
Novel Design and Verification of a 16 x 16-b Self-
Repairable Reconfigurable Inner Product Processor

Rong Lin Martin Margala
Department of Computer Science Electrical and Computer Engineering

 SUNY–Geneseo University of Rochester

Geneseo, NY 14454 Rochester, NY 14627

lin@cs.geneseo.edu margala@ece.rochester.edu

ABSTRACT
A novel self-repairable and reconfigurable inner-product
processor with low-power, fast CMOS circuits and DFT
techniques is presented. It takes the advantage of recently
proposed decomposition based arithmetic circuit design
approach for simple implementation of the reconfigurations,
component replacements, and high-quality tests.
The processor can be dynamically reconfigured for two types
operations: 4 x 8 x 8-b inner product computation and 16 x 16-b
multiplication. The self-repair is provided by choosing a fault-
free one from 17 possible architectures during the test, which
covers more than 52% transistors for the specified faults. Only
one extra bit is needed for all reconfigurations, repairs, and tests.
The proposed  exhaustive DFT technique greatly reduces the test
vector length,  from 17*232  to 1.5*213,  which  is as short as that
required by  the pseudo-exhaustive DFT method recently
reported in literature.

Keywords
Reconfigurable, Decomposition Algorithms, Self-Repair, VLSI,
Arithmetic Circuits, Image Processing, Fault Tolerance

1.  INTRODUCTION
Fast, low-power, low-cost, high-yield processors for
multiplication and inner-product computation have become
increasingly important to the rapidly growing computing
industry, particularly for SoC designs [1, 2, 11-14] . The main
hurdles preventing an efficient design of such processors include
irregularity of the architectures, large VLSI area, high
complexity of testing, and difficulty of fault recovering.
In this paper we present the design and tests of a highly regular,
16 x 16-b repairable and reconfigurable inner product
processor/multiplier architecture and design using low-power,
fast CMOS circuits and new DFT techniques.
The work utilizes a recently proposed recursive partial product
matrix decomposition method [3-8] for simple implementation
of the reconfigurations, component replacements, and high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’02, April 18-19, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-462-2/02/0004…$5.00.

quality tests. The processor can be dynamically reconfigured for
two types operations: 4 x 8 x 8-b inner product computation and
16 x 16-b multiplication. The self-repair is done by static
reconfiguration of up to 17 architectures during the test, which
covers a large percentage of  transistors for the specified faults.
The repairing and testing take the advantage of the “clean”
partitioning of the circuit, which leads to high controllability and
observability (refer to Section 6). The proposed exhaustive DFT
technique greatly reduces the test vector length, from 17*232  to
1.5*213, which is as short as that required by the pseudo-
exhaustive DFT method recently reported in [10].
The proposed processor basically works as follows (refer to Fig.
6): First, as a 16x16 multiplier, the reconfiguration switches are
set to state 0 (by M/I-sele bit), and all latches are set to open.
Two 16-b numbers are received from X(0-15) and Y(0-15) (or
X1, X2, Y1 and Y2). The 24 input bits X2, X3, Y2(0-3) and
Y3(0-3), which will be used for inner product inputs, are now
used for setting the repair controls. The operation consists of: (1)
distributing the input bits to 17 locations including an extra one
using a two-level full 4-branch tree structured network; then at
each location generating a 4x4-b partial product matrix; (2)
reducing each of the 4x4 partial product matrix into a single
number to result in16 8-bit products, P1,.., P16 and an extra one,
P0, in parallel; (3) distributing the extra product P0 to the 16
locations, and muxing each Pi (i≠0) and P0 to produce an actual
4x4 product, thus with one or zero of the 16 4x4 multipliers
being repaired by the extra one; (4) adding the outputs of every
four 4x4 multipliers into a 16-b number, the product of an 8 x 8-
b multiplier, using a carry-look-ahead adder (called a mid final
adder); (5) adding three 16-b numbers plus a 16-b zero, using
another carry-look-ahead adder to generate a 32-b number, S0 to
S31, which is the final product of the 16 x 16 multiplier.
Second, as an inner product processor, all reconfiguration
switches are set to state 1, all 64 input bits from X0-X3 and Y0-
Y3 are now used to receive and distribute data from two input
arrays, and all 24 latches are set to close, keeping the repair-code
values, which were set up during multiplication mode,
unchanged. The operation consists of: (1) to (4) which are the
same as for the multiplication above, except that data are routed
along slightly different paths; (5) adding four 16-b numbers
using the same adders I and II, and taking 18 bits, S8 to S25, as
the output of the inner product.
Conventionally, to replace a fault component of a circuit, one
would have to take its input bits, generate the output bits using
an extra component, then send the output back to replace the
output of the fault component. Our regularly decomposed
architecture allows us to generate the inputs for the extra unit



directly from original inputs. This significantly reduces the
number of connection lines and VLSI area needed for the 16-
option component repairing. Also the regular decomposition
structure enables us to have a maximized component sharing,
including for the most of routing wires and the 24 inner product
array input lines (sharing for the repair control setups). This
minimizes the total VLSI area significantly. As shown in Table
1, The addition of inner product computation adds only 4% of
the total transistors, while the addition of both the repairing and
reconfiguration adds only 23% of the total transistors. The total
delay increase, about 20%, is also not significant in practice.
It is sufficient to detect the fault 4x4 multiplier (if exists) with
the reconfiguration switch being set to multiplication state only.
The repair procedure generates a 24-bit repair-code that will be
attached to each individual processor as a fixed constant. The
constant is the part of the inputs, when the processor is used as a
16 x 16-b multiplier, i.e. bits X2, X3, Y2(0-3) and Y3(0-3),
which are spare lines at multiplication mode (ref. to Fig 6).
Another advantage of the approach is that the exhaustive DFT
method can be applied effectively to screen out a fault-free one
over 17 possible different architectures. It greatly reduces the test

vector length from 17*2
32

  to 1.5*2
13

, which is as short as that
required by the pseudo-exhaustive DFT method reported in
literature [10].
Our SPICE circuit simulations, using a 0.25-micron process with
a 2.5-V supply, have demonstrated that the proposed processor
has a worst-case total delay of 4.85 ns, which is equivalent to 6.8
times a (4, 2) counter delay with the same simulation, and has a
relative smaller power dissipation, compared with the designs
traditionally used for such circuits.

2. THE PARTIAL PRODUCT MATRIX
DECOMPOSITION-BASED MULTIPLIER
ARCHITECTURE
To be self-contained, we present briefly the main approach and
the overall design in this and the following four sections. Figure
1 illustrates how an 8 x 8-b multiplier is constructed with four 4
x 4-b multipliers and two special adders using the decomposition
based approach. Two 8-b input numbers are first partitioned and
distributed to four 4 x 4-b multipliers (Figure 1a), where the 4 x
4 partial product matrices are generated and the four 8-b
products are produced. The weighted bits of the four products
are then added by two adders. Adder-I adds three 8-bit numbers
to result in the final sum bits 4 to 11, while Adder-II adds the 4
MSB bits of the product of multiplier D and the two carry-in bits
from Adder-I to result in the final sum bits 12 to 15. Since no
addition is needed for the output bits 1 to 3, all 16 bits of the
product have been correctly produced. The block diagram of the
8 x 8 multiplier schematic is shown in Figure 2.

3 .  THE 16x16-b  MULTIPLIER
ARCHITECTURE
The above circuit construction method can be applied recursively
to result in larger multipliers [3-8]. In this section we present,
without involving component repair, the overall 16 x 16
multiplier architecture, which requires two levels of recursive
decomposition of the partial product matrices.
As shown in Figure 3, the 16 x 16-b multiplier is composed of
the followings: (1) The full 4-branch tree-structured input net. It
distributes two 16-bit inputs X and Y to the 16 4 x 4 multipliers

in 2-levels (level-one is shown in Figure 2). (2) The 16 identical
4 x 4-b multipliers. Each is constructed by  a 4 x 4-b partial
product matrix generator and a few closely connected “tiny”
pass-transistor parallel counters, featuring low-power, fast, and
minimized VLSI area as described in Section 5. (3) The 4
identical 8 x 8 multipliers. Each consists of four 4 x 4 multipliers
and an Adder-I plus an Adder-II. (4) The final adder. It consists
of a carry-look-ahead Adder-I which adds three 16 bit numbers
and an Adder-II which adds two carry bits from Adder-I and the
8 MSBs of the product of 8x8-b multiplier D.

(a)

(b)
Figure 1. The 8 x 8-b decomposition based multiplier. (a) The
input partitioning and distribution; (b) 8 x 8-b multiplier
constructed by four 4 x 4-b multipliers and two special
adders.

Figure 2.  The 8x8-b decomposition-based multiplier.



Figure 3. The 16 x 16-b multiplier.

4. THE SELF-REPAIRABLE MULTIPLIER
ARCHITECTURE
Figure 4 illustrates the self-repairable multiplier architecture
modified from Figure 3. Four repair-select bits (Xa, Xb, Ya, Yb)
plus one repair-enable bit are used to generate repair controls for
all 4x4 multipliers including the extra one as shown in the top of
the Figure 4. The repair-input muxing-unit takes the original
inputs (i.e. two 16 bit numbers) and produces the two desired
input segments for the extra multiplier. The product P0 of the
extra multiplier is then distributed to all 4x4 multipliers. Then
the 4x4 multiplier to be repaired, which is specified by the given
4 bits, Xa, Xb, Ya, Yb plus E, abandons its own output and
replaces it by the one from the extra multiplier. It should be
noticed that the power supply of the disabled unit (one of the 17
4x4 multiplier) will be turned off through a power enable control
to reduce power dissipation.
The self-repairability possessed by the multiplier allows us to
recover the specified faults over 4686 transistors, 54% of all
8704 transistors. The approach can be extended to recover
almost all the transistors in the circuit for more faults, however,
the trade-off between the yield gain and the extra cost needs to
be carefully considered in practice.

Figure 4. The self-repairable 16x16 multiplier.

5. THE RECONFIGURABLE INNER
P R O D U C T  P R O C E S S O R  ( I P P )
ARCHITECTURE

Next, we consider performing two types of computations using a
single (modified) network of four 4 x 4 multipliers modified
from Figure 1. First, it should be able to multiply two 8-bit
numbers, XY, in a way similar to that described in Section 3, and
then able to compute the inner product of two arrays of four 4-bit
items.
The modification is simple and is conceptually shown in Figure
5. The 4 MSBs (most significant bits) of the product of
multiplier A and the 4 LSBs of multiplier D in Figure 2 are
moved to the new positions, i.e. the top and the left of multiplier
B. The connections from multipliers to the adders are shown by
four lines for each column, and the simple reconfiguration
switches, marked as switch sets 1, 2 and 3, are added in three
indicated areas. Each switch has two states 0 and 1, defined as
follows. When in state 1, switches in set 1 and 2 are connected to
ground, diagonal switches in set 3 are on, while horizontal and
vertical switches in set 3 are off. The architecture is clearly for

Figure 5. The Conceptual illustration of reconfigurable
processor: (a) The modification of Figure 1 with the MSBs of
A and LSBs of D re-positioned and three sets of
reconfiguration switches added; (b) switch state 1: for the
product of two 8-bit numbers; (c) state 0: for inner product
of two arrays, each with four 4-bit numbers.



multiplication. When in state 0, switches in sets 1 and 2 are
connected to the small multiplier outputs i.e. small circles, the
diagonal switches in set 3 are off while horizontal and vertical
switches are on. It is now for inner product computation.

6 .  T H E  S E L F - R E P A I R A B L E
RECONFIGURABLE PROCESSOR
ARCHITECTURE
Figure 6 illustrates the self-repairable and reconfigurable
multiplier-inner-product processor architecture modified from
Figure 4. We first describe the part of the new architecture
supporting self-repair, then the other part supporting the
reconfiguration of two operations.
Five repair-control/select bits (E, Xa, Xb, Ya, Yb) and three
enable units are now removed. The eight bits, which were
generated by these units, used to select a pair of 4-bit input
segments from X(0-15) and Y(0-15) sending to the extra 4x4
multiplier, are now provided directly from the spare input lines
Y2(0-3) and Y3(0-3) to two arrays of latches during
multiplication mode. The bits for selecting the fault 4x4
multiplier, i.e. for receiving the product generated by the extra
4x4 multiplier, are initially set by the spare input lines X2(0-7)
and X3(0-7), and sampled by the other two arrays of latches
when operation mode is turned to inner-product. All 16 bits are
set zero, except that the one (if exists, determined during the
tests, see Section 8) for repairing is set to 1. If no repair is
needed, the 24-bit repair-code consisting of X2, X3, Y2(0-3),
and Y3(0-3) is set to 0. The level-sensitive latches are open
(closed) when M/I-sele is set to 1(0), i.e. for multiplication (inner
product). The input lines for sending X (or X0, X1) and Y (or
Y0, Y1) to the repair-input muxing now are shared by X2 Y2,
X3 and Y3, through the use of reconfiguration switches (mul
switches), controlled by the M/I-sele bit.

Figure 6. The self-repairable reconfigurable 16x16
multiplier/inner-product processor.

The mul switches are also used to control the sharing of routing
lines, which either copy X and Y or send x2, x3, y2 y3 to the 8 x
8 multipliers B and C according to one of the desired operations.
Furthermore, the routing lines sending the outputs of the four 8 x
8 multipliers to the adders I and II are now shared for two
operations, as shown in Figures 5b and 5c, through the use of
four reconfiguration switches (add and add1 switches). All the

reconfiguration switches and latches are simple and directly
controlled by a single extra input bit, i.e. M/I-sele. The
performance of the processor shows negligible degrading
compared with either a pure multiplier or a pure inner product
processor. Also the power supply control for the extra 4x4
multiplier can be provided by Y2(0-3), which contains a repair-
generate bi, i.e. disable if it is 0, enable if non-zero. For each of
other 16 4x4 multipliers, it is provided by its own repair control
bit (Section 9), i.e. disable if the bit is1, enable if 0.
The self-repairability and reconfiguration possessed by the
processor allow us to recover the specified faults over 4686
transistors, 52% of all 9052 transistors for two operations. The
approach can be extended to recover almost all the transistors in
the circuit for more faults, however, the trade-off between the
yield gain and the extra cost (see Section 9) needs to be further
studied.

7. THE COMPONENT CIRCUITS
Though any existing 4x4 multiplier and parallel counters may be
used to implement the cost efficient processor, in this design we
adopt only three small complementary pass-transistor parallel
counters, (2, 2), (3, 2) and (4, 2), recently proposed in [4, 8]. As
shown in Figure 7. The parallel counters are “tiny” and robust
with transistor counts of 11, 20 and 38 respectively. Since the
components to be repaired, such as the 4x4 multiplier and the 4-
bit group adder used in Adder-I and II, are all relatively small
enough (significantly smaller than a traditional Wallace-adder-
tree [12] for the implementation), almost all counter connections
within each component can be made without a buffer. This
significantly reduces the VLSI area and power dissipation, while
increases circuit speed. Our preliminary layout of the
components has verified the superiority of the design. The cost
for the addition of the self-repairability is shown in Table 1.

Figure 7.  The 4 x 4 multiplier with tiny parallel pass-
transistor counters (2, 2), (3, 2) and (4, 2).

Table 1. Comparisons of the proposed non-repairable and
self-repairable multipliers.



8. THE EXHAUSTIVE DFT TECHNIQUE
In addition to the superiority in construction of self-repairing and
reconfiguring circuits, the decomposition-based design approach
has another important advantage over the traditional designs
(with a single large-partial product matrix): significantly higher
controllability and observabitlity for tests. An exhaustive test
procedure can be practically developed to reduce the test cost
and improve the quality of products.
We show the DFT technique which is used to screen out a fault-
free one over 17 possible different architectures when the
processor is set to multiplication mode. The length of an

exhaustive test vector is shorter than 1.5*2
13

.
The test procedure is obtained based on the following
observations: (1) The processor can be partitioned into the
following 22 components (referred to a clean partition): 16
identical 4x4 multipliers, one extra 4x4 multiplier with the
repair-control units, four mid-final adders each for an 8x8
multiplier, and one final adder. (2) If there is a fault in any of the
five adders or there exist more than one fault 4x4 multipliers, the
circuit should be rejected for un-repairable. (3) To exhaustively
test a specified 4x4 multiplier the corresponding inputs of X(0 ..
15) and Y(0 .. 15) can be generated as follows: generate all
combinations of X(4i .. 4i+3), Y(4j .. 4j+3) pairs for the given
0≤i, j≤3, then for each pair of them add 0s into all remaining bit
positions to result in a pair of the test inputs; (note that this will
guarantee that all 4x4 multipliers, except the specified, always
generate a product of 0 (if one does not, the fault will be detected
by our procedure below). (4) A 4x4 multiplier test output
received from the final adder is always the sum of the actual
output of the multiplier and four 4-bit 0s, two added to the sum
in a mid-final adder and another two added to the sum in the
final adder (plus a number 0 provided by add1 switches). (5) If
for all input combinations the test results of a 4x4 multiplier are
correct, we say the 4x4 multiplier is fault free (the proof is
omitted). (6) If all 16 4x4 multipliers (including the case of one
being repaired) are all fault-free then any inputs (three numbers)
to any mid-final adder are all fault-free, thus mid-final adder can
be tested exhaustively column by column. Note that each column
may have up to three carry-bits, and only the sums of the carries
can be tested correctly, however, that is good enough for the
functionality test. All needed is that for each column we provide
pre-generated all possible inputs to it and compare each test
result with the pre-generated correct result. (7) If all mid-final
adders are fault-free then the final adder can be tested in the
same way.
The repairing procedure (finding a 4x4 multiplier to be replaced
by the extra one)
Assume that the 16 4x4 multipliers are denoted by M1, M2, ..,
M16, and the extra one by M0. We set a temporary repair-code
for Mn as: set the repair-control bit, X2(n)=1, if n <8, or X3(n-
8)=1 if n>8; also set two repair-generate bits, Y2(n DIV 4)=1;
Y3(n MOD)=1, and finally set all other 21 bits in X2X3Y2(0-
3)Y3(0-3) to 0.
Step 1.  Set fault-list empty and n=1.
Step 2.  Exhaustively test 4x4 multiplier Mn as described in (3)
above. If a fault is found, add number Mn to the fault-list and
then replace Mn by M0 (note that no re-test for the new Mn at
this time).
Step 3. Let n++. If n < 17 go to Step 2, if n =17 then
exhaustively re-test all multipliers in the fault-list, if a fault is

found, reject the circuit as un-repairable immediately, otherwise
declare the current architecture being fault-free.
Step 4. If it is fault-free, set the 24-bit repair-code as follows: if
fault-list is empty set all 24 bits 0, otherwise assume that Mj is
the one finally replaced by M0, set the Mj’s temporary repair-
code as the final re-pair-code.
The proof of the correctness of the procedure is straightforward:
once the only fault multiplier has been replaced by the good one
then all 4x4s will be tested as fault-free, i.e. all Mi in the fault-
list, except the last one, are not a candidate for repairing. Since
the two operations use the same set of hardware, with the
multiplication involving a larger final adder, the test for
multiplication will be sufficient if we also include a few tests for
the reconfiguration state changes. Now we have
The complete-test procedure
Step 1. Call the above repairing procedure. If reject, exit (claim
the circuit un-repairable).
Step 2. Column by column test all mid-final adders  as described
in (6) above. If there is a fault, exit.
Step 3. Column by column test the final adder column by column
as described in (7) above , if there is a fault exit, otherwise
accept the circuit as fault free and return the 24-bit final repair-
code.
The total length of the complete-test vector is shorter than
1.5*213. For all 4x4 tests the vector length is 2*16*256=213, and
for all mid-final and final adders tests, the length is 3*25 *
(13+20+9) < 212 (note that each column has a maximum of 26
possible inputs).
The test vector length is as short as that required by the pseudo-
exhaustive DFT method recently reported in [10], which requires
a vector length 256+x (including a few dozens of random tests)
for an 8x8 multiplier, and a total test length about 4*(256+x)*4 +
211 =1.7* 212(for x=44) for the 16x16 repairable multiplier.

9. CONCLUDING REMARKS
A highly regular self-repairable and reconfigurable 16 x 16-b
parallel multiplier/inner product processor along with a low-
power fast CMOS circuit implementation and an exhaustive DFT
method has been presented. The circuit can be efficiently
reconfigured into 17 different architectures, recovering the
specified faults over 52% of transistors. Both the repairing and
testing take the advantage of the “clean” partitioning of the
circuit, which results in high controllability and observability,
inherent in the decomposition approach.
 The processor can be directly extended for operations in two’s
complement form, refer to [3,15], with a negligible amount of
VLSI area increase. We have also extended the repairing
coverage to allow one fault mid-final adder and one fault 4-bit
group adder in the final adder to be recovered, which provides
17*5*5=425 different architectures for repairing. This would
recover the specified faults for almost all transistors in the
circuit. However, the additional VLSI area (transistors and,
particularly, lines), the delay (5 ns) and test vector length
(1.5*217) needed are non-proportionally larger than the one
proposed in this paper, mainly due to that all component inputs
must be collected, instead of generated. The trade-off between
the yield gain and the extra costs paid are currently under study.

Acknowledgment



The work was supported, in part, by National Science
Foundation grant CCR-0073469 and by New York State Office
of Science, Academic & Research (MDC) grant NYSTAR
C000063.

 REFERENCES
[1] Y. Hagihara, S. Inui, A. Yoshikawa, S. Nakazato, S. Iriki, R.

Ikeda, Y. Shibue, T. Inaba, M. Yamashina, A 2.7ns 0.25um
CMOS 54 x 54b multiplier, in ISSCC Dig. Tech. papers, vol.
41, Feb. 1998, pp. 296-297.

[2] G. Goto, A. Inoue, R. Ohe, S. Kashwakura, S. Mitarai, T.
Tsuru, and T. Izawa, A 4.1-ns compact 5454-b  multiplier
utilizing sign-select Booth encoders, IEEE JSSC,Vol. 32; No
11, pp. 1676-1682, Nov,1997.

[3] R. Lin,  Reconfigurable Parallel Inner Product Processor
Architectures, IEEE Transactions on Very Large Scale
Integration Systems(TVLSI), Vol. 9, No 2. pp. 261-272,
April 2001.

[4] R. Lin, A Regularly Structured Parallel Multiplier With Non-
Binary-Logic Counter Circuits, in intl. J. of VLSI Design, ol.
12, No 3,  pp. 377-390, March, 2001.

[5] R. Lin,  A Run-Time Reconfigurable Array of Multipliers
Architecture, in Proc. of 8th Reconfigurable Architectures
Workshop (RAW 2001), San Francisco, April , 2001.

[6] R. Lin, Trading Bitwidth For Array Size: A Unified
Reconfigurable Arithmetic Processor Design, in Proc. of
IEEE 2001 Intl. Symp. on Quality of  Electronic Design, San
Jose, California, pp. 325-330, March 2001.

 [7] R. Lin, Parallel VLSI Shift Switch Logic Devices (US Patent
96125379).1999; Reconfigurable inner product processor

architecture (US Patent pending, No. 09/512,380), 2000 and
A Family of High Performance Multipliers and Matrix
Multipliers (US Patent pending, No. R-1265-125),
December, 2000.

[8] M. Margala, "Low-Voltage Adders for Power-Efficient
Arithmetic Circuits", Microelectronics Journal, vol.30,
no.12, pp.1241-1247, December 1999.

[9] M. Margala, X. Chen, J. Xu, and H.Wang, Design
verification and DFT for an embedded reconfigurable low-
power multiplier in system-on-chip applications, in
proceeding of 14th Annual IEEE International ASIC/SOC
Conf., Washington, D.C. September, 2001.

[10] N. Kazakova, R. Sung, N. G. Durdle, M. Margala, and J.
Lamoureux, "Fast and Low-Power Inner Product Processor",
in Proc. of the IEEE Intl. Symp. on Circuits and Systems,
Sydney, Australia, Vol. 4, pp. 646-649, May 2001.

[11] C. S. Wallace, A suggestion for a fast multiplier, IEEE
Trans. Electronic Computers, Vol. Ec-13, 1964.

[12] K. Yano, T.Yamanaka, T. Nishida, M. Saito,K.
Shimohigashi, and A. Shimizu, A 3.8-ns CMOS 16 x 16
multiplier using complementary pass-transistor logic, IEEE
J. of SSC,Vol. 25; No 2, April 1990.

[13] L. Breveglieri and L. Dadda, A VLSI inner product
macrocell, IEEE Transactions on VLSI Systems, vol. 6, No.
2. June, 1998.

[14] C. R. Baugh and B. A. Wooley, A Two’s complement
parallel array multiplication algorithm, IEEE Tran.  on
Computers, Vol. C-22, pp. 1045-1047, 1973.


	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index




