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ABSTRACT
As an efficient representation of Extended Finite State Machines,
Multiway Decision Graphs (MDG) are suitable for automatic
hardware verification of Register Transfer Level (RTL) designs.
However, in some cases, MDG-based verification suffers from the
state explosion problem. Some of cases are caused by the standard
order used by MDG to order cross-terms that have the same top-
level function symbol. These terms usually label decision nodes
and must be ordered. We call this kind of state explosion the
standard term ordering problem. A solution based on function
renaming and cross-term rewriting is proposed in this paper.
Experimental results show that this solution can solve the problem
completely and thus increase the range of circuits that can be
verified by MDG.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids –
verification.

General Terms
Verification.

Keywords
Multiway Decision Graphs, Standard term ordering, Variable
Ordering, First-order terms, Function symbols, Function
renaming, Term rewriting.

1. INTRODUCTION
Several approaches to formal verification have been proposed
over the years. One of the most important approaches that are
beginning to be used in industry is model checking. Model
checking works on a finite state model of the system to be
verified, and the logical specification of the desired behavior of
the system model [4]. Finite state models of concurrent systems
sometimes grow exponentially as the number of components of
the system increases. This is known as thestate explosion
problem in automatic verification. The main challenge in model

checking is to deal with this problem.

The most promising approach to the state explosion problem has
been the application of ROBDD (Reduced Ordered Binary
Decision Diagrams) to the representation of state graphs [1].
ROBDDs can encode sets of states as well as transition and output
relations, and perform an implicit enumeration of the state space
thus making it possible to verify finite state machines with a large
number of states. However, ROBDD-based verification methods
suffer from the drawback that they require a Boolean
representation of the circuit. Therefore, ROBDD-based
verification cannot be directly applied to circuits with complex
and large datapaths.

To overcome this limitation, the verification group at the
University of Montreal has proposed a new class of decision
graphs called Multiway Decision Graphs (MDGs) [2]. MDGs
efficiently represent a class of formulas of a many-sorted first-
order logic with a distinction of abstract and concrete sorts. In an
MDG, a data signal is represented by a single variable of abstract
sort rather than by a vector of Boolean variables, and a data
operation is represented by an uninterpreted function symbol.
MDGs compactly encode sets of (abstract) states and
transition/output relations for abstract description of state
machines. The implicit enumeration technique is lifted from the
Boolean level to the abstract level and referred to as implicit
abstract enumeration. MDGs are thus much more compact than
ROBDDs for circuits having complex and large datapaths. This
increases the range of circuits that can be verified.

MDG-based verification still suffers from the problem of state
explosion when handling realistic circuits. To reduce the effects of
this problem, one of the most important approaches is to select a
good variable order like ROBDD. We explored automatic static
and dynamic variable ordering algorithms on MDG [3]. In this
paper, we focus on another ordering problem, the so-called
standard term order.

The paper is organized as follows: Section 2 describes the basic
concepts of MDG. Variable ordering algorithms on MDG are
summarized in Section 3. Section 4 explains the standard term
ordering problem and a solution is presented in Section 5.
Experimental results are shown in Section 6.
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2. MULTIWAY DECISION GRAPHS
The formal logic underlying MDGs is a many-sorted first-order
logic, augmented with the distinction between abstract sorts and
concrete sorts [2]. This distinction is motivated by the natural
division of datapath and control circuitry in RTL designs.

Concrete sorts have enumerations that are sets of individual
constants, while abstract sorts do not. Variables of concrete sorts
are used for representing control signals, and variables of abstract
sorts are used for representing datapath signals. Data operations
are represented by uninterpreted function symbols. An n-ary
function symbol has a typeα1 × …× αn → αn+1, where α1 … αn+1

are sorts.

The distinction between abstract and concrete sorts leads to a
distinction between three kinds of function symbols. Let f be a
function symbol of typeα1 × …× αn → αn+1. If αn+1 is an abstract
sort then f is an abstract function symbol. If all theα1…αn+1 are
concrete, f is a concrete function symbol. Ifαn+1 is concrete while
at least one ofα1 … αn is abstract, then we refer to f as a cross-
operator. While abstract function symbols are used to denote data
operations, cross-operators are useful for modeling feedback
signals from the datapath to the control circuitry. Both abstract
function symbols and cross-operators are uninterpreted, i.e., their
intended interpretation is not specified.

A multiway decision graph (MDG) is a finite directed acyclic
graph G where the leaf nodes are labeled by formulas, the internal
nodes are labeled by terms, and the edges issuing from an internal
node N are labeled by terms of the same sort as the label of N.
Such a graph represents a formula defined inductively as follows:
(i) if G consists of a single leaf node labeled by a formula P, then
G represents P; (ii) if G has a root node labeled A with edges
labeled B1…Bn leading to subgraphs G1’…Gn’, and if each Gi’
represents a formula Pi, then G represents the formula \/1≤ i ≤n(( A =
Bi) /\ Pi).

We refer to an occurrence of a variable in a term that labels an
edge or in a cross-term that labels a node as a secondary
occurrence, while an occurrence of a variable as the label of a
node is a primary occurrence. The primary variables (resp.
secondary variables) of a graph G are those that have primary
(resp. secondary) occurrences in G.

MDG must obey a set of conditions to keep it well-formed [2].
Just as Bryant’s ROBDD must be reduced and ordered, MDG
must also be reduced and ordered. The concept of ordering in
MDG concerns two orders: the standard term order and the
custom symbol order. The standard term order is a lexicographical
order of all the terms of the logic. The custom symbol order is a
total order of a set of symbols that includes the concrete variables,
abstract variables, and some but not necessarily all of the
operators. It is selected specifically for each model, like in
ROBDD. The custom symbol order is independent of the standard
term order. Along each path of an MDG, the variables and the
cross-operators of the cross-terms that label the nodes must appear
in a custom symbol order, and cross-terms with the same cross-
operator must appear in the standard term order; there must be no
repeated labels. The labels of the edges issuing from a given node
must appear in the standard term order, without repetitions. In the
next section, we summarize custom variable ordering algorithms
on MDG.

3. VARIABLE ORDERING ON MDG
Variable ordering on MDG is more complicated than ROBDDs
because of the presence of the first order terms in MDGs. Three
constraints on ordering are introduced by MDG’s well-
formedness conditions:

1. If an abstract variablea appears as a secondary variable in an
edge label of nodeb, thena < b.

2. If a variablea appears as a secondary variable in a cross-term
having cross-operatorf, thena < f.

3. The present and next state variables must be in a
corresponding order. If the present state variables are in the
order a < b < c, then the corresponding next state variables
should be in the ordera’ < b’ < c’.

The static variable ordering algorithm generates a variable order
before an MDG is built and the order is chosen using information
about the circuit topology. Our algorithm is based on several
heuristic rules we explored for MDG. Experiments show that the
algorithm can give a better order than manually generated ones in
most cases, especially in circuits with a large number of variables
when manual ordering becomes difficult due to the multiplicity of
constraints that must be satisfied [3].

The dynamic reordering algorithm minimizes the size of the
MDGs during the verification process and allows a verification
task to finish when the task may run out of memory with a fixed
order. We implemented in MDG the sifting algorithm that has
been successful in ROBDD [6]. Since sifting is too time
consuming, we developed a reordering algorithm that considers
symmetry and state group sifting to improve the performance of
the original algorithm. Our algorithm can greatly reduce the size
of MDGs and it is particular useful for verification of circuits
where lack of memory is a problem [3].

In the next section, we define the standard term ordering problem
that cannot be solved by the usual ordering strategies.

4. STANDARD TERM ORDERING
PROBLEM
Although selecting a good static variable order and changing it
dynamically as the application proceeds can minimize the size of
the MDG, there are cases where under any order the size of the
MDG is exponential with the number of function instances. These
cases may be caused by the standard order adopted in MDG to
order cross-terms with the same cross-operator. We call this kind
of state explosion thestandard term ordering problem. Before we
identify this problem, we first explain the internal representation
of Terms, which plays an important role in shaping the problem.

4.1 Internal Representation of Terms and
TermID Assignment
A term in an MDG is defined as follows [8]:

• A (individual or generic) constant is a term.

• A (concrete or abstract) variable is a term.

• If a1, …, an are terms andf is a function symbol, thenf(a1,
…, an) is a term, which is also referred to as a compound
term.



In an MDG, there may be many very large compound terms. Thus,
it is important to have compound terms share some common
components. In order to achieve term sharing, MDG system
assigns a unique identifier (TermID) to each term. The TermID
for a constant or a variable is the constant or the variable itself.
The TermID for a compound term is a number obtained by
hashing the function symbol using a Quintus Prolog built-in hash
function. It is assigned to a compound term when the term is first
generated in the verification process.

For example, in Figure 1, root noden1 and its labeling termeq(x1,
x2) is generated first. The TermID ofeq(x1, x2) is computed by
hashing the function symboleq. Suppose hash(eq) = k, the
TermID of eq(x1, x2) would be k. Since the MDG is built in a
depth-first order, the left-hand branch is constructed first. Thus,
nodesn2 and its labeling termeq(y1, y2) are generated next. To
compute the TermID foreq(y1, y2), we hash again the function
symbol eq. In Quintus Prolog, hashing collision is resolved by
linear probing, i.e., search the hash table sequentially, starting
from the original hash location [9]. Supposek + 1, k + 2 … are all
available, hashingeq again would getk + 1 and thus the TermID
of eq(y1, y2) would bek + 1. Nodesn3 andn4 are generated next in
the depth-first order. Similarly, the TermIDs of their labeling
compound termseq(y3, y4) and eq(z1, z2) are k + 2 and k + 3 if
there are no other new cross-terms in the branches of nodesn2 and
n3. From this example, it is easy to see that the TermIDs of cross-
terms with the same operator are assigned sequentially according
to the order of the terms constructed in the MDG. The first
generated one has the smallest TermID (original hash location).
The rest has TermIDs sequentially starting from the original
location.

Figure 1. TermID assignment for cross-terms with the same
function symbol

The internal representation of a compound term is
term(Function_symbol, TermID, Subterms). For instance, f(ai,
f(aj)) is represented asterm( f, Id1, [term( f, Id2, [])]). Standard
order of the cross-terms with the same cross-operators is the
lexicographical order of their internal representation. Since those
cross-terms have the same function symbol (no matter if they have
Subterms), their order is thus decided by the value of their
TermIDs. In other words, the standard order of cross-terms with

the same function symbol is the same order as when the terms are
first generated during the construction of the MDG.

4.2 Identification of the Standard Term
Ordering Problem
Consider the circuit shown in Figure 2. Functionf is a cross-
function with two argumentsci and ai, where ci is a Boolean
variable andai is an abstract variable.

Figure 2. A circuit exhibiting the standard term ordering
problem

The MDG representation of the new states in the first transition
step of reachability analysis is shown in Figure 3.f(b, ai), 0 ≤ i ≤
2, is a cross-term whereb is either 0 or 1. f(b, ai) is a compound
term. The leftmost branch is built first and the order of the cross-
terms is thus as follows:f(0, a0) < f(0, a1) < f(0, a2) < f(1, a2).
When the system starts to build the next left-hand branch (in
grey), f(0, a2) and f(1, a2) have been built before and thus have
smaller TermID thanf(1, a1), which is newly generated. The left-
hand branch is thus constructed under the orderf(0, a0) < f(0, a2)
< f(1, a2) < f(1, a1). Note that no node sharing is possible for this
branch under this order.

Figure 3. The MDG of new states in the first transition step of
the reachability analysis

The number of paths that the MDG has is thus exponential with
the number of the function instances as it decodes all possible
combinations of the values of the first argument off. The
exponential number of paths in the MDG increases the execution
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time of reachability analysis. In the reachability analysis
procedure, the Pruning-by- Subsumption (PbyS) operation is used
to simplify the set of reachable states found so far by removing
from it any paths that are subsumed by the frontier set [1]. The
large number of paths in the MDG representing the set of
reachable states raises the time and space needed by the PbyS
operation. In this example, with the increasing number of function
instances, PbyS operations could not terminate because of
insufficient memory when it reached 4 instances.

4.3 A Chain Circuit Structure with the
Standard Term Ordering Problem
In Figure 2, the output of each function instance is the input to the
next function instance, but the standard term ordering decides that
the cross-terms cannot be in the order leading to a linear size
MDG. We further found out that the standard term ordering
problem only happens to a circuit containing a chain of the same
cross-functions as shown in Figure 4. The output of a function
instance is the direct/indirect input of the next function instance.
The circuit can have pipeline registers (or multiplexers) between
function instances. Experiments show that the verification of the
circuits with this kind of a chain structure would require rapidly
increasing amounts of memory with an increasing number of
function instances.

Figure 4. A common circuit structure resulting in the standard
term ordering problem

Since the standard term ordering problem is caused by one of
MDG well-formedness conditions, we are not able to solve this
problem using the usual ordering strategies. In the custom order,
we only consider the order of cross-functions. The cross-terms are
created dynamically in the verification process and no static
ordering or reordering procedure is possible at this stage. In the
next section, we present a solution to this problem by integrating
function renaming and cross-term rewriting.

5. A SOLUTION FOR THE STANDARD
TERM ORDERING PROBLEM
A solution to the standard term ordering problem is to reorder the
cross-terms with the same cross-operators to make the
corresponding MDG linear in size. The order of those cross-terms
is decided by the lexicographical order of their MDG internal
representation, hence we can only change the order by renaming
the function instances, thereby allowing them to be freely placed
within the custom order. Rewriting rules have to be used to map
the renamed functions back to their original functions during the
PbyS operation. We describe next our solution.

5.1 Function Renaming
After identifying the chain structure (Figure 4) in a circuit, we can
rename all the cross-functions instances in the chain to different
names. For instance, for the circuit shown in Figure 2, we rename
the three instances off to f1, f2, f3 and impose the orderf1 < f2
< f3. The circuit and the MDG of the new states in the first
transition step are shown in Figure 5. The MDG becomes linear in
size because of the sharing of subgraphs from the second level.

As explained in [3], the order of an output should come after all
its inputs. Thus, after renaming all the functions in the chain
structure, a static order for the renamed functions is chosen
according to the positions of the functions appearing in the chain
structure, i.e., from inputs to outputs. In this example (Figure 5),
the orderf1 < f2 < f3 is imposed. The resulting MDG is 26%
smaller than using the reverse order.

Function renaming solves the standard term ordering problem.
However, it brings out a new problem: the actual function of the
circuit has changed and the circuit is thus more general than
needed. To solve this new problem, we introduce cross-term
rewriting. With cross-term rewriting, the MDG system can rewrite
the renamed functions back to the original function when an
actual comparison is being done and thus the verification result is
not changed because of function renaming.

(a) Circuit structure

(b) MDG of the new states in the first transition step

Figure 5. MDG after function renaming
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5.2 An Unconditional Cross-term Rewriting
System
A rewriting system was first used in MDG to partially interpret an
uninterpreted function symbol [8]. A data operation is represented
by an uninterpreted function symbol. However, function symbols
need to be partially interpreted in many designs where
optimization is used. For example, a multiplier can be bypassed
when one of the operands is 1. To verify the designs including
such bypassing logic, we need to use the fact that 1 is the unit
element of multiplication. One effective way to reason about the
partially interpreted function symbols is term rewriting. For this
multiplication example, the algebraic equations 1∗ x = x andx ∗ 1
= x could be used as rewrite rules. Rewrite rules for cross-terms
can be used to shrink the MDG size on the fly. For example, if
there is a path in an MDG which has a cross-termeq(a, a) = 0
whereeq stands for equality, we could use the rewrite ruleeq(a,
a) → 1 to eliminate this path. The scope of MDG-based
verification is thus extended.

In the original rewriting system, a cross-term cannot be rewritten
into another cross-term having a different cross-operator [8]. This
is to avoid the necessity of node reordering after rewriting. We
thus introduce an unconditional cross-term rewriting system, as
follows:

Definition 6.1: An unconditional cross-term rewriting system
(CTRS) H is a finite set of formulas, called rewrite rules, having
the following form:

LHS → RHS
where LHS and RHS are cross-terms. (LHS/RHS stands for the
left/right-hand side.)

When a cross-term is matched with the LHS of a rule, LHS will be
substituted by RHS unconditionally. For instance, in Figure 5, a
set of rewrite rules can be defined as follows:

f1(x, y) → f (x, y)

f2(x, y) → f (x, y)

f3(x, y) → f (x, y)

So the cross-terms in Figure 5(b) are substituted under the
following rules:

f1(0,a0) → f (0, a0) f1(1,a0) → f (1, a0)

f2(0,a1) → f (0, a1) f2(1,a1) → f (1, a1)

f3(0,a2) → f (0, a2) f3(1,a2) → f (1, a2)

To avoid the necessity to reorder, the rewriting system rewrites
the cross-terms in an MDG only when a comparison is needed. By
inspecting all the model checking algorithms used in the MDG
system, comparisons are needed only in the PbyS (Prune by
Subsumption) operation [7].

We use function renaming to build an MDG with a good order
generated by our variable ordering algorithm, then use rewriting
to restore the original function of circuits without changing the
size of the MDG. We further found out that our renaming and
rewriting method can be extended to all the circuits containing
cross-operators which have more than three instances placed
irregularly. Although the standard term ordering problem may not
happen in these circuits, the instances of the same cross-operator
have different positions in the circuit and thus renaming of the

instances allows them to have different positions in the custom
order. Our method provides more flexibility in variable ordering.
As each instance has a different function symbol, it can now be
freely placed in the custom order. The MDG can thus achieve
better sub-graphs sharing and reduce its size and execution time.

6. EXPERIMETAL RESULTS
6.1 A Case Study
We introduce an ATM congestion controller [5] in this
subsection. It exhibits the standard term ordering problem in
MDG-based verification. In an ATM switch, during the periods of
heavy traffic within the network, an outgoing link may become
temporarily overloaded and data packets (cells) begin to build up
in the outgoing queue. This is known as congestion.

A congestion controller is used to solve congestion by comparing
the priorities of two packets. The packets with a higher priority
will be passed, the other ones will be discarded. This does not
mean that the discarded messages would be lost. The packets can
be resent by the senders when they do not receive
acknowledgement from the receivers, using higher-level
protocols.

The controller is shown in Figure 6.a0, b0 are abstract variables
representing information packets to be sent. The cross-function
compare is used to compare the priorities of two packets.
Multiplexers are used to transfer the packets with high priority.
When a circuit contains more than four cross-functions, the
standard ordering problem occurs.

Figure 6. An ATM congestion controller

We implemented our algorithm in the reachability analysis
procedure and the result of applying it to the circuit in Figure 6 is
shown in Table 1. The experiments were carried out on a 333MHz
Sun Ultra 10 workstation with 1GB of memory. The table shows
that without the function renaming and rewriting, the controller is
only limited to four blocks. With our solution, reachability
analysis can be carried out with more than 320 blocks.

6.2 Experimental Results on a Scheduler
We extend this solution to the circuits where there are several
function instances placed irregularly. We conducted the
experiments on packet scheduler. This model contains 72 abstract
state variables and 31 concrete state variables. It has 8 instances
of the cross-functionnot_equal_to_zero(x) which tests if an
abstract variablex is equal to zero. The experimental results are
shown in Table 2. We verified two safety properties on the
scheduler. Experimental results in Table 2 show that with our
solution, the size of MDG can be reduced by 26.5% and the
computing time can be reduced by 26.4%.
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Table 1. Experimental results for an ATM congestion
controller

No. of

Functions

Without the solution

Nodes Time(sec)

With the solution

Nodes Time(sec)

2 129 0.40 163 0.68

3 273 1.56 329 0.79

4 541 378.02 507 0.98

5 - - 697 1.20

6 - - 910 1.36

7 - - 1113 1.72

10 - - 1402 2.12

100 - - 25880 93.21

200 - - 81330 883.68

300 - - 166780 4236.64

320 - - 187470 6226.46

Table 2. Experimental results for a scheduler

Property Without the solution

Nodes Time(sec)

With the solution

Nodes Time(sec)

P1 427719 4847.15 247826 2808.56

P2 277101 3642.57 247847 3251.36

6.3 Conclusions
In this paper, we introduced a special problem caused by the
standard term order that is used in MDGs to order cross-terms
with the same function symbols. Since this problem is the result of
the MDG well-formedness conditions, it cannot be solved by

ordering/reordering variables. We presented a solution integrating
function renaming and cross-term rewriting. Experimental results
on a congestion controller and on a packet scheduler show that
our solution can considerably improve the performance and
increase the type and size of circuits that can be verified.
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