Self-checking Sequential Circuits with Self-healing Ability’

llya Levin’ Vladimir Ostrovsky’

Sergey Ostanin’ Mark Karpovsky”

‘Tel-Aviv University, Ramat Aviv, 69978, Israel
"Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA

972-3-6407109
ilial@post.tau.ac.il

972-3-6407799
vios@post.tau.ac.il

ABSTRACT

In this paper we deal with totally self-checking (TSC)
synchronous sequential circuits (SSCs), that are able to recover
after an occurrence of a fault. We call SSC owing this property as
a self-healing SSC. A concept of a partially monotonic SSC is
used in the paper. It is shown that the partially monotonic SSCs
satisfy the self-healing property. A novel reduced m-out-of-n code
is developed. It is proposed applying this code to the synthesis of
a TSC checker for the state monotonic SSCs. The proposed
method of synthesis is based on a LUT implementation of
monotonic functions.

For most circuits in a standard benchmark set, the proposed
approach leads to a reduction of about 10-20% of the overhead as
compared with the traditional methods.

Keywords
Self-checking, synchronous
unordered coding, checker.

sequential circuit, self-healing,

1. INTRODUCTION

Two different ideologies can be considered for handling an error
detected in a circuit concurrently with its functioning. The first
ideology is based on the immediate marking of the circuit as
erroneous when an error is detected. An alternative ideology
concentrates on increasing the survivability of the circuit, which
means, "to give a chance" to the circuit to continue working
during several clock cycles after the error detection, and marking
it as erroneous only after a steady error is indicated. Sometimes
these several clock cycles are sufficient for the recovery of a
transient fault and for returning the circuit to its proper
functioning. In the present paper we study precisely this case.

We propose a method for a synthesis of synchronous sequential
circuits (SSCs) that have an ability to continue their proper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

GLSVLSI'02, April 18-19, 2002, New York, New York, USA.

Copyright 2002 ACM 1-58113-462-2/02/0004...$5.00.

! This research was supported by BSF under grant No. 9800154

972-3-6407799
sostanin@post.tau.ac.il

617-353-9592
markkar@bu.edu

functioning in the presence of affects of the fault and investigate
an ability of such circuits to recover. Naturally, this self-healing
ability can be archived by increasing a fault latency of the
corresponding SSC. Consequently, a synthesis of self-checking
checkers for such circuits becomes especially interesting.

The synthesis of self-healing SSCs and corresponding self-
checking checkers are in the focus of the present paper.

2. RELATED WORKS AND RESEARCH
AGENDA

Let us describe a sequential machine according to the Mealy
model.

Let I, O, Q — be the sets of input, output and state vectors
accordingly. N,, N,,and N, - numbers of vectors in these sets.

d - next state function: 5: Q x I —» Q,
A - output function: L: Q x I —» O.

A schematic diagram of the synchronous sequential circuit is
shown in Figure 1.

X, ——p > 7
Xy—— c > 7,
Combinational
part
V, —P of SSC
yx\/"‘

My,
Vg

SSC

Figure 1. Synchronous Sequential Circuit

Let us introduce the following notations.



Let C be a combinational part of the SSC, and ff,,..., ff, be D-
flip-flops. Inputs of C be x= {x, yeees Xy } (inputs variables of the
SSC) and y :{ L Vi, } (current state variables). Outputs of C
be Z={Z,...,Z, } (output variables of the SSC implementing the
output function A ) and Y ={Y,...,Y, } (next state variables that

realize the next state function &). The combinational circuit C
implements a system ® of N_+ N Boolean functions {5, k} of

N, + N, Boolean variables {xU y}.

We consider all unidirectional errors [2] and assume that only
output lines of the SSC are observable. It leads to the following
definition of the Totally Self-Checking (TSC) sequential circuit

[2].

Definition 1. A sequential circuit is self-testing if, for every fault
in a fault set, there is an input/state code pair in the circuit such
that a non-code output is produced.

Definition 2. A sequential circuit is fault secure if, for every fault
from the faulty set the sequential circuit never produces an
incorrect code output for a code input.

Definition 3. A sequential circuit is totally self-checking if it is
both self-testing and fault-secure.

Two main approaches can be identified in the design of self-
checking SSCs. The first one is based on applying special
techniques to observing state transitions or a control flow. These
techniques range from state coding by error-detection codes to
control flow monitoring by signature analysis [3, 8] or special
monitoring machines [9]. Usually, these techniques lead to
considerable overhead.

The second approach is based on checking the SSC’s outputs
without direct checking of the memory. When these techniques
are applied, a fault that leads to a non-code state vector is detected
in the next clock cycle [2]. This property can be achieved by
introducing an additional overhead. The present paper investigates
the behavior of the SSC without memory checking. Such SSCs
are free of additional overhead that would be required by the
condition of immediate fault detection. We consider that the
absence of immediate fault detection to be a significant advantage
of the scheme, and utilize it for achieving a self-healing ability.

We use the on-set realization of output and next state functions
[13]. Furthermore, we deal with implementations where both the
next state and output equations are unate [2] in state variables and
binate in primary input variables. SSCs that are implemented
according to such a scheme we call self-checking state monotonic
SSCs. In most cases using such implementations leads to a
considerable reduction in overhead. Moreover, if only output lines
are handled in such schemes, SSCs can function properly with the
presence of a fault and even recover from the fault [4]. Such SSCs
we call self-healing SSCs.

Since the self-healing SSCs belong to self-checking circuits,
designing such circuits is based of introducing a redundant
circuitry that provides the TSC property. Development and
investigation of methods for synthesis of TSC self-healing SSCs is
the second objective of the present paper.

Major difficulties in designing self-checking devices are related to
the complexity of coding (forming the check bits) and decoding
(i.e. verification that a given output is a codeword). We deal with
a SSC based controller where the number of possible output
vectors is much smaller than 2" (where N, - is the number of

output lines), while the set of possible vectors is known in
advance. This property was used by [5] for designing checkers.
The authors show that the checker for an SSC controller can be
efficiently implemented in the form of “sum-of-minterms” (SOM)
for output functions of the controller. An unordered code for
output vectors is used since, for these codes, no unidirectional
error can transform one codeword into another codeword. Note
that the SOM-checker examines whether an output vector belongs
to the set of possible codewords, and not to the Berger code (as in
the case of standard design [2, 6]). An efficient unordered code
was developed by Smith [12] specifically for the case when the
number of possible codewords is essentially smaller then 2% .

The main objective in the construction of unordered codes
(Berger, Smith codes) is to achieve the required properties by
using a minimal number of redundant bits. Nevertheless, decrease
of the number of bits in many cases does not lead to an expected
reduction in the checker's complexity. Thus, an approach that
takes into account of the checker's complexity at the earlier stages
of the code construction becomes quite topical. Moreover, the
basis of implementation has to be taken into consideration. Note,
that in our case we are interested in the checker's implementations
by LUT based FPGA. Based on these requirements we propose a
novel so-called reduced m-out-of-n code. The reduced m-out-of-n
code differs from the standard code by having the two following
features:

1) this code is a systematic one;

2) this code enables dividing the codeword into m fields in such a
way that any acceptable codeword has exactly one bit that is equal
to one in each of the fields.

The proposed reduced code allows checking each of the fields
separately and therefore simplifies the checker.

Summarizing above-mentioned consideration we can formulate
the aim of the paper as development of methods for synthesis of
self-healing SSCs and self-checking checkers for such circuits.
The paper is organized correspondingly. In Section 3, we describe
so-called state monotonic SSCs and their self-healing property.
The design of m-out-of-n checkers for the self-healing SSCs is
presented in Section 4. Benchmarks results are given in Section 5.
Conclusions and references are presented in Section 6 and 7,
respectively.

3. STATE MONOTONIC SSC
3.1 Definitions

Let us consider an arbitrary system @ of Boolean functions ¢, :

(D(xl,...,xk)z {(I)l(xl,...,xk ),(])Z(xl,...,x‘ ),...,(]), (xl,...,x‘ )} .

Let A=(a,,...,a,) and B=(b,,...,b,) be Boolean k- tuples.



Definition 4. The system @ is monotonic if, for any pair of
Boolean k-tuples 4, B so that A<B(ie. a,<b, for any

i=(l, k) ), the condition ®(A4) < D(B) is satisfied.
Consider a subset x* of Boolean variables, x" < {x, yeees X, } .

Definition 5. Vector B covers A in variables from the set x°

(A< B), for any component i, corresponding to a variable from
x",a <b , and for any other component j corresponding to a

variable {{xl,...,xk}\x*}, a,=b,.

Definition 6. The system @ is partially monotonic in x’
variables if for any pair of Boolean k-tuples 4, B the condition

D(A4) < D(B) is satisfied for A<B.

Notice that if @ is monotonic it is partially monotonic in any
subset of its variables.

Definition 7. Let @©',®" be two different systems having the
same number of functions and the same variables if for any -
tuple AE{O,I}A : D' (A)<D"(4), then @" implicates @'
(D' <D").

3.2 TSC property for the state monotonic SSC

Let us consider a specific realization of the SSC that will call it a
state-monotonic SSC.

Definition 8. SSC called a partially monotonic if the system of
Boolean functions corresponding to its combinational part is
partially monotonic in state variables.

As well known, any monotonous system of Boolean functions can
be presented in the form of unate sum-of-products. Obviously,
any system of Boolean functions partially monotonous in state
variables can be presented in the sum-of-products form, which is
unate in state variables.

Let combinational circuit C (the combinational part of an SSC)
corresponds to the system @ . System @ is partially monotonic
in state variables for a state monotonic SSC. Let @, be a system

corresponding to the combinational circuit C in presence of a fault
/- Also suppose that @, is partially monotonic in state variables.

If ® <® (O implicates @, ), we will denote this fault as f . If
O <P, (O, implicates ® ), we will denote this fault as f,.

~

Construct a set of faults 3 consisting of f, and f, faults and

describe properties of these faults. Obviously, any unidirectional
fault is either f, or f;. Considering various synthesis methods

and various sets of faults we can clarify whether the
corresponding set contains only f, and f, faults or not. It has

been proven in [7] that if the SSC is synthesized as the partially
monotonic system by using either two-level or multi-level
methods, then any single stuck-at fault on the gate poles and state
lines of the circuit are f, and f, faults.

Theorem 1. The state monotonic SSC is totally self-checking for

~

any fault from 3.

The proof of Theorem 1 is based on properties of partially
monotonic systems and the fact that faults occur one at a time
while between any two faults a sufficient time elapses [11].

~

Obviously, any fault from 3 is either undetectable or

unidirectional by any input sequences T If a fault remains
undetectable on the SSC output lines during the time the sequence

7 manifests itself on the SSC state lines, we will call the fault as
a masked fault. The corresponding SSC property we call a fault
masking property.

Note that only f, fault can be masked for the state monotonic
SSC. Any f, fault will be manifested at least on the next clock.

Precisely f, faults will be in the focus of our research.

3.3 Self-healing SSC

To formulate our approach, let us define four modes of
functioning of the SSC and describe its behavior in presence of
either permanent or transient faults, using a graphical
representation. We introduce a Mode Transition Graph (MTG) for
this purpose. Vertexes of the MTG correspond to specific modes
of the circuit. Transitions between the modes correspond to
specific events.

Figure 2. Mode Transition Graph for a Permanent Fault

An MTG describing the proposed concept with respect to a
permanent fault is shown in Figure 2. Four different modes of
functioning of the state monotonic SSC can be considered.

F - Fault free mode. The circuit remains in the fault free mode
until a fault occurs.

L - Latent mode. It is a mode where the presence of a fault cannot
be detected while the SSC is functioning since the test vector
detecting the fault has not yet appeared on the circuit’s inputs.
The circuit moves to the latent mode from the fault free mode
when a fault occurs, and leaves the latent mode when the test
vector is applied to the circuit.

S - Silent mode. It is a mode where the presence of a fault does
not manifest itself in the form of a non-code output, although the
presence of the fault could potentially be detected when the next
state lines (or the memory) can be observed. The circuit moves to
the silent mode from the latent mode when a non-code state vector
appears on the flip-flop inputs or outputs. From the silent mode
the circuit is able either to move to an erroneous mode (E), or to
revert to the latent mode.

E - Erroneous mode. It is a mode in which the circuit terminates
its proper functioning, i.e. when a non-code output vector has



been produced. The circuit is able to move to this mode either
from the silent mode or from the latent mode.

In the case of transient fault, transitions between above-mentioned
modes are shown in Figure 3. Obviously, the latent mode L is
absent in the case of a transient fault. When the transient fault
occurs, the SSC moves from Fault free mode F either to the
Erroneous mode E (if a non-code output vector is produced) or to
the silent mode S if a non-code next state vector is produced,
while the output vector is a codeword. Note, that the sequential
circuit is able to return to the F mode after it's functioning in the S
mode, which means that the SSC has become fault free again.
Such a transition of the SSC from the S mode to the F mode we
will call self-healing.

P(S.F)

P(S.E)
p(S,S)

Figure 3. Mode Transition Graph for a Transient Fault

Hence, in this section we have introduced the self-healing
property of SSCs and have illustrated this property by the example
of the state monotonic SSCs. Furthermore, we have shown that
the considered state monotonic SSCs satisfy the TSC property. In
the next section we deal with methods for synthesis of self-
checking checkers for such SSCs.

4. DESIGNING CHECKERS FOR THE
STATE MONOTONIC SSC

The present section introduces a reduced m-out-of-n code and a
method for synthesis of the corresponding checker. Being
implemented by LUTs, this checker has a simple structure with
relatively low overhead.

Define a relation of compatibility (incompatibility) on the set of
acceptable output codewords O, as follows:

Definition 9. Two variables Z, and Z, are compatible if they are
both equal to “one” in at least one codeword o, € O. In other

cases these variables are incompatible.

Definition 10. Subset 7' cZ( Z= {Zl,...,ZM}) is a set of
compatible (incompatible) output variables if any two variables
that belong to the set are compatible (incompatible).

Obviously, if the set 7, - is the set of incompatible output

variables, then every acceptable output codeword may contain a
maximum of one variable from the set (or does not contain any
variable from the set at all).

Let set Z is divided into subsets 7 ,...,7, of incompatible variables

m

Z=TV..VT,, T NT =0 ,forany i# .

There are several well-known algorithms for optimal partitioning
on the set Z [10]. We do not deal with this problem. We just
mention here that it is reasonable to find the partition with the
minimal number of the subsets.

For constructing the reduced m-out-of-n code we put each subset
T into the one-to-one correspondence to a specific check bit ¢, ;
¢,=1 only in those output codewords that have no output

variables from 7, .

Obviously, every output word from the proposed code contains
exactly m bits that are equal to one, according to the number of
subsets, 7, . An example of such a coding is presented in Table 1.

Table 1. An Example of Reduced Coding

Output Information bits Check bits
code b] b2 b3 b4 b5 b6 b7 bg
words Z] 22 Z_g Z4 Zj ] Cy C3
0; 0 0 0 0 0 1 1 1
0, 1 1 0 0 1 0 0 0
03 0 1 0 1 0 0 0 1
0y 0 0 1 0 1 0 1 0
0s 0 0 1 0 0 0 1 1
0 1 1 0 0 0 0 0 1
07 0 1 0 0 0 1 0 1

The following partition has been constructed according to the
above matrix: {Z,,...,Zs}z {Z,,Z3,Z4; Z,,Z, } The proposed
coding is based on the above partition.

Check bits are represented by three right hand columns in Table 1.
Let us introduce continuous numbering for information bits.
Denote a binary bit of the codeword by symbol b, (see Table 1).

Partition B= {Bl ,B, ,33}1{1_7, bbb bbb, x} corresponds to
the reduced 3-out-of-8 code.

We will call this partition a coding partition. Note, that each
codeword includes exactly one variable from every subset.
B cB,i=l.,m.

We propose to use symmetric functions for the checker's
functional description. The symmetric functions are a convenient
and acceptable form of representation for logic functions [1]. We
will use the symbol F, (X ) for such the notation of such functions,

where /i is a condition defining the number of arguments that are
equal to "one" when the function is equal to "one". For example,
F,(X) is a so-called "1-hot" function.

Theorem 2. Let B:{Bl,,..,Bm} be a coding partition. The

compatibility relation is defined as the set O of acceptable
codewords. Hence:

R=F (B)&..&F (B,) :{1’ oneveryo, €0,

0, on every unidirectional error.

Based on Theorem 2, function R may be used for detecting
unidirectional errors. Unfortunately, this function cannot be used



for the straightforward implementation by a LUT-based FPGA,
since function F, (B) does not satisty the self-testing property.

Assume that the checker is implemented by the LUT-based
FPGA, and the LUT has s inputs. In our examples assume that:
s=4. We will estimate the scheme complexity by the number of
LUTs.

According to the accepted practice in the design of checkers we
represent an error signal by using two signals R, and R, (R, R,
- implementation). If R # R,, the scheme is fault free, in the
opposite case a fault has occurred either in the controller or in the
checker.

Function R can be implemented by using the 1-out-of-n function
and the product function. Function F_ (X ) can be presented in the
following R =F,(X)vF,(x,)
R =F (X, )vF, (X,),where X, UX,=Xand X, nX,=0.

form: and

If the number of arguments of F (X ) equal k£ and the number of

LUT's inputs s is greater or equal than & (s > k), then function 1-
out-of-k can be implemented by two LUTs. Note that the schemes
are testable on the set of acceptable codewords and that they do
not include inverters. If s<k, the following simple
decomposition can be used:

F . (X)=F (F,(X,)X,), where X, UX, =X and X, nX,=0.

LUTs having an even number of inputs are appropriate for
implementation of dual-rail products. Let it be required to
implement the following product: y =o &3, where each of the

variables is represented in the dual-rail form: (y,,yz), (a,a,),
and (B, ,Bz) respectively. Two 4-input LUTs will be required for
implementation of the function y. These LUTs will be
programmed for implementation of the following functions:

y, =0, &B,va, &P, and v, =a, &B, va, &B,.

m-product is implemented by using 2(m-1) 4-input LUTs having a

pyramidal structure.

The checker scheme that uses the proposed decomposition is
shown in Figure 4.

b, b, — b—
b4b3_ P, b, —] 0, b—] R, —
—
bl
b4b3_ 9, bz— P, bs— Rz _
b— b — b—

(pl =b1 Vb; Vb4b«’(P3 =(P|b2 V(P2b7 ’R1 =(P3b< V(P4bx 2
(pz :b4 \/be \/blbs ’(‘PA :(P|b7 V(szz ’Rz :(P}bs \/(‘PAb *

Figure 4. An Example of the LUT-based on the m-out-of-n
Checker

The checker detects errors on the set of acceptable codewords
listed in Table 1. The 4-input LUT used in the scheme is shown in
the form of boxes where the corresponding functions are
indicated.

Now we estimate the checker’s complexity by the number L of
LUTs that have been used for implementing the checker. Let N,

output signals be partitioned into m subsets for coding. Each of
these subsets includes N, elements. In this case:

L=23 (N, =1)/2|+m-1].
(S, -vrzlem-1)

Finally we have the following boundary conditions:

(N, +m-2)<L<(N,+2m-2).

5. EXPERIMENTAL RESULTS

We applied the synthesis approach described above to several
MCNC benchmarks to compute implementations for Altera series
FPGAs. Comparisons of overheads proposed architecture with

Table 2. Benchmark’s results

Circuit Ny Ny No P Q Q, Q, Sequojncesf
(V]
Cse 7 7 16 91 49.4 49.4 48.1 65
Ex1 9 19 20 138 80.1 57.3 14.6 18
Ex6 5 8 8 34 59.3 44 .4 29.6 25
Pma 8 8 24 73 554 50 41.1 2
S386 7 7 13 64 56.9 50 41.4 25
S820 18 19 25 232 23.6 14 9.5 3
S832 18 19 25 245 333 19.2 13.4 4
Sse 7 7 13 56 50 51.9 51.9 31
Avrg. 9.88 11.75 18 116.63 51 42.03 31.2 21.63




various self-checking architectures are presented in Table 2.
Columns “circuit”, N,, N, N_ and P denote FSM name, the

number of states, the number of primary inputs, the number of
primary outputs and number of products of original FSMs,
respectively. Columns Q, , ©Q,and Q. denote the overheads (%)

for the Berger output encoding, the Smith output encoding and
the proposed reduced m-out-of-n encoding, respectively.

We performed a statistical experiment of investigating the self-
healing ability for the benchmarks’ circuits. Behavior of the SSC
in the presence of a transient fault was simulated on random input
sequences of length 500. We assumed the inputs values are
equally probable. A random fault occurs in the SSC’s steady-state.
The percentage of sequences on which a circuit survived among
random 1000 sequences is shown in last column of the Table 2.

The table demonstrate that the newly proposed technique for
designing totally self-checking SSCs based on the reduced m-out-
of-n coding results in a hardware overhead of about 30%, while
the Berger coding implementations require an overhead of about
50% and the Smith coding — about 40%. In other words, the
authors’ approach leads to a reduction of about 10-20% of the
overhead as compared with the traditional methods.

The benchmark results show the average percentage of sequences,
that lead the SSC to self-healing, to be about 22%.

6. CONCLUSION

In this paper, we investigate implementations of self-checking
sequential synchronous circuits (SSCs) operating without
checking their memory. A phenomenon of the self-healing of such
circuits has been described. Circuits with the self-healing ability
are partial monotonic in their state variables. Such circuits has
been called state monotonic SSCs. On the one hand the state
monotony enables the circuit the self-healing with respect to a
transient fault, on the other hand, the state monotony opens the
way for the SSC simplifying.

A novel reduced m-out-of-n code has been developed. The
authors propose applying this code to the synthesis of a TSC
checker for the state monotonic SSCs. The proposed method of
synthesis is based on a LUT implementation of monotonic
functions.

The self-checking approaches have been assisted on several SSC
benchmarks. In most cases for the reduced m-out-of-n coding
based architecture, overheads for the benchmarks are considerably
lower in comparison with traditional approaches. Consequently,
the proposed self-checking architecture of self-healing SSCs can
be recommended for implementing circuits in a case of strong
overhead requirements.

7. REFERENCES

[1] Akers, S. B., "A rectangular logic arrays," IEEE Trans. on
Computers, Vol. C-21, August 1972, pp. 848-857.

[2] Lala, P., “Self-checking and Fault-Tolerant Digital Design”,
Morgan Kaufmann Publishers, San-Francisco / San-Diego /
New-York/ Boston/ London/ Sydney/ Tokyo, 2000.

[3] Leveugle, R., and G. Saucier, “Optimized Synthesis of
Concurrently Checked Controllers”, IEEE Transactions on
Computers, Vol. 39, No. 4, April 1990, pp. 419-425.

[4] Levin, I, A. Matrosova, S. Ostanin, “Survivable Self-
checking Sequential Circuits”, Proc. of the Defect and Fault
Tolerance in VLSI Systems Symposium, October 24-26,
2001, San Francisco, CA, USA, pp. 395-402.

[5] Levin, I, M. Karpovsky, "On-line Self-Checking of
Microprogram Control Units", The 4th International On-line
Testing Workshop, Capri, 1998, pp. 153-159.

[6] Levin, I, V. Sinelnikov, "Self-checking of FPGA based
Control Units", Proceedings of 9th Great Lakes Symposium
on VLSI, Ann Arbor, Michigan, 1999, IEEE press, pp. 292-
295.

[7] Matrosova A., S. Ostanin., “Self-checking FSM Design with
Observing only FSM Outputs”, Proc. The 6-th Int. On-Line
Testing Workshop, July 2000, pp.153-154.

[8] Noubir, G., B. Y. Choueiry, “Algebraic Techniques for the
Optimization of Control Flow Checking”, Proc. of IEEE
FTCS’96, 1996, pp. 128-137.

[9] Parekhji, R.A., G. Venkatesh, and S.D. Sherlekar,
“Concurrent Error Detection Using Monitoring Machines”,
IEEE Design & Test of Computers, Vol. 12, No. 3, 1995, pp.
24-31.

[10] Paull, M.C., and S.H. Unger, “Minimizing the number of
states in incompletely specified sequential switching
functions”, IRE Trans. Electron. Computers, V EC-8, No. 3,
1959, pp. 356-367.

[11] Smith, J.E., and G. Metze, “Strongly Fault Secure Logic
Networks”, IEEE Transaction on Computers, vol. C-27, June
1978, pp. 491-499.

[12] Smith, J., “On Separable Unordered Codes”, IEEE
Transaction on Computers, Vol. C-33, No. 8, August 1984,
pp. 741-743.

[13] Tohma, Y., Y. Ohyama, R. Zakai, “Realization of fail-safe
sequential machines by using a k-out-of-n code”, IEEE
Trans. Computers, Vol. ¢-20, N11, November 1971.



	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index




