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ABSTRACT 
A complex ±1 multiplier is an integral element in modern 

CDMA communication systems, specifically as a pseudonoise code 
scrambler/descrambler. Therefore, an efficient implementation is 
essential to reduce the critical path delay, power, and area of 
wireless receivers. A new architecture is proposed to achieve this 
complex multiplier function. Tradeoffs and design solutions as well 
as the interface with subsequent arithmetic circuits are discussed. 
Simulations exhibit a significant speed improvement as compared to 
alternative architectures. These results are also applicable to other 
arithmetic circuits.* 
 

Categories and Subject Descriptors 
B.2.4 [Arithmetic and Logic Structures] High-Speed Arithmetic:  
 Algorithms 
B.7.1 [Integrated circuits] Types and Design Styles:  
 Algorithms implemented in hardware, VLSI 
I.1.1 [Symbolic and Algebraic Manipulation] Expressions and 
Their Representation: Representations, Simplification of expressions 
 

General Terms 
Design, Algorithms 
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1. INTRODUCTION 
Modern CDMA cellular systems employ spread spectrum 

technology to provide multiuser access. In addition to the 
spreading operation, an integral part of the transceiver is the 
scrambling operation, which involves the multiplication of 
the chip sequence with a pseudonoise (PN) code in order to 
distinguish signals from asynchronous users. In the Third 
Generation Partnership Project (3GPP) wireless standard [1], 
the scrambling code is complex, therefore, a corresponding 
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complex multiplication operation is required in both the 
transmitter and the receiver. The standard transmission 
scheme is shown in Fig. 1, where after spreading and scaling 
operations, a complex signal is formed and multiplied by a 
complex PN code. Since the components of the complex PN 
code take binary values in the set {−1, +1}, the scrambling 
multiplier should be optimized to reduce the critical path 
delay, power, and area of wireless transceivers. Since no such 
circuits have been reported to date, both conventional and 
novel architectural solutions are presented here. 

The bit-width of the input and output operands is among the 
primary characteristics of any arithmetic circuit. A sufficient 
fixed-point number representation is dependent on both the 
parameters of the cellular system and the particular detection 
algorithms. As described in [2] and [3], the implementation 
of certain multiuser algorithms with 8-bit to 16-bit 
representation of the received signal suffers negligible 
performance degradation as compared to a system 
implemented with floating point precision. Therefore, 
arithmetic circuits on the order of 8 to 16 bits are discussed in 
this paper with particular attention focused on an 8-bit 
representation.  

These results are not limited to the application of a complex 
±1 multiplier as a scrambler in wireless transceivers. The 
ideas and relations may also be used as a basis for the 
efficient implementation of other arithmetic circuits. 
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Fig. 1: 3GPP standard transmission scheme [1]



In section 2, architectural tradeoffs and solutions are 
described along with some background on signed-binary 
arithmetic. Logic level design issues are discussed in section 
3 while simulation data and a comparison of the proposed 
implementation with more standard alternatives are 
summarized in section 4. Some conclusions are offered in 
section 5. 

 

2. ARCHITECTURAL DESIGN 
Conventional architectural solutions to the complex 

multiplier problem are formally introduced in section 2-A. 
Some background on signed-binary (SB) arithmetic is 
presented in section 2-B. This approach is applied in section 
2-C to the development of a proposed complex multiplier 
architecture. 
A. Conventional Solutions 

A symbolic description of a ±1 complex multiplier is 
shown in Fig. 2 where each of the outputs can take on one of 

four possible values (as characterized in Table 1). The input 
signal is described by the complex number a + jb and the PN 
code by PNre + jPNim where PNre and PNim are in the binary 
set of {−1,+1}. The output complex signal is A + jB = (a + 
jb)·(PNre + jPNim). All of the numbers, a, b, A, and B, are 

represented in two's-complement (TC) format with N-bit 
precision for the inputs and N+1-bit precision for the outputs.  

The structure of a complex ±1 multiplier circuit is therefore 
different from that of a general purpose complex multiplier. 
Rather than considering two complex input operands, there is 
only one complex input and a set of two binary control 
signals, PNre and PNim. Two attractive architectural solutions 
to achieve this function are shown in Fig. 3. In the Type I 
architecture, the two branches are completely independent 
and both may produce any of the four functions, whereas in 
the Type II architecture each branch is dedicated to providing 
either the ±(a+b) or the ±(a–b) functions and a final switch is 
required to map these results to the correct complex output. 
Area and power improvements may be achieved by 
exploiting common features between the a+b and a–b 
operations. Circuit speed may be increased by reducing the 
overhead of the two's-complement circuits and the final 
switch in the type II architecture. The conditional switches 
controlled by the PN logic produce additional delay along the 
critical path and, therefore, the number of these gates should 
be minimized. Note that the critical path delay of both 
branches must be equal, so that valid results appear almost 
simultaneously at the outputs. 
 

Table 1: Input / output relations for a ±1 complex multiplier 

 PN code Outputs  
 PNre PNim A B  

 1 1 a − b a + b  
 1 −1 a + b − (a − b)  
 −1 1 − (a + b) a − b  
 −1 −1 − (a − b) − (a + b)  
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B. The Signed-Binary Approach 
Generally, numbers in VLSI-based digital circuits are 

represented in two's-complement format to facilitate the 
implementation of arithmetic operations. During the past 
decade, signed-binary number representation (SBNR) has 
received increasing interest due to the attractive features for 
carry free addition [4-7]. This capability leads to significant 
benefits in the implementation of wide adders and more 
complex arithmetic functions. However, the advantages of 
this approach decrease in small addition operations due to the 
significant overhead required for converting to the two's-
complement system. The addition of two numbers in two's-
complement format is essentially equivalent to the conversion 
of an SBNR number into the two's-complement counterpart, 
as shown by Blair [4].  The attractiveness of the signed-
binary (SB) approach lies in the parallel block 
implementation of an adder [5,6] or in the utilization of this 
format in sequential arithmetic operations without the 
overhead of the final back conversion to TC [7].  

The SBNR in sign-magnitude form is selected as an internal 
representation of the proposed multiplier architecture. In 
signed-binary format, the numbers b and –b differ only in the 
sign bits. This feature may be exploited to identify common 
stages of the a+b and a–b operations. Inverting a number in 
sign-magnitude format is accomplished by inverting all of the 
sign bits. This operation is more efficient than two's-
complement, which has a complexity on the order of an 
adder. The benefits of the signed-binary representation may 
potentially increase if several arithmetic stages are 
incorporated in an SBNR tree before the final conversion to 
two's-complement [7]. Considering the significant 
complexity of CDMA multiuser detection algorithms [1]-[3], 
a number of demanding operations may be implemented in 
this intermediate format without inefficiently transforming all 
results into two's-complement format. This strategy leads to 
considerable improvements in power, area, and delay as 
compared to conventional TC arithmetic. 

Having chosen a number representation, the tradeoffs that 
exist between the two proposed architectures are analyzed in 
more detail. The final switch of the Type II solution shown in 
Fig. 3 directs the results to the real and imaginary outputs. 
This switch may be eliminated if both the addition and 
subtraction operations over any operands (±a,±b) are 
produced in both branches as is the case in the Type I 
architecture. The switch may be implemented as 2(N+1) 
multiplexers, while in the Type I circuit, 4N gates are 
required. This switch, however, becomes less efficient if the 
SBNR results are supplied to the following stage, doubling 
the number of output lines to 4N.  

The most expensive component in a signed-binary 
architecture is the SB TC conversion. This operation is 
essentially equivalent to a two's-complement addition. 
Therefore, an existing efficient adder structure may be 
applied in this conversion process [4].  The implementation 
of an 8-bit circuit is possible through a carry-select 

architecture with 4-bit carry-generation blocks [5,6] or via a 
standard 8-bit carry-lookahead adder (CLA).  

 

C. Proposed SBNR Architecture 
In order to benefit from the advantages of redundant 

arithmetic, the two's-complement value of the SB number 
must be transformed into the required function. This 
transformation is relatively easy to achieve for a single 
function but becomes nontrivial when four functions are 
required for the real and imaginary outputs as specified in 
Table 1. One approach is to replace the addition and the 
formation of the CLA generate-propagate (G-P) signals with 
a preprocessing stage as reported in [4]. This concept is 
further developed to achieve an efficient implementation of 
all four functions of interest: (a+b), –(a+b), (a–b), and –(a–b) 
[8]. The objective is to ensure that the two branches have 
close to equal delay times with a minimum number of 
conditional switches controlled by the PN code logic. 

The sum of any two bits is a digit in the initial sum set 
Sy={0,1,2}, while the signed-binary set is Sx={1,0, 1 }. The 
computation of any of the four functions is accomplished in 
four steps: 

1. Map the input bits directly to the signed-binary 
representation (number x) of the initial sum; 

2. Manipulate this SB number according to the formulae 
characterizing the particular function; 

3. Convert the SB number x to the equivalent two's-
complement value of Tx(x) (using a regular CLA adder 
and inverting output bits 0:N-1); 

4. Set the Nth sign bit to produce the (N+1)-bit two's-
complement function result.  

The realization of each of these operations is briefly 
described below. Additional details are provided in [8]. The 
essence of the direct mapping from the input bits to signed-
binary is in the transformation )z-(1)(ztr iixy =  for 

}SS{z yxi ∪∈ , where trxy(zi) can operate on both sets and is 
self-inverting such that iixyxy z)](ztr[tr =  for }SS{z yxi ∪∈  
[4,8]. These transformations are listed in Table 2, where the 
first transformation performs the sum and the second 
transformation is represented by trxy(yi), where the initial sum 
digit yi is mapped to the signed-binary digit xi.  

Table 2: Redundant arithmetic transformations at the prelogic stage 

Input 
bits 

Initial sum digit 
yi Sy ∈  

Signed-binary digit 
xi Sx ∈  

ai bi 
+ 

yi c i+1 Si 
trxy 

xi signi magni 

0 0 0 0 0 1 0 1 
01  ,  10 1 0 1 0 0 0 
1 1 

 
2 1 0 

 

1  1 1 
 

This process reveals the redundancy of the intermediate 
representation in Sy and the direct relations for the sign-
magnitude format, 

iiii Gbasign ==                                                           (1) 



iiii Pbamagn =⊕=     .                                               (2) 
These functions are implemented in prelogic stages in both 
branches. Note that these intermediate signals are the same as 
the carry-generate Gi and the inverse of the carry-propagate 
Pi in the carry-lookahead adder [4,5,9,10]. It is conceptually 
convenient to distinguish between these signals such that a 
number is referred to as sign-magnitude when discussing the 
SBNR form and these signals are applied (with the magnitude 
inverted) to the corresponding G-P inputs of a CLA. The 
two's-complement values of the signed-binary representation 
and the initial sum are related according to 

 )x(T2)x(T122)x(tr(x)][trT(y)T x
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where )x(Tx  is the binary number Tx(x) with all bits inverted. 
Similar expressions for all four functions in the complex 
multiplier are listed in Table 3 [8]. As described by (3), the 
addition  may be  accomplished by  inverting the bits of Tx(x). 
Unfortunately, such a realization is not possible for the          
–(a+b) function. In order to minimize the circuit differences 
between the (a+b) and –(a+b) functions, as realized in the left 
branch, an alternative realization of a+b through the                
–[Tx(x)+1] operation is used. The left branch prelogic maps 
the input bits directly to Tx(x)+1 while the rest of the circuit 
remains the same as the right branch. The "+1" operation is 
simple to perform in SB. The following (N+1)-digit signed-
binary result corresponds to Tx(x)+1 [8], 
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where each digit at the output "
id  is expressed in sign-

magnitude form and is a function of the signed-binary input 
or the input two's-complement operands, a and b. With these 
expressions, the SBNR of Tx(x)+1 is achieved in two gate 
delays. This number is converted to two's-complement or 
alternatively may be inverted while in signed-binary form to 
alternate between the (a+b) and –(a+b) functions. 
 This algorithm is only correct if the input operands are N-
bit unsigned numbers or if the output result does not cause 
overflow in N-bit precision. This problem is addressed in [8] 
where it is shown that for two's-complement numbers, the Nth 

Table 3: Summary of transform relations for the functions in a complex ±1 multiplier 

Arithmetic 
function 

Bitwise 
processing  

Relation to 
TY(y) 

Relation to 
Tx(x) 

Implementation 
description 

a+b ai, bi TY(y) ))x(T1(2 x
N +−  

1. Obtain all xi from ai,bi, with +1 and invert sign bits 
2. Produce the 2's complement –(Tx(x)+1), set the Nth bit 

–(a+b) ai, bi –TY(y) )x(T12 x
N ++−  

1. Obtain all xi from ai,bi with +1 
2. Produce the 2's complement Tx(x)+1, set the Nth bit 

(a–b) ai, ib  TY(y)+1 )x(T2 x
N −  

1. Obtain all xi from ai and ib  
2. Invert all sign bits of x 
3. Produce the 2's complement –Tx(x), set the Nth bit 

–(a–b) ai, ib  –[TY(y)+1] )x(T2 x
N +−  1. Obtain all xi from ai and ib  

2. Produce the 2's complement Tx(x), set the Nth bit 

BA 
Fig. 4: SBNR architecture of a complex ±1 multiplier 
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(sign) bit of the general (N+1)-bit result is 

1N1N1N1N1N1N1N1NN cPGc)ba(bar −−−−−−−− +=⊕+=  ,     (8) 
where ri denotes the ith bit of the output result and ci is the 
input carry of the ith full-adder cell. This function may be 
conveniently implemented by an inversion of the carry bit   
cN-1 passed to the circuit forming the final carry cN, in order to 
account for the negative weight of the input sign bits. Since 
the sign bit is controlled according to (8), the computation of 
the Nth digit as in (7) is unnecessary (only rN and rN+1 are 
controlled by dN). Therefore, an N-digit SB number is 
computed. 

The realization of the ±(a–b) functions in the right branch is 
precisely the same as that of the left branch with the 
exception of the "+1" addition. In the specific logic 
implementation, this operation produces a negligible delay 
overhead. Since the left branch prelogic must operate on a 
and b (see Table 3), it is preferable to combine the prelogic 
stages at either the gate or the layout level, considering the 
following relations, 

iiiiii ba)(signba)(sign =−=+                              (9) 

)(magnba)(magnba)(magn iiiiiii +=⊕=−⊕=+  .   (10) 
An architecture that includes these design concepts is 
proposed in Fig. 4.  
 

3. LOGIC LEVEL DESIGN 
Most of the operations along the critical path are 

implemented in NMOS CPL logic due to the speed, power 
efficiency [11], and complementary outputs. Complementary 
outputs are employed to achieve an efficient implementation 
of the conditional inverters by integrating these circuits with 
the previous stage. The availability of complementary outputs 
also supports resource sharing between the (a+b) and (a–b) 
branches [see (9) and (10)].  

The adder performing the conversion to two's-complement 
is the key logic circuit of the architecture shown in Fig. 4. 
Adder circuits have been extensively discussed in the 
literature and are applicable to the conversion circuit [4]. A 
slow but area- and power-efficient adder is preferable as long 
as the speed satisfies the target specification.  

Several relations are deduced from the full adder truth table 
[9], (1)-(8), and the Karnaugh maps associated with the 
corresponding signals, 

iiiiii GPP,GPG ==        ,                                                (11) 
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 As shown in (12)-(14), the inverted carry may also be 
propagated, permitting a single inverter to be inserted as a 
repeater to speed up the carry propagation chain. The sign bit 
is controlled according to (15) and (16). An expression for 
the sign inverse is also implemented by an inverter to achieve 
higher output current and enhanced noise margins. Since rN is 
a function of cN-1, an even number of inverters is required 
along the propagation chain. 

The critical path delay includes a carry propagation 
through N – 1 transmission gates and one inverter [6] (note 
that c0 = 0, so effectively G0 is propagated). The carry 
propagation speed is significantly increased through logic 
level optimization of the transmission gate chain. Inserting 
two additional inverters in a chain of seven transmission 
gates decreases the propagation time approximately three 
times. In this case, either the carry signal or the inverse carry 
signal is propagated. 
4. SIMULATION RESULTS 

To demonstrate the performance characteristics of the 
proposed architecture, an 8-bit circuit is analyzed in a TSMC 
0.25 µm CMOS technology with VDD = 2.5 volts. Delay and 
area estimates are presented in Table 4 along with a 
comparison of the alternative architectures under similar 
technology and bias conditions. The architectures shown in 
Fig. 3 have similar area-delay characteristics and, for 
approximately the same area, the delay of the critical path is 
50% higher in these conventional architectures than the 
proposed SBNR realization. This increased speed is due to 
reducing the two carry propagation chains to a single chain in 
the proposed architecture. Adder techniques that trade off 
area, delay, and/or power may be applied to the three 
architectures to customize the circuit according to 
application-specific performance requirements. 

The circuit is targeted for a base station receiver where 
power consumption is not a primary consideration. Since in 
CPL most of the PMOS transistors along the critical path are 
eliminated, the node capacitances are significantly reduced, 
thereby achieving a higher operational speed and lower 

power consumption. The signal path in CPL is along the 
source-drains rather than the gates and the gate capacitance is 
usually much larger than the junction capacitance. Therefore, 
the delay is further reduced. 

 

5. CONCLUSIONS 
An efficient architecture of a complex ±1 multiplier circuit 

is proposed in this paper. Redundant signed-binary arithmetic 
is used to achieve a significant reduction in the critical path 
delay. A comparison of these results with standard 
architectures is provided. A speed increase of about 50% is 
observed in the proposed SBNR architecture as compared to 
conventional architectures. 
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Table 4: Area and delay of an 8-bit complex ±1 multiplier 
Shaded areas correspond to functional units, which are either  

not applicable to the specific architecture or are not along the critical path. 

Proposed SBNR 
architecture 

Type I: Independent-
branches architecture 

Type II: Switched-
outputs architecture 

Delay Delay Delay 
Functional unit 

Area   
[µm2] gates [ps] 

Area   
[µm2] gates [ps] 

Area  
[µm2] gates [ps] 

Prelogic 1500 1 200 1000 1 200    

"+1" and inverter 1900 1 (+) 250       

Converter or adder 3000 N 1350 3000 N 1350 3000 N 1350 

Two's complement    3000 N 1350 3000 N 1350 

Switch 900 1 200    900 1 200 

PN logic 300   600   300   

Total 7600 N+3 2000 7600 2N+1 2900 7200 2N+1 2900 
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