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ABSTRACT

In this paper we present an efficient decoupling model for on-
chip interconnect analysis. This model decouples multiple
RLC transmission lines into independent lines with separate
drivers and receivers. Based on this model we propose an
efficient algorithm to solve the far end responses of multi-
ple RLC lines. Experiments show good matching between
our decoupling model and SPICE simulation. Based on the
model, we further develop an Npmqr algorithm to quickly
determine the noise amplitudes of far end responses. Ex-
periments show that Npmqe algorithm gives conservative but
reasonably accurate results compared to SPICE simulation.
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B.7.2 [Integrated Circuits]: Design Aids— Verification

General Terms

Design, Performance, Theory, Verification

1. INTRODUCTION

For integrated circuits in the deep submicron (DSM) tech-
nology, interconnects play an important role in determining
the performance and signal integrity [1, 2]. An efficient on-
chip interconnect analysis is critical to interconnect opti-
mization at high-level design, logic synthesis and physical
design, as circuit simulation is overkill and not affordable
at these design stages. Closed-form formulae are particu-
larly efficient and effective for these design stages. Previous
works include formulae for delay [3, 4, 5, 6], noise [7, 8, 5],
and time-domain response [9, 10]. The interconnect induc-
tance is considered in [6, 9, 10], but not in [3, 5, 7, §].

However, none of these papers consider the coupling in-
ductance between interconnects. This may severely under-
estimate the interconnect noise and leads to large errors of
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the interconnect delay. Recently, two formulae were devel-
oped with consideration of the coupling inductance. One
formula computes the coupling noise voltage in two identi-
cal RLC lines [11]. It is assumed that one wire (the aggres-
sor) is switching, and the other stays quiet. Further, both
lines are open-ended without drivers and receivers, and are
loosely coupled, i.e., the noise can be ignored for the ag-
gressor. These assumptions limit its application. The other
formula computes the time-domain response for two iden-
tical lines with drivers and receivers [12]. It uses modal
analysis [13, 14, 15, 16] to decouple two coupled lines into
two independent lines, each with an independent driver and
an independent receiver, and is able to consider arbitrary
input signal combinations. However, it is not clear how to
solve multiple lines by closed-form formulae.

In this paper, We first propose a decoupling model to
decouple multiple transmission lines into a set of decoupled
lines with separated drivers and receivers. Based on this
model we develop an interconnect analysis algorithm to solve
far end waveforms for multiple interconnects. Further, we
developed an efficient Nypq, algorithm to quickly solve the
noise amplitude of the far end response.

2. WAVEFORM ANALYSIS

In this section we propose a decoupling model for multiple
transmission lines and solve their far end responses.

2.1 Preliminaries
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Figure 1: n coupled identical transmission lines with
drivers and receivers.

In this paper we study multiple identical transmission
lines which are aligned in a homogeneous dielectrics. We as-
sume all transmission lines have a same cross section, there-



fore have a same unit length wire resistance. We also assume
that all lines have identical drivers and receivers. However
we do not require these lines have a uniform spacing or are
routed in the same layer.

Figure 1 illustrate our circuit model. We assume n trans-
mission lines, with drivers at z = 0 and receivers at x = D.
A driver is modeled by a voltage source Vs with a source
resistance Rs. A receiver is modeled by a load capacitance
Cr. For the multiple wires in the figure 1, we denote input
vector to the drivers as Vs = (Viy, Vaa,..., Vsp)T, source
resistance vector as Rs = (R51,R52,...,R5n)T and load
capacitance vector as Cr = (Cr1,CrLa,...,Cry)T. Un-
der our assumption, Rs; = Rss = ... = Rs, and C; =
Cry = ... = CL,. We consider the parasitics of the trans-
mission lines such as unit length inductance L, unit length
capacitance C, unit length resistance R and unit length con-
ductance G, all of which are n x n matrices. We also de-
fine the voltage vector of the transmission lines as V(z)(=
(Vi(x), Va(x), ..., Va(x))") and the current vector as I(z)(=
(Ii(z), Iz(z), . .., In(x))T), with 0 < z < D. For the sim-
plicity of presentation, we will simply use V for V(z) and I
for I(x).

V(z) is related to I(z) by

w7 - (VoY) o

where Z(= R + sL) and Y(= G + sC). We assume G = 0,
thus Y = sC. By circuit analysis, the boundary condition
for this system can be described as,

V|m=0 = Vs - RSI|m=0 (2)
sCLV|e=D. (3)

Il,=p

Y - Z normally are not diagonalized, so elements of V and
I couple with each other. We denote this coupled system as
S.

System S can be transformed to a new system S by linear
transformation. For an invertible matrix M, we define the
following transformation for transmission lines and source
voltages,

V) _ (M1t o V(z) )
i(z) - o M I(z)
Ve = M 'V, (5)
We call M the transformation matrix. We denote all the
quantities in & with symbol ‘.

We have proved the following lemmas:
Lemma 1: For system S,

R = R (6)
¢ = M'cMm (7)
L = M'LM (8)
Z = R+sL (9)
Y = sC. (10)
R. = R, (11)
C, = C (12)

where R, C,f:, Z and Y are the unit length resistance, ca-
pacitance, inductance, impedance and conductance of trans-
mission lines in S, and Vs, Rs and Cp, are the source volt-
ages, source resistances and load capacitances in S.

Lemma 2: V and I can be expressed in V and I as

Vx)\_ (M o0 V(z) (13)
Lemmas 1 and 2 can be easily proved by applying the linear
transformation and assumptions that the unit length resis-
tance, source resistances and load capacitances are identical

for all transmission lines. We will include the proof in an
online full version of our paper[21].

2.2 Decoupling Transformation

In [12] two identical coupled lines with identical drivers
and receivers have been successfully decoupled into two in-
dependent lines, each with an independent driver and an
independent receiver. The transformation is carried out by
the following matrix

Vi V2
M=( % 2, (14)
2 2

In this paper we develop a decoupling method for multiple
lines. We define M as the eigenvector matrix of capaci-
tance matrix C (each column in an eigenvector matrix is an
eigenvector of the original matrix). Similarly we define My,
as the eigenvector matrix of inductance matrix L. We have
the following theorem,

Theorem 1: By the transformation defined in section 2.1,
Mc or My, transforms (1) into n independent transmission
lines, each with an independent driver and an independent
receiver.

Sketch of Proof: Because of the symmetry of C and L,
we just prove the case M = Mc. To prove Theorem 1, we
only need to prove that all the matrices on the lhs of (6)-
(12) are diagonalized. First, all transmission lines, drivers
and receivers are identical, so according to (6),(11) and (12),
R, R, and €y, are obviously diagonalized. Second, because
M is the eigenvector matrix of C, € and further Y are di-
agonalized according to (7) and (10). Finally it has been
shown[17, 16] for transmission lines in homogeneous dielec-
tric

1
LC = = (15)
where ¢ is the speed of light in the dielectric. Because we
assume homogeneous dielectric in this paper, (15) holds in
system S (defined in section 2.1). From (15) we have

LC=M'LM-M'CM=LC = ClZ (16)
Because C is diagonalized, L and therefore Z must also be
diagonalized. Because all the matrices on lhs of (6)-(12) are
diagonalized, there is no coupling between transformed lines
in system S. Also each of them has its independent driver
and receiver. The detailed proof will be given in [21].

Further, we have following theorem:

Theorem 2: There are closed-form solutions to M¢ and
M, for up to four transmission lines, and numerical solu-
tions for arbitrary number of transmission lines.

To prove this, one just need note that there is closed-form
solution for eigenvectors of matrix less than fifth order. We
will include the detailed proof in [21]. Well-developed and
efficient numerical algorithms for calculating eigenvectors of
a matrix can be found in [18, 16].



2.3 Far End Response

Based on the theorems in section 2.2, we developed an
interconnect analysis algorithm to compute the far end re-
sponses of the coupled interconnects. We summarize this
algorithm in table 1.

According to our decoupling model each decoupled line 7
has n input components V7 according to (5) . Each V7
is due to the original input to the original line j. Because
of linearity of the system, the waveform at the far end of
an decoupled line i will be the linear combination of the
responses of all the input components Vi of line i. We
define the output component A;; as the response of V¥ at
the far end of the decoupled line i. There are n such output
components for each decoupled line due to n coupled lines.
The total far end response of decoupled line ¢ is the sum of
Asj. After obtaining the waveforms of the decoupled lines,
as shown in (13), we can obtain the waveform of any original
coupled line as the linear combinations of the waveforms of
all n decoupled lines. With a closed-form solution to A;j,
we are able to further develop a quick noise computation
algorithm in section 3.

Algorithm Interconnect analysis
1. Calculate M or My..

3. Convert the V; to Vs according to (5).
4. Calculate V; and I; for each independent line j
separately, j = 1,2,...,n.
5. Calculate V and I by (13).
end

2. Calculate R, L, €, Rs and Cp, according to (6)-(15).

Table 1: Algorithm for interconnect analysis.

2.4 Experiment Results

To verify our decoupling model, we have applied the al-
gorithm in table 1 to a number of interconnect structures.
In order to verify our derivation of the decoupling model,
in step 4 of the algorithm, we use SPICE simulation to
solve the response for each decoupled line. We then compare
the results given by our decoupling algorithm to the results
from SPICE simulation over the coupled transmission line
model. The wires used in the experiments all are 1.6um
wide, 1.09um thick and 3000pum long. The ground plane
is 25um wide and has the same length as wires. Distance
between the top of the ground plane and the bottom of the
wires is 4.15u. The parasitics are extracted by the Hspice
2D field solver. Note that the matrices Mc and My, are
solved analytically for structures consisting of less than five
nets, but is solved numerically for structures consisting of
more nets. The results from our experiments show an good
matching between SPICE simulation and our model. For
the simplicity of presentation of input signal patterns, we
use ‘4, -’ and ‘0’ to represent rising signals, falling signals
and quiet victim respectively. For example, (4+0-) means
line 1 switches from 0 to 1, line 2 is quiet, and line3 switches
from 1 to 0. In figure 2 we show the geometry for six lines
in two layers and the waveform of line 2 and line 6. From
figure 2, we can see that the waveforms from our decoupled
model are almost indistinguishable from those obtained by
direct SPICE simulation. More examples are given in [21].
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Figure 2: Six wires in two layers with input of

(+0+0++). (a) Geometry; (b) Comparison of wave-
forms of wire 2 and wire 6 between decoupling model(D2
and D6) and SPICE simulation(S2 and S6).

3. NOISE ANALYSIS

Based on the interconnect analysis algorithm in section
2.3, we develop an efficient noise analysis algorithm (Npmax
algorithm) to compute the noise amplitudes at the far end
of a coupled RLC interconnect structure in this section.

3.1 Terminologies

Let V(t)|a=p be the waveform at a receiver, and Vy =
lim;—c0 V(t). For quiet lines and lines switching from 0 to 1,
we define the overshoot as V(t)|z=p — Vy when V (t)|¢e=p >
Vi and t > Tp, and define undershoot as Vi —V (t)|z=p when
V(t)|z=p < V¢ and t > To, where Tp is the time instant of
the first overshoot peak. Similarly, for lines switching from 1
to 0, we define overshoot as Vi —V (t)|z=p when V(t)|z=p <
V¢ and t > Tp, and define undershoot as V(t)|z=p — V¢
when V(t)|q=p > V} and t > Tp. We further define N,
as the maximum overshoot and N,,,, as the maximum un-
dershoot. Figure 3 shows the overshoots and undershoots
on an aggressor and a victim. We will develop closed-form
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Figure 3: Overshoot and undershoot. (a):An aggressor
line switching from 0 to 1. (b):A victim line.

solution to NA";IM and N, at the receivers of three lines
with arbitrary arriving times and input patterns. We call
our solution Nyjaez model. Note that Nmae model can be
applied to more than three transmission lines, even though
the closed-form solution may not exist for all cases.



3.2 Npa. Algorithm

In Npmax model, we first divide the time domain into small
regions such that all the mathematical terms in derivatives
of all the output components A;; (defined in section 2.3)
in the decoupling model are monotonic in each and every
region. We call these regions monotonic regions. Then we
search the noise peaks in the monotonic regions. Finally,
N}t.. and N,,.. are picked from these noise peaks over all
monotonic regions. In Table 2 we summarize the method.

Algorithm Npgz
begin
1. Define monotonic regions;
For each monotonic region,
2.  search the noise peak;
3. Update N;},, and N, according to definitions.
end

Table 2: Ny,q, algorithm

Below we show how to define monotonic regions. First, we
use the three-pole closed-form formula from [12] to solve a
single output component. We modified the original formula
into the following equation so that it can consider none-zero
initial conditions:

-1

Vele=p = Y (v5— vz)km[m@pmt
1<m<3
BT S

Pm Pm +tr_1

where p,, are the poles, ky, are corresponding coefficients, v;
and vy are the initial and final values of the corresponding
input component, and ¢, is the rising time. p; and ki are
real. p2 and ps are complex conjugate, i.e., p2 = pq+ppl and
p3 = pa — ppl. Similarly, k2 = ko + kol and k3 = ko — ko 1.
Signal arriving time is assumed to be t = 0.
Then, we obtain the derivative of (17)
dVC (t) _ t_l p1t
omp = (0 — w0k
t_l

2|k2|7tl|cos(pbt + B)ePe?

T

| -
* E P [_pm +tr

1<m<3
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where 3 is the phase of term —%

2. We only need to con-

sider the cosine terms in (18), because exponential terms are
always monotonic. By setting %[cos(pbt + B)eP*?] = 0, we
obtain the time as
m+ Dr —
oo mEIT oy (19)
Pa
where m is an integer and tq is the corresponding signal
arrival time. ~ is the phase of term pkj_—’t’z We solve t7"’s for
all output components, then we sort all ¢{7*’s in an increasing
order as t;(i = 1,2,...). The monotonic regions are defined
as 7; = (tly ti+1)a i= 1727 cee
Finally, the peaks’ positions are given by the roots of the
equation d‘g—i” = 0. Here V(%) is the far end response of a
transmission line. We approximate d‘;gt) in the monotonic
region (£(4),t(: + 1)) with a straight line passing through

points (t,‘, d—‘;t(ﬁhzti) and (ti+1, M“ = ti+1)). Under this
approximation, the noise peaks only exist in the region,
where %&t” =t; dv<t>|t =t;41 < 0. The time correspondent
to the peak is

t(i) —t(i+ 1)

dv .
Sli=t(ir1)

tp =t1 + dt |t =t(1) (20)

dv
i le=t) —
Because the noise decreases exponentially, we do not need
to search all peaks of V to find N}, and N,,,,. The number
of peaks needed to be searched can be decided by the arrival
times and the number of lines. Let to be the time of the first
overshoot peak, and ¢5 be the fly time. We search up to
four peaks (two maxima and two minima) or up to to +4ty,
whichever is smaller. In case there is no overshoot peak, a
maximum time limit such as a half clock cycle is set.

3.3 Experiment Results

In this subsection, we compare the Nmaz with the most
accurate model - SPICE simulation over SPICE physical
model (in short, SPICE RLC model).

First we compare our model to SPICE simulation to show
the efficiency of our model. In table 3 we show some experi-
ment results of running time for both SPICE simulation and
our model. In this comparison, bus structures of different
sizes are constructed. The wires are 2000um long, 0.8um
wide, 1.0um thick. Spacings between wires are 0.8um uni-
formly. For the SPICE model, each wire is modeled with
100pm long 7 segments. For each configuration we do 10
runs and get the average. The experiment is running on a
SUN machine. From the results, we can see that the speedup
of Npnaz over SPICE RLC model is roughly 10 for large num-
ber of interconnects. However the speedup is over 100 for
three coupled interconnects. A decomposition method has
been presented in [20] to estimate the noise of a wide bus
structures based on the solution to a number of three-net
structures, where our Ny,q, model is highly efficient.

Table 3: Running time comparison

bus size | Nmax | SPICE
3 0.014s 1.6s
16 1.6s 13.6s
32 17.4s 186.4s

Next we compare the noise value from Ny, with SPICE
RLC model. To illustrate the importance of inductance ef-
fect, we further compare the SPICE RLC model with SPICE
simulation over distributed RC model (in short, SPICE RC
model). For the SPICE RC model, we construct a w-circuit
for every 50pm-long wire segment. In our experiment, we
use three transmission lines with wire width of 1.6um and
wire height of 0.8sm. We present all the experiment param-
eters in Table 4, and enumerate all combinations of these
parameters in experiments.

Table 4: Experiment configurations
Spacing(um) 0.8, 1.6
Length(um) 1000,2000,3000
Input pattern all combinations
Arrival time(ps) | (0,0,20), (0,0,0), (40,0,0),(30,0,15)
Technology 0.07 (Rs = 1009,Cp, = 40f F, Ty = 20ps)
(pm) 0.10 (Rs = 1509,C, = 60fF, T = 33ps)
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Figure 4: Comparison of overshoot of victim lines at
x=D with SPICE RLC model. (a) Nmq: model; (b)
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We compare the Npmar model and SPICE RLC model for
N}, of victim lines in Figure 4(a), and compare the SPICE
RC model and SPICE RLC in Figure 4(b). One can easily
see that the Npqx model obtains results very close to ac-
curate solutions (SPICE RLC model), but the RC model
severely underestimates the noise. The underestimation is
especially severe for large noise values, and may cause design
failure in practice.

We compare the Nyq. model and SPICE RLC model for
N .o of aggressor lines in Figure 5(a). The Nyqep model
leads to a relatively larger error for aggressors than the er-
ror for victims, but it is conservative for most cases and is
useful to guide design optimization for signal integrity. Even
though the Njf,, noise of aggressors can be up to 15% of
Vdd, it was ignored in previous work such as [19, 11]. Fur-
ther, we compare the SPICE RC model and SPICE RLC
model for N;f,, of aggressor lines in Figure 5(b). Again the
RC model severely underestimates the noise amplitude, and
is not safe to guide design optimization.

Finally, we compare the Npq., model with SPICE RLC
model for Ny, in aggressors in Figure 6. The Npq, model
is reasonably accurate except for very small noise that can be
ignored in practice. Again, the Nyq. model is conservative
for almost all cases and is useful to guide design optimization
for signal integrity.

4. DISCUSSION AND CONCLUSION

In this paper, we have developed a decoupling model to
decouple multiple RLC transmission lines into independent
lines, each with an independent driver and an independent
receiver. Therefore, each decoupled line can be analyzed
separately. Based on this decoupling model, we have de-
veloped a closed-form Nynqz model to compute a variety of
noise amplitudes in three coupled transmission lines. Note
that the Nmqz model is applicable to an arbitrary number of
transmission lines, even though the closed-form solution may
not exist for all cases. Extensive experiments have shown
that our Nmaex model computes noise values for victim lines
with a high accuracy, and provides conservative noise for
aggressor lines. Note that the noise value for aggressor lines
can be up to 15% of Vdd, even though it was often ignored
by previous work.

We plan to extend the Npqx model to consider unaligned
lines with non-identical drivers and receivers, and apply the
Nmae model to interconnect design and verification.
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