
Efficient Implementation of a Complex ±1 Multiplier

Boris D. Andreev, Eby G. Friedman, and Edward L. Titlebaum

Department of Electrical and Computer Engineering
University of Rochester

Rochester, New York 14627

{bandreev, friedman, tbaum} @ece.rochester.edu

ABSTRACT
A complex ±1 multiplier is an integral element in modern

CDMA communication systems, specifically as a pseudonoise code
scrambler/descrambler. Therefore, an efficient implementation is
essential to reduce the critical path delay, power, and area of
wireless receivers. A new architecture is proposed to achieve this
complex multiplier function. Tradeoffs and design solutions as well
as the interface with subsequent arithmetic circuits are discussed.
Simulations exhibit a significant speed improvement as compared to
alternative architectures. These results are also applicable to other
arithmetic circuits.*

Categories and Subject Descriptors
B.2.4 [Arithmetic and Logic Structures] High-Speed Arithmetic:
 Algorithms
B.7.1 [Integrated circuits] Types and Design Styles:
 Algorithms implemented in hardware, VLSI
I.1.1 [Symbolic and Algebraic Manipulation] Expressions and
Their Representation: Representations, Simplification of expressions

General Terms
Design, Algorithms

Keywords
VLSI, CDMA, PN code, scrambler, redundant arithmetic

1. INTRODUCTION
Modern CDMA cellular systems employ spread spectrum

technology to provide multiuser access. In addition to the
spreading operation, an integral part of the transceiver is the
scrambling operation, which involves the multiplication of
the chip sequence with a pseudonoise (PN) code in order to
distinguish signals from asynchronous users. In the Third
Generation Partnership Project (3GPP) wireless standard [1],
the scrambling code is complex, therefore, a corresponding

* This research is supported in part by the Semiconductor Research
Corporation under Contract No. 99-TJ-687, the DARPA/ITO under AFRL
Contract F29601-00-K-0182, grants from the New York State Office of
Science, Technology & Academic Research to the Center for Advanced
Technology – Electronic Imaging Systems and to the Microelectronics
Design Center, and by grants from Xerox Corporation, IBM Corporation,
Intel Corporation, Lucent Technologies Corporation, Eastman Kodak
Company, and Photon Vision Systems, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’02, April 18-19, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-462-2/02/0004…$5.00.

complex multiplication operation is required in both the
transmitter and the receiver. The standard transmission
scheme is shown in Fig. 1, where after spreading and scaling
operations, a complex signal is formed and multiplied by a
complex PN code. Since the components of the complex PN
code take binary values in the set {−1, +1}, the scrambling
multiplier should be optimized to reduce the critical path
delay, power, and area of wireless transceivers. Since no such
circuits have been reported to date, both conventional and
novel architectural solutions are presented here.

The bit-width of the input and output operands is among the
primary characteristics of any arithmetic circuit. A sufficient
fixed-point number representation is dependent on both the
parameters of the cellular system and the particular detection
algorithms. As described in [2] and [3], the implementation
of certain multiuser algorithms with 8-bit to 16-bit
representation of the received signal suffers negligible
performance degradation as compared to a system
implemented with floating point precision. Therefore,
arithmetic circuits on the order of 8 to 16 bits are discussed in
this paper with particular attention focused on an 8-bit
representation.

These results are not limited to the application of a complex
±1 multiplier as a scrambler in wireless transceivers. The
ideas and relations may also be used as a basis for the
efficient implementation of other arithmetic circuits.

To QPSK
modulator

Complex
±1 multiplier

Control channel

Data channel 6

Data channel 4

Data channel 5

Data channel 2

Data channel 3

I Σ

j

cd,1

βd

Complex
PN code

I+jQ

Data channel 1

Q

cd,3

βd

cd,5

βd

cd,2

βd

cd,4

βd

cd,6

βd

cc

βc

Σ

Fig. 1: 3GPP standard transmission scheme [1]

In section 2, architectural tradeoffs and solutions are
described along with some background on signed-binary
arithmetic. Logic level design issues are discussed in section
3 while simulation data and a comparison of the proposed
implementation with more standard alternatives are
summarized in section 4. Some conclusions are offered in
section 5.

2. ARCHITECTURAL DESIGN
Conventional architectural solutions to the complex

multiplier problem are formally introduced in section 2-A.
Some background on signed-binary (SB) arithmetic is
presented in section 2-B. This approach is applied in section
2-C to the development of a proposed complex multiplier
architecture.
A. Conventional Solutions

A symbolic description of a ±1 complex multiplier is
shown in Fig. 2 where each of the outputs can take on one of

four possible values (as characterized in Table 1). The input
signal is described by the complex number a + jb and the PN
code by PNre + jPNim where PNre and PNim are in the binary
set of {−1,+1}. The output complex signal is A + jB = (a +
jb)·(PNre + jPNim). All of the numbers, a, b, A, and B, are

represented in two's-complement (TC) format with N-bit
precision for the inputs and N+1-bit precision for the outputs.

The structure of a complex ±1 multiplier circuit is therefore
different from that of a general purpose complex multiplier.
Rather than considering two complex input operands, there is
only one complex input and a set of two binary control
signals, PNre and PNim. Two attractive architectural solutions
to achieve this function are shown in Fig. 3. In the Type I
architecture, the two branches are completely independent
and both may produce any of the four functions, whereas in
the Type II architecture each branch is dedicated to providing
either the ±(a+b) or the ±(a–b) functions and a final switch is
required to map these results to the correct complex output.
Area and power improvements may be achieved by
exploiting common features between the a+b and a–b
operations. Circuit speed may be increased by reducing the
overhead of the two's-complement circuits and the final
switch in the type II architecture. The conditional switches
controlled by the PN logic produce additional delay along the
critical path and, therefore, the number of these gates should
be minimized. Note that the critical path delay of both
branches must be equal, so that valid results appear almost
simultaneously at the outputs.

Table 1: Input / output relations for a ±1 complex multiplier

 PN code Outputs
 PNre PNim A B

 1 1 a − b a + b
 1 −1 a + b − (a − b)
 −1 1 − (a + b) a − b
 −1 −1 − (a − b) − (a + b)

PN
 c

od
e

Type I: Independent-branches architecture

Lo
gi

c
1

b a ba

B

2's complement

c0 Adder

A

2's complement

c0 Adder

Lo
gi

c
2

Lo
gi

c
3

c0=1

BA

baa b

a + b a − b

2's complement

Lo
gi

c
1

PN
 c

od
e

Type II: Switched-outputs architecture

Lo
gi

c
2

2's complement

Fig. 3: Conventional architectural solutions for a complex ±1 multiplier

a+jb a
b

A
B

±1 ±1
Fig. 2: Schematic symbol of a complex ±1 multiplier

A+jB

B. The Signed-Binary Approach
Generally, numbers in VLSI-based digital circuits are

represented in two's-complement format to facilitate the
implementation of arithmetic operations. During the past
decade, signed-binary number representation (SBNR) has
received increasing interest due to the attractive features for
carry free addition [4-7]. This capability leads to significant
benefits in the implementation of wide adders and more
complex arithmetic functions. However, the advantages of
this approach decrease in small addition operations due to the
significant overhead required for converting to the two's-
complement system. The addition of two numbers in two's-
complement format is essentially equivalent to the conversion
of an SBNR number into the two's-complement counterpart,
as shown by Blair [4]. The attractiveness of the signed-
binary (SB) approach lies in the parallel block
implementation of an adder [5,6] or in the utilization of this
format in sequential arithmetic operations without the
overhead of the final back conversion to TC [7].

The SBNR in sign-magnitude form is selected as an internal
representation of the proposed multiplier architecture. In
signed-binary format, the numbers b and –b differ only in the
sign bits. This feature may be exploited to identify common
stages of the a+b and a–b operations. Inverting a number in
sign-magnitude format is accomplished by inverting all of the
sign bits. This operation is more efficient than two's-
complement, which has a complexity on the order of an
adder. The benefits of the signed-binary representation may
potentially increase if several arithmetic stages are
incorporated in an SBNR tree before the final conversion to
two's-complement [7]. Considering the significant
complexity of CDMA multiuser detection algorithms [1]-[3],
a number of demanding operations may be implemented in
this intermediate format without inefficiently transforming all
results into two's-complement format. This strategy leads to
considerable improvements in power, area, and delay as
compared to conventional TC arithmetic.

Having chosen a number representation, the tradeoffs that
exist between the two proposed architectures are analyzed in
more detail. The final switch of the Type II solution shown in
Fig. 3 directs the results to the real and imaginary outputs.
This switch may be eliminated if both the addition and
subtraction operations over any operands (±a,±b) are
produced in both branches as is the case in the Type I
architecture. The switch may be implemented as 2(N+1)
multiplexers, while in the Type I circuit, 4N gates are
required. This switch, however, becomes less efficient if the
SBNR results are supplied to the following stage, doubling
the number of output lines to 4N.

The most expensive component in a signed-binary
architecture is the SB TC conversion. This operation is
essentially equivalent to a two's-complement addition.
Therefore, an existing efficient adder structure may be
applied in this conversion process [4]. The implementation
of an 8-bit circuit is possible through a carry-select

architecture with 4-bit carry-generation blocks [5,6] or via a
standard 8-bit carry-lookahead adder (CLA).

C. Proposed SBNR Architecture
In order to benefit from the advantages of redundant

arithmetic, the two's-complement value of the SB number
must be transformed into the required function. This
transformation is relatively easy to achieve for a single
function but becomes nontrivial when four functions are
required for the real and imaginary outputs as specified in
Table 1. One approach is to replace the addition and the
formation of the CLA generate-propagate (G-P) signals with
a preprocessing stage as reported in [4]. This concept is
further developed to achieve an efficient implementation of
all four functions of interest: (a+b), –(a+b), (a–b), and –(a–b)
[8]. The objective is to ensure that the two branches have
close to equal delay times with a minimum number of
conditional switches controlled by the PN code logic.

The sum of any two bits is a digit in the initial sum set
Sy={0,1,2}, while the signed-binary set is Sx={1,0, 1 }. The
computation of any of the four functions is accomplished in
four steps:

1. Map the input bits directly to the signed-binary
representation (number x) of the initial sum;

2. Manipulate this SB number according to the formulae
characterizing the particular function;

3. Convert the SB number x to the equivalent two's-
complement value of Tx(x) (using a regular CLA adder
and inverting output bits 0:N-1);

4. Set the Nth sign bit to produce the (N+1)-bit two's-
complement function result.

The realization of each of these operations is briefly
described below. Additional details are provided in [8]. The
essence of the direct mapping from the input bits to signed-
binary is in the transformation)z-(1)(ztr iixy = for

}SS{z yxi ∪∈ , where trxy(zi) can operate on both sets and is
self-inverting such that iixyxy z)](ztr[tr = for }SS{z yxi ∪∈
[4,8]. These transformations are listed in Table 2, where the
first transformation performs the sum and the second
transformation is represented by trxy(yi), where the initial sum
digit yi is mapped to the signed-binary digit xi.

Table 2: Redundant arithmetic transformations at the prelogic stage

Input
bits

Initial sum digit
yi Sy ∈

Signed-binary digit
xi Sx ∈

ai bi
+

yi c i+1 Si
trxy

xi signi magni

0 0 0 0 0 1 0 1
01 , 10 1 0 1 0 0 0
1 1

2 1 0

1 1 1

This process reveals the redundancy of the intermediate
representation in Sy and the direct relations for the sign-
magnitude format,

iiii Gbasign == (1)

iiii Pbamagn =⊕= . (2)
These functions are implemented in prelogic stages in both
branches. Note that these intermediate signals are the same as
the carry-generate Gi and the inverse of the carry-propagate
Pi in the carry-lookahead adder [4,5,9,10]. It is conceptually
convenient to distinguish between these signals such that a
number is referred to as sign-magnitude when discussing the
SBNR form and these signals are applied (with the magnitude
inverted) to the corresponding G-P inputs of a CLA. The
two's-complement values of the signed-binary representation
and the initial sum are related according to

)x(T2)x(T122)x(tr(x)][trT(y)T x
N

1N

0i
x

Ni
ixyxyyy +=−−=== ∑

−

=

, (3)

where)x(Tx is the binary number Tx(x) with all bits inverted.
Similar expressions for all four functions in the complex
multiplier are listed in Table 3 [8]. As described by (3), the
addition may be accomplished by inverting the bits of Tx(x).
Unfortunately, such a realization is not possible for the
–(a+b) function. In order to minimize the circuit differences
between the (a+b) and –(a+b) functions, as realized in the left
branch, an alternative realization of a+b through the
–[Tx(x)+1] operation is used. The left branch prelogic maps
the input bits directly to Tx(x)+1 while the rest of the circuit
remains the same as the right branch. The "+1" operation is
simple to perform in SB. The following (N+1)-digit signed-
binary result corresponds to Tx(x)+1 [8],







⊕==

⊕==

00
'
0

"
0

00
'
0

"
0"

0
baMM

baMS
d (4)







⊕⊕=⊕=

⋅⊕=⋅=

0011
'
0

'
1

"
1

0011
'
0

'
1

"
1"

1
babaSMM

babaSMS
d (5)

()
1Ni2

babaMSMM

babaMSMS
d

1i1iii
'

1i
'

1i
'
i

"
i

1i1iii
'

1i
'

1i
'
i

"
i"

i −≤≤








+⋅⊕=




⊕=

+⋅⊕=⋅=

−−−−

−−−− (6)







+==

=

−−−− 1N1N
'

1N
'

1N
"
N

"
N"

N
baMSM

0S
d , (7)

where each digit at the output "
id is expressed in sign-

magnitude form and is a function of the signed-binary input
or the input two's-complement operands, a and b. With these
expressions, the SBNR of Tx(x)+1 is achieved in two gate
delays. This number is converted to two's-complement or
alternatively may be inverted while in signed-binary form to
alternate between the (a+b) and –(a+b) functions.
 This algorithm is only correct if the input operands are N-
bit unsigned numbers or if the output result does not cause
overflow in N-bit precision. This problem is addressed in [8]
where it is shown that for two's-complement numbers, the Nth

Table 3: Summary of transform relations for the functions in a complex ±1 multiplier

Arithmetic
function

Bitwise
processing

Relation to
TY(y)

Relation to
Tx(x)

Implementation
description

a+b ai, bi TY(y)))x(T1(2 x
N +−

1. Obtain all xi from ai,bi, with +1 and invert sign bits
2. Produce the 2's complement –(Tx(x)+1), set the Nth bit

–(a+b) ai, bi –TY(y))x(T12 x
N ++−

1. Obtain all xi from ai,bi with +1
2. Produce the 2's complement Tx(x)+1, set the Nth bit

(a–b) ai, ib TY(y)+1)x(T2 x
N −

1. Obtain all xi from ai and ib
2. Invert all sign bits of x
3. Produce the 2's complement –Tx(x), set the Nth bit

–(a–b) ai, ib –[TY(y)+1])x(T2 x
N +− 1. Obtain all xi from ai and ib

2. Produce the 2's complement Tx(x), set the Nth bit

BA
Fig. 4: SBNR architecture of a complex ±1 multiplier

PN
 c

od
e

a b

N+1 N+1

rN

±(a-b) ±(a+b)

rN

G

N N

r0-(N-1)

P G

Lo
gi

c
2

Prelogic stage

CLA

P

1)x(Tx +

Lo
gi

c
1

r0-(N-1)

CLA

2

2

(sign) bit of the general (N+1)-bit result is

1N1N1N1N1N1N1N1NN cPGc)ba(bar −−−−−−−− +=⊕+= , (8)
where ri denotes the ith bit of the output result and ci is the
input carry of the ith full-adder cell. This function may be
conveniently implemented by an inversion of the carry bit
cN-1 passed to the circuit forming the final carry cN, in order to
account for the negative weight of the input sign bits. Since
the sign bit is controlled according to (8), the computation of
the Nth digit as in (7) is unnecessary (only rN and rN+1 are
controlled by dN). Therefore, an N-digit SB number is
computed.

The realization of the ±(a–b) functions in the right branch is
precisely the same as that of the left branch with the
exception of the "+1" addition. In the specific logic
implementation, this operation produces a negligible delay
overhead. Since the left branch prelogic must operate on a
and b (see Table 3), it is preferable to combine the prelogic
stages at either the gate or the layout level, considering the
following relations,

iiiiii ba)(signba)(sign =−=+ (9)

)(magnba)(magnba)(magn iiiiiii +=⊕=−⊕=+ . (10)
An architecture that includes these design concepts is
proposed in Fig. 4.

3. LOGIC LEVEL DESIGN
Most of the operations along the critical path are

implemented in NMOS CPL logic due to the speed, power
efficiency [11], and complementary outputs. Complementary
outputs are employed to achieve an efficient implementation
of the conditional inverters by integrating these circuits with
the previous stage. The availability of complementary outputs
also supports resource sharing between the (a+b) and (a–b)
branches [see (9) and (10)].

The adder performing the conversion to two's-complement
is the key logic circuit of the architecture shown in Fig. 4.
Adder circuits have been extensively discussed in the
literature and are applicable to the conversion circuit [4]. A
slow but area- and power-efficient adder is preferable as long
as the speed satisfies the target specification.

Several relations are deduced from the full adder truth table
[9], (1)-(8), and the Karnaugh maps associated with the
corresponding signals,

iiiiii GPP,GPG == , (11)

)1N(i0,cPGPcPGc iiiiiii1i −≤≤+=+=+ (12)
)1N(i0,cPGPc iiii1i −≤≤+=+ (13)

)1N(i0,cPcPcPr iiiiiii −≤≤⊕=⊕=⊕= (14)

1N1N1N1N1N1N1NN cPGPcPGr −−−−−−− ⋅+=⋅+= , (15)

1N1N1N1NN cPGPr −−−− ⋅+⋅= . (16)

Prelogic

"+1"

Conditional
inverter

Signed-binary --> Two's complement

Switch to
Re / Im
outputs

G4P4 P4

R1+ R0+

A4

S4 M4 M4

P0G0P1G1P1P2G2P2
P3 G3 P3P5G5P5

Fig. 5: An 8-bit implementation of the left branch of the SBNR architecture as shown in Fig. 4

P6G6P6P7G7P7

R2+R3+R4+
R4-

R6+R7+ R5+R8+

a 4
a 4 b 4

a 3
a 3 b 3

b 4 b 3

 As shown in (12)-(14), the inverted carry may also be
propagated, permitting a single inverter to be inserted as a
repeater to speed up the carry propagation chain. The sign bit
is controlled according to (15) and (16). An expression for
the sign inverse is also implemented by an inverter to achieve
higher output current and enhanced noise margins. Since rN is
a function of cN-1, an even number of inverters is required
along the propagation chain.

The critical path delay includes a carry propagation
through N – 1 transmission gates and one inverter [6] (note
that c0 = 0, so effectively G0 is propagated). The carry
propagation speed is significantly increased through logic
level optimization of the transmission gate chain. Inserting
two additional inverters in a chain of seven transmission
gates decreases the propagation time approximately three
times. In this case, either the carry signal or the inverse carry
signal is propagated.
4. SIMULATION RESULTS

To demonstrate the performance characteristics of the
proposed architecture, an 8-bit circuit is analyzed in a TSMC
0.25 µm CMOS technology with VDD = 2.5 volts. Delay and
area estimates are presented in Table 4 along with a
comparison of the alternative architectures under similar
technology and bias conditions. The architectures shown in
Fig. 3 have similar area-delay characteristics and, for
approximately the same area, the delay of the critical path is
50% higher in these conventional architectures than the
proposed SBNR realization. This increased speed is due to
reducing the two carry propagation chains to a single chain in
the proposed architecture. Adder techniques that trade off
area, delay, and/or power may be applied to the three
architectures to customize the circuit according to
application-specific performance requirements.

The circuit is targeted for a base station receiver where
power consumption is not a primary consideration. Since in
CPL most of the PMOS transistors along the critical path are
eliminated, the node capacitances are significantly reduced,
thereby achieving a higher operational speed and lower

power consumption. The signal path in CPL is along the
source-drains rather than the gates and the gate capacitance is
usually much larger than the junction capacitance. Therefore,
the delay is further reduced.

5. CONCLUSIONS
An efficient architecture of a complex ±1 multiplier circuit

is proposed in this paper. Redundant signed-binary arithmetic
is used to achieve a significant reduction in the critical path
delay. A comparison of these results with standard
architectures is provided. A speed increase of about 50% is
observed in the proposed SBNR architecture as compared to
conventional architectures.
REFERENCES
[1] 3G TS 25.213 V3.4.0 (2000-12) 3rd Generation Partnership Project; TSG
Radio Access Network; Spreading and Modulation (FDD), Release 1999.
[2] R. Cameron, Fixed-point Implementation of a Multistage Receiver, Ph.D.
Thesis, Virginia Polytechnic Institute and State University, January 1997.
[3] N. Zhang et al., "Architectural implementation Issues in a Wideband
Receiver Using Multiuser Detection," Proceedings of the Annual Allerton
Conference on Communication, Control and Computing, pp. 765-771,
September 1998.
[4] G. M. Blair, "The Equivalence of Twos-complement Addition and the
Conversion of Redundant-binary to Twos-complement Numbers," IEEE
Transactions on Circuits and Systems I: Fundamental Theory and
Applications, Vol. 45, No. 6, pp. 669-671, June 1998.
 [5] J. Dobson and G. M. Blair, "Fast Two's Complement VLSI Adder
Design," Electronic Letters, Vol. 31, No. 20, pp. 1721-1722, September 28,
1995
[6] H. Srinivas and K. Parhi, "A Fast VLSI Adder Architecture," IEEE
Journal on Solid-State Circuits, Vol. 27, No. 5, pp. 761-767, May 1992.
[7] T. Kim and J. Um, "A Practical Approach to the Synthesis of Arithmetic
Circuits Using Carry-save Adders," IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 19, No. 5, pp. 615-624, May 2000.
[8] B. D. Andreev, E. G. Friedman, and E. L. Titlebaum, "On Some
Transformations of Number Representation for Efficient VLSI Arithmetic,"
in preparation.
[9] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Ed.,
Addison-Wesley, 1993.
[10] R. Brent and H. Kung, "A Regular Layout for Parallel Adders," IEEE
Transactions on Computers, Vol. C-31, No. 3, pp. 260-264, March 1982.
[11] K. Yano et al., "A 3.8 Ns CMOS 16x16-b Multiplier Using
Complementary Pass-Transistor Logic," IEEE Journal on Solid-State
Circuits, Vol. 25, No. 2, pp. 388-395, April 1990

Table 4: Area and delay of an 8-bit complex ±1 multiplier
Shaded areas correspond to functional units, which are either

not applicable to the specific architecture or are not along the critical path.

Proposed SBNR
architecture

Type I: Independent-
branches architecture

Type II: Switched-
outputs architecture

Delay Delay Delay
Functional unit

Area
[µm2] gates [ps]

Area
[µm2] gates [ps]

Area
[µm2] gates [ps]

Prelogic 1500 1 200 1000 1 200

"+1" and inverter 1900 1 (+) 250

Converter or adder 3000 N 1350 3000 N 1350 3000 N 1350

Two's complement 3000 N 1350 3000 N 1350

Switch 900 1 200 900 1 200

PN logic 300 600 300

Total 7600 N+3 2000 7600 2N+1 2900 7200 2N+1 2900

	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

