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ABSTRACT

In this paper we introduce an energy-delay efficiency metric
that captures any trade-off between the energy and the delay
of the computation.

We apply this new concept to the parallel and sequen-
tial composition of circuits in general and in particular to
circuits optimized through transistor sizing. We bound the
delay and energy of the optimized circuit and we give neces-
sary and sufficient conditions under which these bounds are
reached. We also give necessary and sufficient conditions
under which subcomponents of a design can be optimized
independently so as to yield global optimum when recom-
posed.

We demonstrate the utility of a minimum-energy function
to capture high level compositional properties of circuits.
The use of this minimum-energy function yields practical
insight into ways of improving the overall energy-delay effi-
ciency of circuits.

Categoriesand Subject Descriptors

B.6 [Harware]: Logic Design; B.6.3 [Logic Design]: De-
sign Aids—optimization

General Terms
Theory
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1. INTRODUCTION

The metric Ft?, where E is the energy and ¢ is the delay of
the computation, has been proposed as an efficiency metric
for VLSI computation [1]. It has been argued that, due
to its voltage independence, the Ft> metric is superior to
other efficiency metrics such as E or Et [2]. In this paper
we show that the Et™ metric for the energy-delay efficiency
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index n > 0 characterizes any feasible trade-off, not only
the trade-off through voltage scaling, between the energy
and the delay of a computation. For example, any problem
of minimizing the energy of a system for a given target delay
can be restated as minimizing Et" for a certain n.

There are many reasons we wish to study this more gen-
eral metric over Et?, despite the voltage independence of
Et? over a wide range. First, we know that the applicability
of Et? is unfortunately not perfect; it is sometimes better to
use Et" with n # 2 as the metric when the design perfor-
mance target would make the Ft>-optimal circuit operate
outside the practical range of supply voltages. Second, it
is feasible to have a globally Et?-optimal system with com-
ponents optimized for Et™ with n # 2, as suggested by
Theorems 2 and 8.

In general, for a VLSI computation implementing a given
algorithm, the faster the computation the more energy it
consumes. This observation points to the existence of a
trade-off between the goodness of one property (delay) versus
the badness of the other (consumed energy). The goal of our
efficiency metric is to quantify such a trade-off. Certainly,
there are computations that are both slower (bad) and con-
sume more energy (bad) than some base case; however, those
computations are not interesting implementations and will
not be considered. Moreover, there are computations that
are both faster (good) and more energy efficient (good) than
some base case (for example the implementation of a tran-
sistor network in a newer technology). Again, these cases
are of no interest to us since one will always prefer the good-
good case and there is no trade-off. Later in this paper we
formalize the notion of trade-off and the design parameters
it applies to.

A VLSI computation can be made slower or faster in sev-
eral ways: at high-level by using a different architecture, and
at low-level by choosing a different supply voltage or differ-
ent device parameters of the transistor network. In general,
any of these choices amounts to trading delay for energy and
vice-versa. For example, by operating a circuit at a higher
supply voltage its delay decreases, while its energy consump-
tion increases. Conversely, by operating the same circuit at
a lower supply voltage its delay increases, while its energy
consumption decreases. Thus, voltage scaling is one way to
trade delay for energy and vice-versa.

With an efficiency metric at hand, one can define the cor-
responding optimization problem as of finding a set of pa-
rameters in the available parameter space that optimizes
the given metric. The parameter space is defined by the
freedoms available to the designer. For example, if the op-



erating voltage of the design can be varied, then voltage is
part of the parameter space. On the other hand, if operating
voltage is fixed, then it is not part of the parameter space.
Through this paper, when we are referring to the efficiency
metric, we are implicitly referring to the corresponding op-
timization problem as well.

In Section 2 and Section 3, we define the efficiency metric
in two seemingly different ways. In Section 4, we show how
these definitions indeed lead to the same trade-off between
energy and delay. In Section 5, we quantify the goodness
of parallel and sequential VLSI computations using the effi-
ciency metric. As an example, we look at the energy-delay
efficiency of circuits optimized through transistor sizing. We
bound the energy and delay of the optimized circuits and we
give necessary and sufficient conditions under which these
bounds are reached. We also give necessary and sufficient
conditions under which subcomponents of a design can be
optimized independently so as to yield global optimum when
recomposed. In Section 6, we sum up our results.

Most of the proofs have been omitted due to space limi-
tations and due to the desire to emphasize the practical—
as opposed to the mathematical—side of the results. The
omitted proofs can be found in [5]. Furthermore, we have
omitted the application of the concepts of minimum-energy
function (to be defined later) and energy-delay efficiency in-
dex to other types of optimizations, besides transistor sizing,
such as voltage scaling, branch prediction and performance
optimization through buffer insertion. Some of those results
can be found in [3] [4] [5].

2. THE er~ EFFICIENCY METRIC

As mentioned in the introduction, we are interested in
defining an efficiency metric over a set of design parameters,
parameters that create a trade-off between energy and delay.
More precisely, if we define two functions: one for energy
E(*) > 0, and one for delay 7 (x) > 0, we are interested in
studying them on the domain D that has the property that
if v,v+dv € D, dv # 0 then

(5(1} + dv) — S(U)) (T(v +dv) — T(U)) <o0.

In other words, we are interested in the domain where eval-
uating £ and 7 for a point v + dv different than v results in
increasing £ while decreasing 7 or vice-versa. Specifically,
we are not interested in domains where

(e +dv) — £)) (T (v +dv) - T(v)) > 0;

since then there is no trade-off and the optimization becomes
trivial.

We do not require D to be continuous. It is important that
our functions are general enough to be definable on noncon-
tinuous domains. This allows us to use them to reason about
noncontinuous parameter spaces like different architectural
implementations of a given algorithm or different decompo-
sitions of a high level circuit specification. For example, if we
want to evaluate the architectural trade-off between adders,
the union of each different adder architecture (ripple-carry,
carry-lookahead, carry-save, etc) can form the domain D.

With the previous clarifications about D in mind, the first
form we propose for an efficiency metric combines the energy
consumed by the computation, and the delay (cycle time or
latency) of the computation, in the form

0,(v): D — Ry,0,(v) =EW)TW)", n>0.

When the domain D of variable v is clear or irrelevant, we
will omit explicitly using v in ©,, £ and 7. Furthermore,
when we will use the value of £ or T evaluated in a specific
point vo that follows from the context, we will use E and ¢
as a shorthand for £(vo) and T (vo), respectively.

Intuitively, the metric @, = 7™ implies that a 1% im-
provement in speed is worth roughly an n% increase in en-
ergy consumption. If one values the computation delay with-
out regard to the consumed energy, the energy-delay effi-
ciency index is n = co. Conversely, if one values the energy
consumed by the computation without regard to the compu-
tation delay, the energy-delay efficiency index is n = 0. All
in all, the metric ©, = £T" quantifies—through the single
parameter n—the entire range of feasible preferences in the
trade-off between energy and delay.

It has been argued in [1] that Et>—or with our notation
O, (n = 2)—is independent, in first approximation, of the
supply voltage. In other words, for v = (..., V,...) € D (v in-
cludes the supply voltage V'), ©a(..., V1,...) = Oa(..., Va,...)
V Vi,Va. Practically this means that away from velocity
saturation and threshold voltages, energy and delay can be
freely exchanged through supply-voltage adjustment (within
the feasible voltage range) while ©2 remains constant. We
shall point out that if ©,, is constant under the variation of
a certain design parameter, E and t cannot be determined
uniquely (as is the case with voltage scaling).

3. A MINIMUM-ENERGY FUNCTION

We can further refine the energy function € (x) and the de-
lay function 7 (%) by defining two implicit functions: energy
function of delay and delay function of energy. More pre-
cisely, we introduce a single-variable antimonotonic function
by defining a minimum-energy function E(t) : R+ — R4
that describes the minimum energy required for a system to
run at a given t. Similarly, we introduce a single-variable
antimonotonic function by defining a minimum-delay func-
tion t(E) : R+ — Ry that describes the minimum delay of
a system that consumes energy E. Through these two func-
tions, we have abstracted away the original domain D of
E(x) and T (x); however, it should be noted that the choice
of D has an impact of the expressions of E(t) and ¢t(E). Fur-
thermore, these two functions depend at high level on the
particular computation being implemented and at low level
on the circuits and device parameters used.

We shall point out that both of these functions are well
defined (in the mathematical sense). In particular, for the
minimum-energy function even though there could be sev-
eral ways to achieve a delay t, yielding several—possibly
different—energy values E, by us picking the smallest of
them we force this relation to take a unique value for each
input ¢, and thus become a well defined function. A similar
argument applies to the minimum-delay function.

The related optimization problem consists of finding these
functions over parts or the entire domain of definition.

It can be shown that the minimum-energy function and
minimum-delay function represent the same implicit rela-
tion between E and t. More precisely, the minimum-energy
function and the minimum-delay function are the inverse of
each other, i.e., Eot =toFE = I, where I is the identity
function. It turns out that the minimum-energy function
lends itself better to mathematical manipulation, given the
fact that many compositional properties result in relations
in terms of the delay t. For this reason, we will use only the



minimum-energy function in our reasoning, but one should
remember that the same argument can be stated in terms
of the minimum-delay function.

Again, we do not require the domain of the minimum-
energy function to be continuous. However, when we re-
late this function to the previously defined Et" metric, we
need—as it will be shown later—to be able to compute
dE/dt. If the domain is continuous and the minimum-energy
function is differentiable in any point of the domain dE/dt
is well defined. However, if the domain is noncontinuous,
we would still like to use the concept of dE/dt, even though
E(t) is not differentiable in the vicinity of ¢t. To overcome
this problem, we define dE/dt on a noncontinuous domain
as the derivative of another differentiable function that in-
terpolates E in the vicinity of ¢.

In the next subsection, we give an example of a minimum-
energy function and of a minimum-delay function for a par-
ticular type of optimization.

3.1 A Minimum-Ener gy Function for Transis-
tor Sizing

Transistor sizing is the optimization of a circuit that cor-
responds to choosing a set of transistor sizes that optimize a
given metric. It has been shown in [3] [4] [5] that for optimal
transistor sizing for Et", the consumed energy is

E, =~ (1 + n)Eo (1)

and the delay is
1
tn & (1 n E)too (2)

where Ej is the total switched wire capacitance of the circuit
and to is the lower bound on the achievable delay of the
circuit.

Even though Equations 1 and 2 transform to equality for
only a very restricted class of circuits, they are in fact good
approximations for a much wider class. We have checked the
equations against the minimal Et" obtained by applying an
optimization algorithm (gradient descent) to two classes of
circuits. In the first class, each circuit consisted of a ring
of operators that were chosen at random with a uniform-
squared distribution of parasitic capacitances; the number
of transistors in series was also chosen according to such a
distribution. We used real numbers for both parameters;
we optimized the expression for Et" where E was consid-
ered proportional to the total amount of gate and wire ca-
pacitance switched during computation and ¢ was expressed
using the 7 model (Elmore delay). The range of parasitics
was [1,100] in normalized units; the range of transistors in
series was [1,6].

The results of the simulations for circuits consisting of a
ring of 100 operators are summarized in Figure 1. (Simu-
lations for rings of 10 and 1000 operators show similar re-
sults.) The figure shows the mean and standard deviation of
the error in the estimates of Equations 1 and 2 for a range
of different optimization indices (n € 1..10 in Et™). The
estimates get more dependable for larger circuits, where the
random variation in operators tends to average out over the
cycle. Overall, the estimates are usually good to within five
percent of the energy and within two percent of the delay
values for the actual optimum Et".

The second class of circuits consisted of a closed chain
of connected rings of operators with parasitic capacitances,
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Figure 1: Results of simulating a ring of random
gates and parasitics.

number of transistors in series and number of operators cho-
sen the same way as in the previous experiment. Again,
we find the estimates good to within eight percent of the
energy and within five percent of the delay values for the
actual optimum Et". All together, these results show that
Equations 1 and 2 hold, with very good accuracy, over a
wide range of parasitics, logic-gate types, circuit sizes, and
circuit topologies.

Note that Equations 1 and 2 hold not only for a ring, but
also for a “chain” of operators, as long as the parameters
for the input of the chain are equal to the parameters for
the output of the chain (since in this case the equations of
E and t for a chain have the same form as the ones for a
ring). This is an important observation, as it makes our re-
sults for transistor sizing applicable to circuit delays both in
terms of latency and cycle time. Whenever we will use la-
tency as the measure of delay, we make the assumption that
the scrutinized component has its input “drive” equal to its
output “drive” (i.e., no amplification). This is a reasonable
assumption since most logic-gate chains are part of closed
ring topologies.

Equations 1 and 2 establish two important properties of
systems optimized for Et". First, the consumed energy F,
is independent, in first approximation, of the types of gates
(NAND, NOR, etc) used by the circuit and is solely depen-
dent on the optimization index n and the amount of wiring
capacitance switched during computation. Second, the cir-
cuit speed t, is independent of the parasitics and depends
only on the optimization index n and the types of gates used.
Furthermore, Equations 1 and 2 provide a good estimate of
both energy and delay of an energy-delay efficient system.
They allow an abstract view on transistor sizing and shift
the design emphasis to the logical level of circuits.

If we rewrite Equations 1 and 2 with E a function of t—by
eliminating n—we get the following function

E(t) = . 3)

It is easy to prove that Equation 3 satisfies the above defi-
nition of the minimum-energy function.
Similarly, one can express t as function of E and get the



minimum-delay function for optimal transistor sizing

too B
4
E—EO ( )

H(E) =

In the context of transistor sizing, we define the asymp-
totic power as

P:

8|5

The energy and delay used in defining the asymptotic power
are of course not simultaneously attainable; yet the asymp-
totic power is related to the actual circuit power. More
precisely, the power consumption of a circuit optimized for
Et" through transistor sizing is

P=—=n— =nP. (5)

This relationship shows that the power consumption in-
creases linearly with the optimization index n. In partic-
ular, the power consumption of a circuit optimized for Et is
half that of the same circuit optimized for Et*. Equation 5
also relates the optimization index n to the ratio between
the actual power consumption and the asymptotic power of
the circuit.

It should be noted that through the single parameter t—
using the minimum-energy function—one can quantify the
entire range of feasible preferences in the trade-off between
energy and delay. The same holds for the single parameter
E using the minimum-delay function. But this outcome
was already achieved by the Et" metric in Section 2. For
this reason, we would like to know if these new functions
are fundamentally different than our previous Et" metric?
More precisely, if a system were to be optimized using one
of these functions or the Et"™ metric, would that result in
different values of the optimal E and t?

4. METRIC EQUIVALENCE

The answer to the previous question is given by the fol-
lowing

THEOREM 1. Given an energy-delay optimization of a com-

putation, the problem specified as “find Eo = min E given
to” is equivalent to “find the values of E and t that mini-
mize Et™0 for ng = —%’E‘il—f(tg)”—when such a solution is
unique. Similarly, the problem specified as “find to = mint
giwen Eo” is equivalent to “find the values of E and t that
minimize Et™° for ng = —;O % ?—when such a solu-
tion s unique.

ProOOF. We prove the equivalence of the two statements
by showing that one implies the other and vice-versa. First,
assume that we are solving “find Ey = min E given to”.
Minimizing Et™ for the given ¢o implies—for any n—finding
the minimum E given toc—which in this case is Eo. Sec-
ond, assume we are solving “find the values of E and t that
minimize Et"° for ng = —g—%‘fi—f(to)”. With the help of
the minimum-energy function, we can write Et" as a single-
variable function in ¢. This function is minimized—given

that the minimum-energy function is antimonotonic—where
d(Et") _

a0
= ii—ft()"+nE6t6"_1=0
= ;—%Z—f+n=0,
but for now
nznoz—é—o(fl—f(to)

tdE,,.
E_{)E( 0) = E—OE(tO)-

Thus, we found Ej and t; that optimize Et™° such that

ty dE , , to dE

El, dt (to) = g5 az (o)-
Clearly, Eo and to are solutions of this equality. However,
by hypothesis the solution to the minimization problem is
unique = ty = to = Ej = E(ty) = E(to) = Eo as well.
Thus, when optimizing Et™ with n = nyg, if a unique solution
exists, we find it to be the required Ey and ¢o. [

=

The uniqueness of the solution minimizing Et"° is impor-
tant for non-ambiguously determining Fy and to. It could
be the case that there are several (E,t) pairs—including
(Fo,to)—that minimize Et"™°. In particular, the metric E¢"°
accepts infinitely many (E,t) pairs as solution if E(t) = ct ¥,
¢ >0, k> 0. If more than one solution exists, finding the
solution pair (Ep,to) reduces to choosing from the set of so-
lution pairs (E,t) the one that has t = to.

Theorem 1 tells us that, for a given system to be optimized
in terms of both FE and ¢, one can pose the optimization
problem either in terms of an energy-delay efficiency index
n, or a desired delay target ¢t and obtain as result the same
optimal values of E and t. This seemingly harmless result
has the great benefit of allowing the application of the results
developed for Et" optimization [3] [4] [5] to other types of
energy-delay optimizations—optimizations where either the
target energy or the target delay are fixed. As a concrete
example consider finding the optimal transistor sizes of a
circuit so as to achieve delay to for minimal energy. Given
to, one can find the corresponding energy-delay optimiza-
tion index no. With ng at hand—using the methodology
developed in [5] for optimal Et" transistor sizing—one can
generate directly the transistor sizes that achieve delay to
for minimal energy consumption.

In the next section we apply the concept of metric equiv-
alence to the parallel and sequential composition of circuits.

5. COMPOSITION

It is often the case, in practice, that one wishes to de-
compose the design of a complex system into a set of rel-
atively independent subsystems, which then can be inde-
pendently designed and implemented. If the optimization
problem is defined globally using any of the parameters n,
t or E, it is not immediately clear how subsystems of the
original design should be optimized in terms of n, t or E,
so as to achieve global minimum when the subsystems are
recomposed.

The two major composition techniques used in VLSI de-
sign are parallel composition and sequential composition.



In the following, we show how the energy-delay efficiency
metrics have to be applied to subcomponents so as to yield
global minimum when recomposed in parallel or serially.

We will assume that each subsystem S; has its own opti-
mization index n; (to be determined), and its own minimum-
energy function E;(t).

5.1 Parallel Composition

Let us consider the parallel composition of m subsys-
tems S;. Let us assume a computation that runs in parallel
all S;’s to completion before starting a new computation.
We want to know at what ¢; to run S; or which n; to opti-
mize S; for, so as to obtain the best E for a given ¢t or to
minimize Et™ for a given n, respectively.

Let us consider the first case, i.e. when we would like
to find the minimal E for a given ¢{. Knowing that S; will
complete after delay ¢ = maxi<i<m(t:), there is no reason
to run any of the subsystems faster than ¢, in other words
t; = t, Vi € 1.m. Under these circumstances, the energy
consumption of S; is E;(t) and the total energy consumption
is E=3" FE;i(t). Using Theorem 1 we can determine

m

n=- (Z d]flit(t)) EzlltEi(t)

and
_ dE; (t) t
N dt Ei(t)

On the other hand, if n is given—noting again that ¢; =
t, Vi € 1..m—we can use the minimum-energy functions of
subsystems S; to write Et" as a single-variable expression
in ¢. If this single-variable function is continuous and differ-
entiable, we find its minimum using the methods of math-
ematical analysis. If Et" is not continuous—because the
underlying domain is not continuous—one can still find the
minimum by enumeration. Once the point of minimum is
known, all other unknowns can be determined the same way
as in the previous case.

In the following, we consider a relevant example of energy-
delay optimization in the context of parallel composition.

5.1.1 Parallel Composition and Transistor Szing

Consider a system consisting of the parallel composition
of m subsystems S; optimized through transistor sizing for
energy-delay efficiency. Given the nature of the optimization
parameter (transistor sizing), the minimum-energy function
of S; is given by Equation 3 as F;(t) = Eoit/(t —teoi) where
Ey; is the total switched wire capacitance of subsystem S;
and teo; is the lower bound on the achievable delay of sub-
system S;.

Lets consider the first instance of the optimization prob-
lem, namely when ¢ is given and we want to find the min-
imum FE that achieves this ¢. Based on the previous dis-
cussion on parallel composition, using the minimum-energy
functions we can compute E directly as

B =Y B =) o ©)

t_tooi '

i

i=

Then, we can find

m  dE;(t) m _Egiteos
D T Xitt (t—tooi)?

LB Nr, e

n=—t

and
dE;(t)
do o et (7)
E;i(t) t—tooi
On the other hand, if we are given n and asked to find E
and t that optimize Et", we use Equation 6 to write

m
Bt = (30 2 )

i=1 fo o)}

n; = —t

and then minimize this single-variable function of ¢. It fol-
lows that, min Et" = dEY) — () = t as the solution to a
2m — 1 order polynomial equation. With the computed ¢,
E and E; follow. Lastly, we would like to find what n; to
optimize S; for, so as to yield global Et" optimality. We can
obtain this by computing n; directly using Equation 7.

With the help of the minimum-energy function and the
energy-delay efficiency index, we can infer several properties
of parallel composition optimized through transistor sizing
without the need to solve a 2m—1 order polynomial equation
to compute t. These properties are presented next.

THEOREM 2. For the parallel composition of m systems
Si(Foi,teoi), if the composed system is optimized for Et"
through transistor sizing, then

n=n; Vi €El.m <= toi =1tw; Vi,j € 1. m.

Theorem 2 tells us that the parallel components of a system
can be optimized independently for Et", yielding global op-
timum when recomposed, if and only if all tw;’s are equal.
Otherwise, even if one is globally optimizing for n, locally
one needs to be able to optimize for n; # n.

Consider, as an example, two subsystems S; and S> that
have too1 = 1, Eo1 = 2, teo2 = 3, and Eo2 = 1. If the par-
allel system composed of subsystems S; and Sz is globally
optimized for Et? then S is locally optimized for Et while
Sy is locally optimized for Et>.

THEOREM 3. For the parallel composition of m systems
Si(Eoiytooi), if the composed system 1is optimized for Et"
through transistor sizing, then

1 m
E = ﬁ ZniEi,
i=1

or equivalently

Z (ni —n)(1 4+ n;)Eo; =0

i=1

or equivalently

_]' - 2A.

Theorem 3—in its first form—relates the total consumed en-
ergy, as defined by Equation 6, to the optimization indexes
of the components and their respective energies, or—using
the second form—it relates the optimization indexes to the
minimal energies Ep; of the components. The last form of
Theorem 3 relates the total power of the system to the opti-
mization indexes and asymptotic powers of its components.



THEOREM 4. For the parallel composition of m systems
Si(Eoi, tooi), if the composed system is optimized for Et™
through transistor sizing, then

E<(n+1)) Eo
=1

with equality if and only if all to;’s are equal.

PrOOF. The optimal Et" of this composed system is reached
for E and t that satisfy

AEG) _

dt
which is achieved when
~  Eo; - Eo;
1 = _— .
e SRS S

We may now invoke the Cauchy-Schwarz inequality

() = (50) (5).

where equality holds if and only if /;/r; has the same value

for all . If we substitute [; « tv_fo", and r; < v/ Ep;, we get
that

m qu/ m
(Z t— tooi) Z t — tOO’L)2 Z EO?, (9)

i=1 i=1
with equality if and only if all to;’s are equal. Using Equa-
tion 8, we replace > o t 53 with (”‘H) ¥ tEm - in Equa-
tion 9, and we get the followmg result

"\ E ’ (n+1) <~ E
01 01
< Eoi .
(;t—tmi) =t Z:t—tmz o

By Equation 6, then,

m

Eo; -
(B)=t) ;—— <(n+1))_ Foi.
i=1 oot i=1

And therefore

E<(n+1)) Eo .

i=1

O

In Theorem 4, equality holds if and only if all t;’s are
equal; in this situation, we also have that F; = (n + 1)Ey;.
In practice, generally all bits within a datapath pipeline are
identical and different datapath pipelines have similar struc-
ture, thus it could be assumed that—for most well designed
circuits—the cycles formed by these bits have very simi-
lar (or identical) to’s. So, we should expect that usually
E = (n+1) Y Eo; . The existence of some potentially faster
cycles (due possibly to buffers or fast control) will not have
a significant impact on the global speed and energy of the
system.

Let us consider a numerical example to illustrate The-
orem 4. If n = 2, m = 2, teo1 = 1, teo2 = 1.2 and
E¢p1 = Eg2 = 10 then ¢t = 1.70 and E = 58.37 (E =
Ey + E> = 24.31 + 34.06). Notice that (1 + L)te1 = 1.5,

(1 + )too2 = 1.8, (n + 1)E01 = 30 and (n + 1)E02 = 30.
Thus, "the optimal runmng speed of the system is between
(14 2)teo1 and (1 + 1)tz (as claimed by the next theo-
rem). The way t is reached is by running the faster system
S slower than its own speed target (1+ %)tool — thus sav-
ing energy (from (n + 1)Ep = 30 to E1 = 24.31), and run-
ning the slower system S, faster than its own speed target
(14 L)too2 — thus spending more energy (from (n+1)Eo2 =
30 to E> = 34.06). What Theorem 4 is saying is that the en-
ergy trade-off between the slow and the fast systems is done
such that only part of the energy saved by slowing down Si
is spent on speeding up S2; i.e. (n+1)E¢1+ (n+1)Ep = 60
is always greater that E = 58.37.

THEOREM b. For the parallel composition of m systems
Si(Eoi, teoi), if the composed system is optimized for Et"
through transistor sizing, then

1 1
max(.ma.x tooi, (1 + —) min tom) <t< (1 + —) max toos.
i€l..m n n/iel.m

i€l..m

with equality if and only if all tooi’s are equal.

In Theorem 5, equality holds if and only if all tw;’s are
equal; in this situation, we also have that ¢t = (1 + %)too.
Theorem 5 bounds the optimal running speed of a circuit
between its scaled (1+1)x slowest cycle (minie1..m tooi) and
fastest cycle (max;e1..m tooi). If those cycles are close to each
other—as is the case in a balanced design—both bounds on ¢
are tight. If n — oo then maxic1..m tooi <t < MaXic1..m tooi
= t = maxjc1..m tooi, i.6. the delay of a circuit optimized
for speed only is limited by the delay of its critical cycle; an
expected result for speed-only optimization.

Based on Theorems 4 and 5, we can find an upper bound
on the minimum FEt", as suggested by the following

THEOREM 6. For the parallel composition of m systems
Si(Foiyteoi), if the composed system is optimized for Et"
through transistor sizing, then

min(Et") < (n +1) (i Eo,-> ((1 + %) max tM) n

i=1

with equality if and only if all tooi’s are equal.

As mentioned earlier, in a well designed system, the to;’s
are close to each other; thus, the upper bound given by
Theorem 6 is tight and can be used as a good approximation
of the actual minimal Et".

5.2 Sequentialcomposition

Let us now consider the sequential composition of m sub-
systems S;. Let us assume a sequential computation that
runs S; to completion, then S to completion, all the way
to the completion of S;,; we assume the delay between the
end of S; and the start of S;41 to be negligible. Again, we
want to know at what ¢; to run S; or which n; to optimize
S; for, so as to obtain the best F for a given t or to minimize
Et™ for a given n, respectively.

THEOREM 7. For the sequential composition of m sys-
tems Si(Foi,teoi), if the composed system is optimized for
minimum energy E given a delay t or for Et™, then

dEi(ti) dE;(t;)
dt; dt;

Vi,j € 1.m.



Theorem 7 is a very general result, it holds for any energy
function E(t) (as defined earlier) and any optimization in-
dex n. It extends to the more general case of sequential
composition where each subsystem S; is used repetitively
with probability p;.

Using Theorem 7 one can determine ¢;, E; and E. If n is
not given, it can be determined from

_ dE;(t;)) Yt t;
- dt; Eznzl E; (t,) ’

while
o dE; (tz) ti
t dt; E; (ti) )
In the following, we consider a relevant example of energy-
delay optimization in the context of sequential composition.

5.21 Sequential Composition and Transistor Szing

Consider a system consisting of the sequential composition
of m subsystems S; optimized through transistor sizing for
energy-delay efficiency.

THEOREM 8. For the sequential composition of m sys-
tems S;(Foi,tooi), if the composed system is optimized for
Et™ through transistor sizing, then

n=mn; Vi € l.m < 13¢=]A3jVi,j€1..m

Theorem 8 is the equivalent, for sequential composition, of
Theorem 2. Theorem 8 tells us that the sequential compo-
nents of a system can be optimized independently for Et",
yielding global optimum when recomposed, if and only if all
P;’s are equal. Otherwise, even if one is globally optimizing
for n, locally one needs to be able to optimize for n; # n.

THEOREM 9. For the sequential composition of m sys-
tems Si(Foi,toci), if the composed system is optimized for
Et", then

n;

P="p Viel.m.
n

Theorem 9 is the equivalent, for sequential composition, of
the third form of Theorem 3. Theorem 9 relates the total
consumed power of the system to the optimization indexes
and asymptotic powers of its components.

THEOREM 10. For the sequential composition of m sys-
tems Si(Eoi,tooi), if the composed system is optimized for
Et™ through transistor sizing, then

E<(n+1))  Eo
i=1

with equality if and only if all P,’s are equal.

Theorem 10 is the equivalent, for sequential composition, of
Theorem 4. In Theorem 10, equality holds if and only if
all P;’s are equal; in this situation, we also have that E; =
(n + 1)Eo;. Given that Theorems 4 and 10 have the same
form, it follows that for any parallel-sequential composition
of circuits a property of the same form holds.

THEOREM 11. For the sequential composition of m sys-
tems Si(Eoi,teoi), if the composed system is optimized for
Et™ through transistor sizing, then

1 m
t§(1+ﬁ);tmi

with equality if and only if all P;’s are equal.

Theorem 11 is the equivalent, for sequential composition,
of Theorem 5. In Theorem 11, equality holds if and only
if all P’s are equal; in this situation, we also have that
ti = (1 + 1)tcoi. The same way as Theorems 4 and 10 give
an upper bound on the energy E for a parallel-sequential
composition, Theorems 5 and 11 give an upper bound on
the delay ¢ of the same composition.

THEOREM 12. For the sequential composition of m sys-
tems Si(Foi,tooi), if the composed system is optimized for
Et™ through transistor sizing, then

P; P;
=L Vijel.m.
P; ﬁj

Theorem 12 tells us that when optimizing through transistor
sizing, circuits composed sequentially should be designed so
as to make their power usage proportional to the square-root
of their asymptotic power.

The achievable upper bound through transistor sizing of
a sequential composition follows from Theorem 10 and 11
and is given by the next

THEOREM 13. For the sequential composition of m sys-
tems Si(Eoi,teoi), if the composed system is optimized for
Et™ through transistor sizing, then

ey < 00 (3550 (14 2) ()

with equality if and only if all P;’s are equal.

Theorem 13 is the equivalent, for sequential composition,
of Theorem 6. The given upper bound is, in practice, a tight
bound and due to the flatness of the Et™ metric around the
optimum it is a good approximation of the absolute mini-
mum.

While it is rather obvious what it means to have all too;’s
equal for parallel composition, it is not immediately clear
what all P;’s equal imply. Consider two pipeline stages Si
and S composed sequentially, and assume that S operates
on N; bits while S2 operates on Ny bits. Further assume—
for simplicity—that, per bit, the minimal energies and the
minimal delays are the same for both pipeline stages, re-
spectively. In other words, Eo1 = N1Eop, tec1 = te and
Eo» = Na2FEy, tew2 = teo. This assumption is reasonable
for pipelines with comparable per-bit-complexity and sim-
ilar latency—so as to operate in the same clock domain.
When we compute the asymptotic powers of S1 and S> we
get that Py = ng‘} and P, = Nz%. For these two val-
ues to be equal—as required for equality in Theorems 10, 11
and 13—we need to have N; = N», i.e. the number of bits
each pipeline operates on should be the same. This suggests
that the bounds are tighter for pipeline chains that aver-
age out more evenly the number of bits operated on in each
individual stage.



Theorem 6 together with Theorem 13 provide an upper
bound to the energy-delay efficiency of any parallel-sequential
composition of circuits. Furthermore, they suggest a prac-
tical way to improve the energy-efficiency of these circuits
by reducing the Ep;’s and to;’s. Transistor sizing is not
able to change the t;’s or the Ey;’s, since they depend on
other variables than transistor sizes—such as circuit micro-
architecture, supply voltage, and fabrication technology.
Thus, improving these other factors will ultimately impact
the efficiency of the final design. In particular, it should be
noted that Fo; depends on the wiring of system S;; thus,
compact hand layout or good layout tools can make a dif-
ference on the energy-efficiency of circuits. Similarly, tec;’s
can be directly improved by a proper choice of transistor
netlist topology.

6. CONCLUSIONS

In this paper we introduced an energy-delay efficiency
metric that captures any trade-off between the energy and
the delay of the computation. We have presented two—
seemingly different—ways to capture this trade-off and we
have shown that these two forms ultimately yield the same
circuit solution.

We applied this new concept to the parallel and sequen-
tial composition of circuits in general and in particular to
circuits optimized through transistor sizing. We gave neces-
sary and sufficient conditions under which subcomponents
of a design can be optimized independently so as to yield
global optimum when recomposed. We bounded the de-
lay and energy of the optimized circuit and we gave neces-
sary and sufficient conditions under which these bounds are
reached. When applied to transistor sizing, we found that
circuits composed sequentially should be designed so as to
make their power usage proportional to the square-root of
their asymptotic power. Many of the results inferred for par-
allel and sequential composition apply directly to the more
general parallel-sequential composition of circuits.

We have demonstrated the utility of the minimum-energy
function and its capacity to capture high level compositional
properties of circuits. The use of the minimum-energy func-
tion gave us practical insight into ways to improve the overall
energy-delay efficiency of the studied design.
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