for high-performance
asics," IBM Journal of Research and Development, vol. 40, July
1996.

[25] K. M. Carrig, N. T. Gargiulo, R. P. Gregor, D. R. Menard, and
H. E. Reindel, \A new direction in ASIC high-performance clock
methodology," in Proceedings of the IEEE Custom Integrated Cir-
cuits Conference, pp. 593{596, IEEE, May 1998.

[26] S. Hojat and P. Villarrubia, \Integrated placement and synthe-
sis approach for timing closure of PowerPC microprocessors," in
Proceedings of the IEEE International Conference on Computer
Design, IEEE, October 1997.

[27] G. Pajari, Writing UNIX Device Drivers. USA: Addison-Wesley,
1991.

[28] S. Gal-Oz and A. Cohen, \The hazards of device driver design,"
Embedded Systems Programming, pp. 34{46, May 1997.

[29] B. Morasse, \E�ective use of various levels of system abstractions
within a hardware/software co-veri�cation environment," in Pro-
ceedings of the Embedded Systems Conference, CMP Media Inc.,
Fall 1999. Class 545, available online at www.esconline.com.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

