Selective-Run Built-In Self-Test Using an Embed ded

Processor

*

Sungbae Hwang and Jacob A. Abraham
Computer Engineering Research Center
The University of Texas at Austin
Austin, TX 78712

{hsb, jaa}@Qcerc.utexas.edu

ABSTRACT

Many systems-on-a-chip (SOCs) include processors as cen-
tral units to implement diverse algorithms and control pe-
ripheral units such as embedded cores. The computing power
of the embedded processor can be used to self-test its own
functions as well as to test the other cores within the chip
boundary. In BIST methodology, pseudo-random pattern
testing can reduce the memory requirements. In addition to
general pseudo-random pattern testing, this paper proposes
and evaluates a novel selective-random pattern test tech-
nique. This technique increases the fault coverage while sig-
nificantly reducing test application time. This also greatly
decreases the memory requirements compared to traditional
BIST schemes. The cost for extra hardware is low and the
technique is easily integrated with parallel scan and bound-
ary scan designs.

Categoriesand Subject Descriptors

B.7.3 [Integrated Circuits]: Reliability and Testing— Bult-
in tests, Test generation

Keywords

SOC testing, built-in self-test, design for testability, processor-

based testing, pseudo-random number generator.

1. INTRODUCTION

Advances in VLSI technology has made possible systems
on a single chip, and core-based SOC designs have provided
a solution for reducing product cycles and system costs and
hence for meeting consumer demand. Cores are predesigned
reusable building blocks, and system designers can readily
integrate those cores to compose a meaningful system. How-
ever, at the same time, this approach poses other problems

*This research was supported in part by the Semiconductor
Research Corporation under contract 99-TJ-708.

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

GLSVLS'02, April 18-19,2002,New York, New York, USA.

Copyright 2002ACM 1-58113-462-2/02/0004.$5.00.

[1]. As cores become more complex and the number of cores
that are integrated on a chip increases, the volume of test
data increases rapidly. The I/O channel capacity signifi-
cantly limits the accessibility to the cores from the external
test equipment.

Many researchers have been studying how to alleviate
those problems. While Ishida [2] and Yamaguchi [3] pro-
posed data compression techniques in which test data were
decompressed by external test equipment, Chandra [4] and
Jas [5] suggested on-chip DFT circuits to decompress test
data. Many other researchers introduced BIST circuits in
which test data were automatically generated mostly by the
pseudo-random pattern generator logic [6, 7]. Others tried
to reuse on-chip processors or data-path circuits which were
included as function blocks of the chip [8, 9, 10] Among these
on-chip processor approaches can be considered full-fledged
DFT and BIST techniques. Once the processor is verified to
work correctly, its use for testing other cores gives significant
advantages over the other techniques. Its programmability
allows a software driven BIST technique. Its data-path en-
ables many arithmetic and logical operations. Many test
pattern generation methods, which are generally realized in
hardware circuits such as linear feedback shift registers (LF-
SRs) and cellular automata (CAs), or other even more com-
plex generation algorithms, can be employed in a software
form using an on-chip processor. Hence this approach can
reduce the silicon area overhead.

In [10], a technique was introduced in which the embed-
ded processor can access I/O terminals of other embedded
cores in test mode via an already existing system bus, thus
reducing the silicon area overhead. This technique can in-
corporate BIST schemes through software, but introduces
large memory requirements to store the test data. [11] pro-
posed a BIST technique that could apply test patterns onto
other cores in parallel and utilize pseudo-random number
generators (PRNGs). The technique reduces the memory
requirements on test data; by using a parallel access mech-
anism it decreases the testing time. In this paper, we pro-
pose a more advanced technique that significantly reduces
the testing time as well as achieves the targeted fault cov-
erage with a small number of test applications, while using
a very simple pseudo-random number generator. The re-
quired memory is so small that it can be easily implemented
on internal memory such as cache. It also utilizes the exist-
ing system bus as the test access mechanism; hence the area
overhead is greatly reduced.

For testing of DSP cores, Radecka et al. proposed an

Register

-7 Input boundary scan ‘
i ¢ ¢ ¢ e ¢ Core
.

- | Scan path }

Scan path }

- | Scan path

USIN

- | Scan path

‘ ST
Output boundary scan }—,T

Figure 1: BIST architecture for each core.

arithmetic built-in self-test (ABIST) scheme in [12]. Their
methodology uses the programmability of DSP cores to test
peripheral devices. However, they assumed that a dedicated
test access mechanism exists from the DSP core to each core
under test, which we do not need. Our approach is also dif-
ferent from [8, 12] in that we use a test pattern selection
mechanism to reduce the test application time for the ran-
dom testing. Compared to their combined method of BIST
and deterministic technique, our technique requires far less
memory usage. Papachristou et al. suggested microprocessor-
based testing for core-based SOCs in [13]. They focused on
how to achieve test paths from the processor, bypassing the
other cores in between, and used graph modeling to get the
shortest path. Our approach is simpler, since we reuse the
system bus in test mode as well as in functional mode.

The paper is organized as follows. Section 2 describes
the BIST architecture based on the embedded processor,
and Section 3 shows the implementation of several pseudo-
random number generators. Section 4 proposes the new
methodology that selectively applies test patterns and hence
reduces the testing time in random pattern testing. Exper-
imental results are in Section 5. Conclusions are given in
Section 6

2. BIST ARCHITECTURE

Testing the processor and the test memory is not the focus
of our work. We assume that the processor and the test
memory are tested by some other methods [14, 15, 16].

The system bus can function as the test access mecha-
nism in test mode [10]. The I/O terminals of the cores are
accessible from the processor in the same way as the internal
registers of the cores. The processor uses the same protocol
to read and write those I/O terminal registers of each core.

Hwang [11] presented a BIST methodology using the sys-
tem bus and showed that it only requires small area over-
head. It incorporated a register for each wrapper, which also
could be accessed from the embedded processor. In this pa-
per, we also use the same registers to enhance fault coverage
in BIST mode. We will briefly introduce the architecture.

In our technique, once a value is loaded onto a core’s
register, it is then shifted into the core through both the
boundary scan and the internal scan. Figure 1 shows the
BIST architecture in which the register is loaded from the
processor and the value in the register is shifted into the at-
tached core. The register is divided into several fields each
of which is taking care of a scan path. A scan path gets
its input value from the corresponding field of the register.

Table 1: Control register

[Name | Description

TM | This test mode allows to select between test
mode(1) and normal mode(0)

BM | When in test mode (TM=1), this allows to
select between BIST mode(1) and direct ac-
cess mode(0)

RUN | If it is written with 1, then the core run one
clock in functional mode. It is automatically
cleared.

STOP | This bit blocks the scan shifting. It is cleared
when RUN=1.

Each dashed line illustrates the shifting flow of bit values in
a field. The size of each field does not need to be the same
if the core has a separate enable signal for each scan path.
Though it is not shown in Figure 1, the I/O registers are
also assumed to be directly accessible from the processor.
After loading a test vector using the register, the processor
signals the core to run in functional mode and to capture
the response on the internal scan cells and output termi-
nal registers. Then the next vector is loaded again from
the processor while the response from the previous vector is
compressed on the multiple input signature register (MISR)).

In order to achieve the controllability mentioned earlier,
each test wrapper contains a control register. Table 1 shows
several fields in the control register [11].

3. PSEUDO-RANDOM NUMBER GENER-
ATOR

This section discusses several pseudo-random number gen-
erators for BIST implementation. We also show efficient
implementations on an embedded processor.

BIST schemes using processors have different features from
those using hardware BIST. In hardware BIST, by far the
most popular pseudo-random pattern generator is LFSRs.
Due to structural dependencies, the use of LFSRs as two-
dimensional test pattern generators feeding a multiplicity of
scan chains in parallel may result in unsatisfactory fault cov-
erage [17]. If the scan paths are fed directly from adjacent
bits of the LFSR, then this very close proximity will cause
neighboring scan chains to contain test patterns which are
highly correlated. In order to alleviate this problem, phase
shifters are used between LFSRs and the circuit under test.
Alternatively, CAs can be used for the pseudo-random pat-
terns. A CA evolves in discrete steps with the next value of
one site determined by its previous value and that of a set
of sites called the neighbor sites. Wolfram [18] did the basic
classification of CA based on their qualitative and functional
behavior.

Some linear hybrid CAs (LHCAs) can provide the max-
imal length binary sequence [19]. One of those LHCAs is
composed of rules 90 and 150 which are defined as follows:

Rule 90 : s?’ = Si-1 D Si+1 1)
Rule 150 : s7 = 5.1 @ 8 © 8541 (2)
where s;” denotes the next state for site s;. The local rules
for a one-dimensional neighborhood-three cellular automa-

ton are described by an eight-digit binary number, as in the
example of Figure 2. The eight possible states of three ad-

111 110 101 _ 100 011 _ 010 _ 001 _
0 1 0 1 1 0 1

v
L] L] o

Figure 2: A rule 90 CA.

jacent sites are given above the horizontal lines. The one
digit beneath each line represents the next value of the cen-
tral site. The one-digit values compose the rule number
together. For example, Figure 2 shows ”01011010”, which
is 90 in decimal number, and its hardware implementation.

An LHCA is a CA in which some sites follow a rule while
the others follow another rule. LHCAs can be easily imple-
mented in software as well as in hardware. The following
code shows the implementation on ARM processor assum-
ing that RO contains the current value and R2 contains the
encoded LHCA value for the rules. The shift operations
(LSL and LSR mean logical shift left and logical shift right,
respectively) are used to get the neighbors’ values and the
AND operation is for the selection between CA rules 90 and
150.

MOV R1, RO, LSL #1 ; R1=R0<<1
XOR R1, R1, RO, LSR #1; R1~=(RO>>1)
AND RO, RO, R2 ; RO&=R2

X0R RO, RO, R1 ; RO"=R1

Radecka et al. suggested a random number generator in
[12] in the context of their ABIST scheme as follows.

A = Al M+ AL, ®3)

where Al and A? are the contents of the n least significant
and n most significant bits of A, respectively, after i itera-
tions. M is an n-bit constant. This generator was originally
developed to utilize datapath blocks in processors. Its ARM
implementation is quite easy as follows.

AND R3, R1, RS ; Get 16 LSBs
MOV R4, R1, LSR #16 ; Get 16 MSBs
MLA R1, R2, R3, R4 ; R1=R2*R3+R4

n = 16 is used, R1 contains the A; value, R5 = Oxffff is used
to get the n (16) least significant bits of A;, and R2 contains
the constant M. MLA is the multiply-accumulate instruction.
Though the program is very simple, it requires a multipli-
cation unit. Furthermore, in order to get 32-bit data, the
above procedure should be done twice. Some processors
provide ‘multiply long’ instruction for 32-bit multiplication,
which results in 64-bit output. If the multiplication unit is
not in the data-path, the program might become compli-
cated with software implementation of the multiplications
algorithm.

Another generator that we want to consider is a type of
additive generator devised by G. J. Mitchell and D. P. Moore

[20] and defined by

X, = (Xn-24 + Xn—55) mod m, n >55. (4)

This is also said to form a lagged Fibonacci sequence (LFS).
The following piece of code is a version optimized for per-
formance concerns.

LDR R5, [RO], #4 ; R5=mem[RO], RO+=4
LDR R6, [R1], #4 ; R6=mem[R1], R1+=4
ADD R5, R5, R6 ; R5+=R6

STR R5, [R2], #4 ; mem[R2]=R5, R2+=4
AND RO, RO, R3 ;

AND R1, R1, R3 ;

AND R2, R2, R3 ;

RO, R1 and R2 point to the n — 24, n — 55 and n-th elements
respectively in a cyclic list, and R5 contains the X, value
after the run. Although the size of the cyclic list required
by the generator is 55, we implemented it on 64 for simplicity
and performance. It is assumed that the list starts at the
address that has 0s in the 8 least significant bits. The last 3
AND instructions are used to clear the address bit for 28 and
hence to keep the addresses from going over the boundary
of the cyclic list. The addresses increase by 4 because one
word (32-bit long) is made up of 4 bytes. The merits of this
generator are speed, good random characteristics and not
requiring a multiplication unit. It is also scalable on the bit
length.

4. SELECTIVE-RUN OF RANDOM VEC-
TORS

In this section, we propose a more novel testing technique,
in which an embedded processor is used to run the prese-
lected patterns through fault simulation.

Let a core require P words to fully load a test vector in-
cluding its inputs and scan cells. For a random sequence
(X»,), the sequence of random test patterns can be repre-
sented by

(Vn) = ((an, Xnst1y ooy an+P—1)) (5)

BIST circuits usually apply test vectors at regular intervals
of s, and generally s = P because they cannot use memory
to store the random numbers. The processor-based BIST
technique can reuse the previously generated random num-
bers as part of the current and the following vectors by stor-
ing them in the processor memory. Hence some numbers in
the sequence, (V,), reappear in the following tuples when
s < P. Because the required memory space to store a test
vector is so small (P words), it does not incur any meaning-
ful cost to the test of SOCs. Let us assume that 60 words
are needed to apply a test vector to a core. Currently, many
BIST algorithms generate 60 new words for every vector. In
processor-based BIST, we can utilize the processor memory
to store these 60 words. For the next random test vector,
we can generate n new words and simply reuse 60 —n words
stored in the memory. If n = 1, then the test generation
time can be reduced up to 1/60.

As the number of test vectors increases, i.e., n becomes
larger, it tends to be harder to detect additional faults due to
the so called random pattern resistant structures in the cir-
cuit under test. Hence during random pattern testing, most
of the patterns are not used for additional fault detection,

HEN vy

An;

Figure 3: Random Numbers and Test Vectors

Core No. Distance An;
0010 100010011101
1000 000001010100
1000 000000000100
0000 000000000110

Figure 4: Encoded Data Format

and only a small number contributes to the fault coverage
increase. Let faults be additionally detected when n = n;,
where ¢ is a sequentially indexed number every time addi-
tional undetected faults are detected. We can apply test vec-
tors only when n = n; instead of every n, thereby reducing
the number of test applications. We encode An; = n;—n;—1,
so that the processor can apply the next test pattern after
it simply generates An; random numbers. Figure 3 shows
the relations between the sequences (X,) and (V4). (V4) is
a sequence of P consecutive numbers from (X,). Through
fault simulation, those vectors that detect additional faults
are extracted and encoded with the distances from the pre-
ceding vectors. The circuit under test is only exposed to
those vectors applied by the processor. For optimal perfor-
mance, testing is composed of two phases. During the first
phase, every random pattern is just applied to the cores to
detect easy faults, and then during the next phase, only
the selected random patterns are applied, which reduces the
whole testing time.

An acceleration method that can be used in processor-
based BIST schemes was proposed in [11]. The method
searches for a vector that maximizes the fault coverage within
the small window boundary that is confined by the margin
on the length of a test vector. This restricts the size of the
search space too much, and the method is often forced to use
unnecessary test vectors for fault coverage. In contrast, the
method in this paper searches the whole pattern sequence
to find those vectors that detect the undetected faults, so it
does not waste time by applying unnecessary test vectors,
and hence minimizes the testing time.

This technique is not only capable of testing each core
in one run but also of testing every core in the same run.
If we select test patterns from the same random number
generator, it is possible to test every core in a same run
by using the data format in Figure 4 for An;. This format
eliminates the need to separately generate the random num-
bers for each core. As all the cores share the generated test
patterns, the test generation time is greatly reduced. The
first field indicates the core that is going to be tested and
the next field shows how many random numbers should be

generated before the test application. Thus the first entry
means that after 2,205 random number generation, the test
pattern will be applied to the core No. 2. The next entry
shows that the core No. 8 will be exposed to the test pat-
tern after 84 random numbers, etc.. We used 12 bits for the
distance field, which was justified using the experiments in
the following section where the distance record showed that
over 97 % of the distances are less than 4,096. For those
cases of distances over a 12-bit boundary, we reserved ‘0000’
in the ‘Core No.” field of Figure 4. If an entry has ‘0000’
in the field, the distance is calculated by multiplying the
‘distance’ field value with 2!2. This is combined with the
next entry to give a range up to 22*. The fourth entry in
Figure 4 implies that random numbers are to be generated
6 x 2'2 times.

In processor-based BIST, the testing time is mostly the
sum of test generation time and test application time.

T=G+A (6)

The total testing time for the individual runs can be rep-
resented by the summation of the individual core testing

time.
T = ZG’ + ZAi (7)

The testing time for the shared run using the data format
of Figure 4 can be represented as follows.

Ts = Max(G;) + ZAi (8)

We will see the speedup of the shared run in the following
section.

Let the number of test vectors be N to achieve a tar-
geted fault coverage in random BIST. Then a hardware-
based BIST technique requires

of Generations = N x P (9)
of Applications = N (10)
and our technique requires
of Generations = N (11)
of Applications <« N. (12)

5. EXPERIMENTAL RESULTS

In order to evaluate the various PRNGs, fault simulation
experiments were conducted on ISCAS benchmark circuits.
The results of the fault simulations are shown in Table 2.
Each entry in the table gives the fault coverage for all the
nonredundant faults in a circuit after applying 32,000 test
vectors. ‘Reuse’ column of Table 2 includes the fault cov-
erages from the technique that reduces the test generation
time by reusing the random numbers.

The two cellular automata show lower coverage on circuits
‘s1494’, ‘s15850’ and ‘s38417’. ‘LFS’ and ‘Reuse’ show good
performance even compared to the ABIST method. Fur-
thermore, since the ‘Reuse’ technique shows a performance
no worse than the others, it is better to use this technique
considering its potential speedup.

In the experiments of the selective-run, 1,000 random test
vectors were applied onto each benchmark circuit during the
first phase, and using a fault simulator, we selected those
vectors that could detect additional faults and applied them

Table 2: Fault Coverage for Benchmark Circuits (%)

o CA ABIST Reuse
Circuit | a1 T caz | n=16 | “° | s=1
2670 | 91.44 | 88.11 | 87.42 | 92.49 | 88.39
c3540 || 99.36 | 96.86 | 99.67 | 99.60 | 99.70
c5315 || 99.89 | 99.96 | 100 | 100 | 100
s1238 || 96.35 | 96.27 | 99.53 | 99.84 | 99.14
s1423 || 99.53 | 99.33 | 99.87 | 99.87 | 100
s1494 | 76.77 | 76.77 | 100 | 100 | 100
s5378 || 97.54 | 96.14 | 99.73 | 99.67 | 99.84
59234 | 92.45 | 93.47 | 93.47 | 93.00 | 92.68
s13207 || 99.35 | 99.41 | 98.25 | 98.11 | 98.97
s15850 || 91.37 | 91.72 | 95.47 | 95.80 | 95.70
535932 || 99.95 | 99.92 | 100 | 100 | 100
s38417 || 94.70 | 92.31 | 9542 | 95.42 | 94.97
538584 || 99.44 | 99.49 | 99.38 | 99.49 | 99.48

Table 3: Simulation Results of Selective-Run

s13207
100 T

95 -

Fault Coverage (%)
o
o
T

80

LFS_slide
Selective Run -------

1

100

Figure 5: Trace of Fault Coverage of s13207

Table 4: Data Reduction of Selective-Run

1000

10000
n

100000

FC w/ | Last No. Sel. Run
Circuit 1000 FC Reuse No. [Speedup
c2670 84.98 | 99.99 | 1,820,625 | 1,071 | 1,699.93
c3540 84.02 100 90,899 1,140 79.74
cb315 99.56 100 6,044 1,020 5.93
s1238 89.55 100 274,720 | 1,072 256.27
s1423 97.32 100 68,272 1,018 67.06
s1494 97.44 100 5,998 1,025 5.85
sb5378 95.36 100 63,878 1,161 55.02
$9234 80.08 | 99.57 | 1,438,429 | 1,410 | 1,020.16
513207 85.89 100 231,207 | 1,449 159.56
515850 89.42 99.4 | 1,813,420 | 1,420 | 1,277.06
s38417 90.73 | 99.92 | 1,825,131 | 2,141 852.47
s38584 93.07 | 99.95 | 1,427,330 | 1,688 845.57

during the next phase. For a pseudo-random number gener-
ator, we used a lagged Fibonacci sequence (LFS) which is de-
fined by Equation 4. We termed the LFS method with s = 1
in Equation 5 as ‘Reuse’ for this testing. The second column
in Table 3 shows fault coverage for each circuit after apply-
ing 1,000 test vectors. The third column shows the fault
coverage after applying all the test patterns in the fourth
column when the ‘Reuse’ method is used. Even though the
required number of random vectors to reach the last fault
coverage is generally big, the number of vectors that con-
tribute to the fault coverage is very small as in the ‘No.
column of the ‘Sel. Run’ block. Each number shows the
total number of test vectors to be applied onto each circuit
using our technique including the first 1,000 random vectors.
The random number generation time is much smaller than
the test application time for each core. Note that in the
‘Reuse’ technique, each number in the column is the num-
ber of random numbers to generate as well as the number
of test patterns to apply to the circuit. In hardware-based
BIST technique, the required number of random numbers to
generate is P times bigger than each number in the column
as shown in Equation 9. The last column shows the speedup
of the selective-run technique over the ‘Reuse’ in test appli-

Deterministic | Golomb Selective-Run
Circuit || Vec. [Words | Words | Vec. | Words | % Red.
c2670 112 560 137 1 41 92.68
c3540 101 202 131 - 70 65.35
cb315 19 114 38 - 10 91.23
s1238 70 140 73 - 36 74.29
s1423 18 54 26 - 9 83.33
s1494 23 23 25 — 13 43.48
sH378 156 1,092 213 — 81 92.58
59234 398 3,184 482 17 341 89.29
s13207 327 7,194 674 - 225 96.87
s15850 439 8,780 784 50 1,210 86.22
s38417 || 1,053 | 54,756 3,433 39 2,599 95.25
s385H84 585 | 26,910 1,513 11 850 96.84
cation time. The speedup was calculated as follows.
Speedup = Test Application Time of ‘Reuse’ (13)

Test Application Time of Selective-Run

The results show that very big speedups are achieved on
most circuits because the selected patterns are only a small
portion of the total patterns.

Figure 5 shows the graph of fault coverage versus n for
the benchmark circuit ‘s13207’. Our selective-run technique
significantly reduces the test application time. Note that n
is in logarithmic scale.

The test generation time is also reduced by using the for-
mat of Figure 4. The speedup of the shared run compared
to the individual run in test generation time is 4.97 times in
this experiment.

We next compare our technique with the deterministic
method to see the data reduction. Many BIST techniques
use a combination of BIST and deterministic test. After
running random BIST testing, they usually apply determin-
istic test patterns from ATPG tools in order to achieve the
targeted fault coverage. In Table 4, we assumed that 1,000
test vectors have been applied using random BIST tech-
niques such as LFS, and then we compared the required
data sizes of the two techniques to reach 100% fault cover-
age. The second column (Vec.) shows the number of test
vectors for each circuit to reach 100% fault coverage after
applying 1,000 random test patterns. They were obtained

using a commercial ATPG tool. The ‘Vec.” column in the
Selective- Run block shows the number of vectors that are
additionally needed after applying our technique because of
the limitation of random testing. [4] showed that Golomb
coding is very efficient to compress test data. We performed
the technique on the deterministic test data set and found
that m = 32 gave the best overall performance. The third,
fourth and sixth columns (‘Words’) show how many words
are needed in each technique. The table shows that the
selective-run technique is more efficient in data compression
performance than the Golomb coding technique on most cir-
cuits. Note that the selective-run technique does not use
any compression algorithm, and hence its implementation
is straightforward. The last column shows the percentage
reduction of data size, which is computed as follows.

Deterministic Data — Selective-Run Data
Deterministic Data

x 100 (14)

As seen in the ‘% Red.” column, our technique requires a
very small amount of memory compared to the traditional
methodology. The percentage reductions show that very
high compressions are achieved over 90% on most circuits.
In processor-based testing, the memory requirement is also
an important factor in order to use fast internal memories
such as cache.

6. CONCLUSIONS

Several pseudo-random number generators have been im-
plemented on an embedded processor and evaluated through
benchmark circuits. A novel selective-random test technique
has been proposed. Since the technique only applies those
vectors that contribute to the fault coverage increase, it does
not waste testing time running unnecessary vectors. The
test application time was shown to be greatly reduced with
a speedup of more than several hundreds on most bench-
mark circuits. Our technique also eliminates the require-
ment of a large data memory for the test vectors, because
self-producing pseudo-random number generators are used
to construct deterministic test patterns. The required data
sizes were only a fraction of those required in traditional
BIST schemes. This selective-run technique and the reuse
of the generated random numbers can be easily implemented
on a processor with a small amount of code and data mem-
ory.

7. REFERENCES

[1] Y. Zorian, E. J. Marinissen, and S. Dey. Testing
embedded-core-based system chips. In Proceedings of
the International Test Conference, pages 130-143,
1998.

[2] M. Ishida, D. S. Ha, and T. Yamaguchi. COMPACT:
A hybrid method for compressing test data. In
Proceedings of the VLSI Test Symposium, pages
62-69, 1998.

[3] T. Yamaguchi, M. Tilgner, M. Ishida, and D. S. Ha.
An efficient method for compressing test data. In
Proceedings of the International Test Conference,
pages 79-88, 1997.

[4] A. Chandra and K. Chakrabarty. System-on-a-chip
test-data compression and decompression
architectures based on golomb codes. IEEE
Transactions on Computer-Aided Design of Integrated
Clircuits and Systems, pages 355—368, March 2001.

[5] A. Jas and N. A. Touba. Test vector decompression
via cyclic scan chains and its application to testing
core-based designs. In Proceedings of the International
Test Conference, pages 458-464, November 1998.

[6] N. A. Touba and E. J. McCluskey. Bit-fixing in
pseudorandom sequences for scan BIST. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 545-555, April 2001.

[7] G. Mrugalski, J. Tyszer, and J. Rajski. Synthesis of
pattern generators based on cellular automata with
phase shifters. In Proceedings of the International Test
Conference, pages 368-377, 1999.

[8] S. Hellebrand, H.-J. Wunderlich, and A. Hertwig.
Mixed-mode BIST using embedded processors. In
Proceedings of the International Test Conference,
pages 195-204, 1996.

[9] J. Rajski and J. Tyszer. Arithmetic Built-In Self-Test:
For Embedded Systems. Prentice Hall, 1998.
ISBN:0137564384.

[10] S. Hwang and J. A. Abraham. Reuse of addressable
system bus for SOC testing. In IEEE International
ASIC/SOC Conference, September 2001.

[11] S. Hwang. Processor based built-in self-test for
embedded cores. Technical Report
UT-CERC-TR-JAA-01-5, Computer Engineering
Research Center, Univ. Texas, Austin, TX, 2001.

[12] K. Radecka, Janusz Rajski, and Jerzy Tyszer.
Arithmetic built-in self-test for DSP cores. IEEE
Transactions on Computer-Aided Design of Integrated
Clircuits and Systems, pages 1358-1369, November
1997.

[13] C. A. Papachristou, F. Martin, and M. Nourani.
Microprocessor based testing for core-based system on
chip. In Proceedings of Design Automation
Conference, pages 586-591, 1999.

[14] S. M. Thatte and J. A. Abraham. Test generation for
microprocessors. IEEE Transactions on Computers,
pages 429441, June 1980.

[15] R. S. Tupuri and J. A. Abraham. A novel functional
test generation method for processors. In Proceedings
of the International Test Conference, pages 743-752,
November 1997.

[16] J. Shen and J. A. Abraham. Native mode functional
test generation for processors with applications to self
test and design validation. In Proceedings of the
International Test Conference, pages 990-999,
October 1998.

[17] J. Rajski, G. Mrugalski, and J. Tyszer. Comparative
study CA-based PRPGs and LFSRs with phase
shifters. In Proceedings of the VLSI Test Symposium,
pages 236-245, 1999.

[18] S. Wolfram. Statistical mechanics of cellular automata.
Reviews of Modern Physics, 55:601-644, July 1983.

[19] P. D. Hortensius, H. C. Card, and R. D. McLeod.
Parallel random number generation for VLSI using
cellular automata. IEEE Transactions on Computers,
38:1466-1473, October 1989.

[20] D. E. Knuth. The Art of Compuer Programming,
volume 2. Addison-Wesley, Reading, MA, 3rd edition,
1997. ISBN:0201896842.

	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

