Fast and Accurate Wire Delay Estimation for Physical
Synthesis of Large ASICs

Ruchir Puri David S. Kung

ruchir@us.ibm.com, kung@us.ibm.com
IBM Thomas J. Watson Research Center
Yorktown Heights, NY - 10598

Categories and Subject Descriptors
B.7 [Hardware]: Integrated Circuits

General Terms
Algorithms, Design

Keywords

Integrated Circuit Design, Wire Delay, Estimation, Place-
ment Driven Synthesis

ABSTRACT

Interconnect delays represent an increasingly dominant por-
tion of overall circuit delays. During timing-driven physical
synthesis process, timing analysis is repeatedly performed
over several hundred thousand components. Thus, fast and
accurate estimation of interconnect delays is crucial. Tradi-
tionally, lumped and elmore delay models have been widely
used for computing interconnect delays in physical synthesis
due to their computational efficiency. However, these delay
models are known to be inaccurate since they ignore slew
and resistive shielding effects. In this paper, we propose
a new iterative refinement based delay estimation approach
that considers resistive shielding along with driver slew. Ex-
perimental results show that the proposed approach gives
not only highly accurate results for far end RC-line delays
but also compares very favorably to more difficult to match
source end delays and source slews. In addition, use of the
proposed delay model in physical synthesis yields signifi-
cant performance improvement on several large industrial

ASICs.

1. INTRODUCTION

At higher levels of design, e.g., in physical synthesis appli-
cations, the physical location as well as size and number of
various circuits is constantly changing due to various logical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GLSVLS'02, April 18-19, 2002, New York, New York, USA.

Copyright 2002 ACM 1-58113-462-2/02/0004 ...$5.00.

Anthony D. Drumm

drumm@us.ibm.com
IBM Corporation
Rochester, MN - 55901

and physical optimizations. Thus, the interconnect topol-
ogy of various nets in the design are also being changed as
the placement and synthesis interaction progresses. These
changing net topologies require several hundred thousand
evaluations of interconnect delays during each iteration of
placement and synthesis interaction. In addition, even if in-
terconnect topology of a net does not change, a change in
source slew changes the interconnect delays due to resistive
shielding which is slew dependent.

Past efforts have employed either simple but computa-
tionally efficient lumped RC delay model and elmore de-
lay model for fast computation of interconnect delays; or
higher-order moments based delay metrics which are more
accurate but prohibitively expensive to be used in a place-
ment driven synthesis application. In general, various inter-
connect delay estimation techniques operate on an RC-tree
extraction of the interconnect structure, where every node
has a capacitance to ground, i.e., there are no floating ca-
pacitances and adjacent nodes are connected by resistors.
Lumped RC delay model is a highly simplified estimation
metric of the interconnect delay [2]. It is well known that
the response of a simple RC circuit to a step function is given
as V(t) = Vo(1 — e"¥/RC). This implies that the step input
delay through the 50% point (%) of the output waveform
for a simple RC circuit is given as 0.69 * RC. For exam-
ple, for the RC-tree shown in Figure 1, total resistance from
source node 0 to node 7 is R; + R2 + R4 + R7 and the total
lumped net capacitance is Ctotqr = (Co + C1 + C2 + C3 +
C4+C5+Cs+C7). Thus the interconnect delay from source
node 0 to node 7 according to lumped RC delay metric is
given as 0.69 x (R1 + Rz + R4 + Rr) * Ciotai-

Driver

COI c1I czI c4I c7I

Figure 1: RC-tree representation of an Interconnect

Although lumped model is computationally very efficient,
it can be highly inaccurate w.r.t real interconnect delays.
Computing the exact delays of interconnect RC trees is ex-
pensive since it requires the exact solution of a set of dif-

ferential equations for various RC sections of the tree. One
of the most popular delay metrics for RC trees has been
the elmore delay because of its simplicity and reasonable
correlation to real delays. Elmore originally estimated the
50% delay of a monotonic step response by the mean of the
impulse response [5]. Rubinstein et al. [13] proved that re-
sponse of a general RC tree to a step input is monotonic.
They utilized elmore delay for obtaining bounds on the step
response waveform of an RC tree. Under elmore delay, the
signal delay To—; from source node 0 to some node % in the
interconnect RC tree is given as:

To-; = Z

over all nodes k

Ry,iCiot,, 1)

where, Ciot, represents the total downstream capacitance
at node k; and Ry ; represents the summation of all the re-
sistances that are common between: the path from source
node 0 to node 4, and the path from source node 0 to node k.
For example, in the interconnect RC tree in Figure 1, Rg 3 is
given by R1 + Rs. It is well known that computation of in-
terconnect delays using elmore approach is very fast since it
relies on single topological traversal of the interconnect tree.
However, the elmore model can result in significant errors
w.r.t real delays, especially in the case of deep-submicron
designs where resistive shielding have significant effect on
the interconnect delays. For example, elmore delay from
source node 0 to node 2 in RC-tree of Figure 1 is given by
Ri(C1+C2+C3+Cs+Cs5+Cs+Cr)+ Ra(Ca+ Cs + Cr).
In the limiting case when Rs = 0o, elmore delay does not
reflect the fact the downstream capacitances Cs, Cs, and Cs
are totally shielded from resistance R;. This can cause sig-
nificant error in node delays for nodes closer to the source
on long nets. Since elmore delay represents the first mo-
ment of the impulse response, utilizing higher order mo-
ments can yield much better delay accuracy [6][7][9][14] .
Unfortunately, most of these techniques utilizing higher or-
der moments are computationally very intensive and require
large run-times. Due to high computational complexity of
obtaining higher order moments and a lack of an accurate
but efficient delay metric, elmore delay has remained a pop-
ular metrics.

Recently, Kashyap et al. [8] proposed an interconnect de-
lay metric that takes resistive shielding into account without
computing higher-order moments. It relies on effective ca-
pacitance calculation [11][12] to account for resistive shield-
ing. Kashyap et al. extended their effective capacitance
metric by approximating a ramp input applied to an RC
circuit with a step input applied at the instant when the
ramp crosses the 50% point [8]. However, in practice, in-
terconnects are driven by CMOS circuits (as shown in Fig-
ure 1) that drive the RC-interconnect wires with finite slew
waveforms. The slew of this waveform is dependent on the
effective capacitance load seen by the CMOS driver. Un-
fortunately, Kashyap’s method for calculating effective ca-
pacitance relies on the slew value applied to the source of
RC-tree which in turn depends on the effective capacitance
itself in the case of CMOS drivers. Due to this drawback, it
is difficult to apply Kashyap’s method to compute accurate
interconnect delays in CMOS logic circuits. In this paper,
we propose a new computationally efficient and accurate
wire delay estimation method that overcomes this drawback
in Kashyap’s method. In addition, we directly account for
the finite slew of the ramp waveform in our delay metric as

opposed to approximating it with a time shifted step input
in Kashyap et al.’s method.

Our new estimation method [10] considers the effect of
slew as well as resistive shielding of capacitance to yield
more accurate delays for both interconnects and driver gate.
To account for interdependence of slew and effective capaci-
tance, we iteratively refine the source slew to yield accurate
node delays. In addition, it is computationally similar in
efficiency to the elmore delay model.

The rest of the paper is organized as follows. In Sec-
tion 2.1, we discuss the effect of ramp inputs and resistive
shielding in computing accurate effective load capacitance.
Section 2.2 discusses our iterative refinement approach for
computing interconnect delays. A detailed discussion of slew
propagation mechanism used in the proposed iterative re-
finement approach is given in section 2.3. Section 2.4 illus-
trates the proposed approach with a simple example. Ex-
perimental results are given in section 3 and finally secion 4
concludes this paper.

2. INTERCONNECT DELAY ESTIMATION

2.1 Computing Effective Capacitance with ramp
Inputs

The effective capacitance seen at each node of a RC tree
depends on the resistive shielding which in turn depends
on the node slew, its resistance, and capacitance. In this
section, we derive this dependence of the effective capaci-
tance. In contrast to [8], where the effective capacitance is
calculated for a step input and then approximated for ramp
inputs, we consider the effect of ramp inputs on effective
capacitance explicitly.

Let us consider a simple voltage source V' (t) driving a =-
model RC-load C1 — R — C> as shown in Figure 2. Let I(¢)
be the total current provided by voltage source V(¢) and
let I1(t) be the current through Ci and I>2(t) be the current
through R—C5. In the following, we perform simple analysis
in frequency domain of the 7 model.

I(s) = Ii(s) + Io(s)

_VE) e V)
B = 17605 200 = 5i1/ces
I(s) = V(s)(Cis + ﬁ%ﬁ)

We assume that the source V(¢) is a ramp voltage source
with a rise time ¢, as shown in Figure 2. Thus, V (¢) is given
by:

V(t) = ‘fdt fort < t. and V(t) = Vaa for t >= t,
Vaa 1 —st
= ——(1-— r
V(s) = 451 —e)
Substituting this in the current equation above, we get:
Vaa ,C1 C> —st
I(s) = Ay 2 Y1—e
()= T s pey))
Viaa ,C1 + C> Cs —st
I = — — 1 —_ i
()= PEE2 - =) -

RCo

I (t) | 2 ®

w

: timevt(t) | }(t)I c I ©2

Time-domain analysis

voltage V(t)

!
l

0y V()

I (s) |2 (s) 1®

w
11(5) Cys Iczs

Frequency-domain analysis

Ij> Ve Ceﬁ%

Effective Capacitance

Figure 2: Calculation of Effective Capacitance with ramp inputs

V ot
dd Cre EC2) fort < t,

I(t) =
We are interested in calculating the effective capacitance
as seen by the voltage source V(t). For this purpose, we
define the effective capacitance Ccrs to be a capacitance
that requires the same charge transfer ”Q” as that required
by the 7 model load upto 50% delay point (i.e., the time
when the input reaches Vpp/2, i.e., t = t,/2). This charge
7 Q” is given by:

f2 tr/2
0= / £)dt = / ‘fd((cl+02)—

r

((Cl +Cs) —

ty
Cae” 87)dt

Also, the charge transfer for charging the effective capac-
itance upto 50% delay point is given by % As dis-
cussed above, equating these two charge transfers, we ob-
tain:

Vdd(01 + 02) _ R022Vdd
2 tr

CeffVaa
2

(1 —e_"”;—r%) =

(1—e 7))

Thus, Cefy = C1 + C2 % K, where K is the capacitance
shielding factor defined as:

Cess =C1+C2(1 —

2RC>
t

r

RC>
t,

(2)

Thus, capacitance shielding factor K depends on the time
constant RC> and the input slew rate ¢,. It is possible for
the capacitance C> to be shielded by a significant amount
depending on the relative values of RC> and slew rate t,, as
shown in Figure 3.

In practice, the voltage source V(t) driving the RC-tree is
a CMOS gate whose input signal slew rate is known. Since
we do not know the slew rate at the output of the gate (i.e.,
input of RC-tree), because it in turn depends on the effective
capacitance, we solve for the value of Ccyy with the driver
slew equation. In standard cell based designs, delay and
slew at output of a given cell is pre-characterized in timing
rules in terms of its input slew and capacitive load. Since
the input slew of the driver gate is known and fixed, the
output slew at the driver can be expressed as a function of
its output load. We utilize this interdependence of slew and
capacitance and propose an iterative refinement method for
determining interconnect delays. In this proposed method,
we iteratively refine the delay estimates by repeated forward
and backward traversal of the RC tree topology. During ev-
ery iteration we refine the source slew, i.e., driver output
slew in order to obtain successively accurate values of effec-
tive capacitance.

2.2

K = 1—2:6(1—6_%), where x =

Iterative delay refinement approach

Capacitance Shielding

0.8 -

0.7 |-

0.6 |-

05

03 |-

0.2 -

01 L L L L L L L L !
0 0.2 0.4 0.6 0.8 1 12 14 16 18
RC/Tr

Figure 3: Variation of capacitance shielding factor
K with ratio of RC-delay and input slew (RC:/t;,).

We assume that the interconnect structure has been ex-
tracted in the form of an RC-tree (as shown in example Fig-
ure 1) where every node ¢ has a capacitance C; to ground,
and has a resistance R; that connects it to its parent node.
Let, the source node 0 be driven by a CMOS driver gate
whose output slew Sgriver is modeled using timing equa-
tion : Siriver = f(gate capacitive load). We denote the
total downstream capacitance at node ¢ by Ciot;; the slew
at node i by S;; and the effective capacitance at node 7 by
Cetsi-

The outline of our iterative refinement method for esti-
mating interconnect delays is given as follows:

1. Initialize:

o Effective capacitance Cecyy; of each RC tree node
7 with the sum of all downstream capacitances
Ctot,- -

e Slew at the source of RC-tree So, (i.e., driver out-
put slew) from the driver slew equation with the
driver load equal to the lumped net capacitance:

So = f(Ctoto)-

2. Traverse forward from source node towards sinks and
compute :

e Delay To—; from source 0 to each tree node 4
using elmore delay calculation (equation 1) with
node’s capacitance value equal to its effective ca-

pacitance, i.e.,

To—i = Z

over all nodes k

Ry,iCeyy;

e Slew S; at each tree node i using the parent slew
and the tree segment delay (as discussed in sec-
tion 2.3).

3. Traverse backward from source node towards sinks and
compute :

o Effective capacitance Ceyy, at each node with the
summation of the node capacitance C; and all the
children nodes effective capacitances:

Cesy; =Ci + Z K; *Ctotj
over all children nodes j
where shielding factor
2R;Cesf, — s
Kj=1- JSeffJ (1-e 2RJCeffj)
i

4. Recompute the source slew Sy using the driver slew
equation with the gate capacitive load being the source
node’s effective capacitance Cefy, from previous back-
ward propagation pass, i.e., So = f(Ceff,)-

5. If driver slew did not converge within a specified thresh-
old of previous slew, iterate over step 2 to step 5 again
until the slew at the driver output converges.

\%
® dd ® V,
8 I(t) 8 dd
S IN S
£ ;e v(t) R ¢ H time
1t r - I —y —_
r
)
3 Vdd
°
> Input
signal
Goout o V1 _ Vud
Vy ooy signal oot ty
t=0 t/ time

Figure 5: Slew Propagation in a simple RC-tree seg-
ment

2.3 Propagation of slew through an RC-tree

As discussed above, we propagate the slew from the source

towards the sinks in order to obtain accurate capacitive
shielding coefficients. In this section, we derive a relation-
ship between the output slew and input slew of a simple RC
segment. This relationship is used to propagate the slew in
the RC-tree, as discussed in previous section.
Let a simple RC segment circuit as shown in Figure 5 be
driven by a ramp input voltage source V(t) = %t, where
tr is the slew of this ramp. The output voltage in this case
can be straight forwardly derived as:

Forward propagation of Delay and Slew from Source to Sinks Vdd
[

Recalculate the Driver
output slew with Ceff
from previous backward
propagation pass. If
driver output slew did
not converge within
a specified threshold
of previous slew,

(t — RCy + RCye” 703)

At t = t,, the output voltage is given by Vi (as shown in
Figure 5):

Vaa

(tr — RC>2 + RCzeiRtf(r"?)

iterate again. p
”
Fixed @ K Also from Figure 5, we can see that:
input co 1 T
slew Driver I C1 I E _ \Z7

t, ot

Backward propagation of Effective Capacitances

from Sinks to Source based on slews computed
in the previous forward propagation pass

Figure 4: Outline of the proposed Iterative Refine-
ment method for interconnect delay estimation.

The iterative refinement approach for estimating inter-
connect delays is also illustrated in Figure 4. As discussed
above, the iterative refinement approach utilizes effective
capacitance computations that explicitly considers effect of
ramp inputs. In addition, we successively refine the node
slew values during each pass of the tree topology to accu-
rately compute the resistive shielding effect for each node.
These resistive shielding factors are used to obtain highly
accurate effective capacitance for each node. We use these
effective capacitances in the elmore delay computations to
obtain interconnect delays. Although we do not derive the
proof of convergence of the iterative refinement approach
here, experimental results with interconnects in all the large
industrial ASICs, as well as randomly generated RC-lines
show that the slew converges within 1% of the previous slew
in less than 5 iterations.

where ¢, is the slew of the output as shown in Figure 5.
Thus, output slew ¢, is given by :

o — Yaatr
T Vl *
Substituting V1 into this equation, we get:
tr

t, = —
t, — RCy + RCe EC2
This equation can be simply reduced to:
tr
th = 3)
© 1By rés)

t

Thus, given the R-C delay of the segment RC5, and its
input slew t., we can calculate the output slew ¢, with the
above derived formula.

This relationship yields the dependence of output slew of
a R-C segment on input slew as a function of ratio z = Rt—CQ
as follows : "

| S—
1-—z(l—e"=)

1

(W(L-x*(1- eXp(-1x)) ——
10 B

Ratio of Output Slew to Input Slew
o
T
!

1 I I I I
0 1 2 3 4 5

X(Ratio of R-C delay to Input Slew)

Figure 6: Dependence of output slew and input slew

ratio (i.e., :—:) on the ratio of RC-delay to input slew

(RC:/t,).

Figure 6 shows the dependence of the ratio of output slew to

input slew (i.e., :—:) on the ratio of input slew to R-C delay
(i.e., B92),

In the following section, we further illustrate our iterative
refinement method on a simple example interconnect RC

tree shown in Figure 1.

2.4 Example

Given a interconnect RC tree topology with a gate driver
as shown in Figure 1, initially, we set the effective capaci-
tance Ceyy, at every node ¢ of RC tree to be the sum of all
downstream capacitances Ciot;. Thus, in the example tree,
the effective capacitances at various nodes are initialized as:
Ceffo = Co+ C1+ Ca+ C3 + Cy + Cs + Cs + C7 = Cotg
Cefsy =C1+C2+ C3+Cas+ Cs + Cs + C7 = Cioty
Ceffg =Co+Cs+ C? = Ctot2
Ceff3 =C3+Cs+Cg = Ctot3
Cessy = Ca+ Cr = Cio,

Ceff5 =Cs = Ctot5
Ceff(; =Cs = Ctot6
Cess, = C7 = Choty

Then we calculate the slew Sp at the source node 0 by
considering the driver slew equation (Sgriver = f(gate ca-
pacitive load)) and substituting lumped source node capaci-
tance Ciot, for the gate capacitive load. Thus slew at source
node Sy is given by f(Cioty)-

After determining the initial source node slew Sp, we tra-
verse forward from source towards the sinks in a levelized
manner (i.e., in order 0, 1, 2, 3, 4, 5, 6, 7) and determine
node delays and slews as follows:

First we visit node 1 and determine the delay from the
source: To—1 = Ri1Ceys,. Then we determine the slew at
node 1 from the parent slew Sy using the formula derived in
equation 3 as :

So

S1 = 5
1_ %(1 —e Fi%sm)
0

Then we compute the delay To_2» = Ri1Cers, + RaCeyy,
at node 2 and propagate node 1 slew S; to node 2 and

determine its slew S5 as:
S1

S1
RaCegy, T R3C
1- S—l(].—e eff2)

Sy =

Similarly, we find the delay at node 3, i.e., To_3, and its slew
S3. We continue this delay and slew propagation towards
the sinks until we have computed the initial delays and slews
at each node in the RC-tree.

After the forward delay and slew propagation phase, based
on these slew values we recalculate the new effective capaci-
tance values (using equation 2 for each node by propagating
them backward from sinks towards sources (i.e., in order 7,
6, 5, 4, 3, 2, 1, 0). For the sink node, the effective capaci-
tance is always same as the node capacitance.

Cess, = Cr
Cesse = Cs
Cers = Cs

Ceffs = Cs+ K7 % Ciot,
Cefts = C3 + Ks % Cioty + Kg * Ciotg
Cefpy = Co2+ Ky % Cior,
Cers, = C1 4+ Kz * Cioty + K3 % Chotg
Cerso = Co+ K1 * Cioty

where shielding factor K; denotes the capacitance shielding
factor for node j and is given as (equation 2) :

2R;Cefy; R —
1— i~effj
5 (e)

where, S; denotes the slew at node j’s parent, node i.

We now recompute the slew at source node 0, i.e., So,
using the newly calculated effective capacitance at source
node 0, i.e., Cesf, from the driver slew equation, i.e., slew
So = f(Cesso)-

The process of forward propagation of delay and slew;
and backward propagation of effective capacitances is iter-
ated until the slew value at source node differs by less than a
user defined threshold (practically set to 1%) from the pre-
vious slew value at which time, we have obtained the final
interconnect delays, effective source capacitance and source
slew.

As stated before, experimental results with interconnects
in all the large industrial ASICs, as well as randomly gener-
ated RC-lines show that the source slew converges within 1%
of the previous slew in less than 5 iterations. It is obvious
from the iterative nature of our approach that its computa-
tional complexity is only a constant times the computational
complexity of the elmore delay model, which is linear in the
number of nodes n in the RC-tree. Thus, the computational
complexity of our approach is O(c.n) where c is the number
of iterations it takes for the source slew to converge. As
stated, this constant has been experimentally observed to
be always less than 5.

In the following section, we demonstrate the accuracy and
computational efficiency of the iterative refinement delay
method using practical industrial ASICs as well as randomly
generated RC-lines.

Kj=1-

3. EXPERIMENTAL RESULTS

We performed two set of experiments to demonstrate the
accuracy and run-time advantage of our iterative refinement
approach for computing interconnect delays. In the first set

Table 1: Iterative Refinement Delay Comparison
w.r.t AS/X for each node in the 15 segment RC
line

Node | Average | Minimum | Maximum
Ratio Ratio Ratio

0 2.03 1.51 2.41

1 1.95 1.47 2.30

2 1.85 1.42 2.15

3 1.73 1.38 1.96

4 1.60 1.33 1.75

5 1.47 1.29 1.55

6 1.36 1.25 1.40

7 1.26 1.21 1.29

8 1.18 1.12 1.21

9 1.12 1.04 1.16
10 1.07 0.99 1.13
11 1.04 0.95 1.11
12 1.02 0.93 1.09
13 1.00 0.91 1.08
14 0.99 0.89 1.07
15 0.98 0.88 1.06

Source

Slew 0.97 0.86 1.13

of experiments, we compare the accuracy of our iterative re-
finement approach w.r.t true delays as measured by AS/X*
simulator [1] on randomly generated RC-lines. In the second
set of experiments, to demonstrate the practical effectiveness
of our approach, we employed our iterative refinement delay
calculator in IBM’s physical synthesis tool known as Place-
ment Driven Synthesis (PDS) [3]. These results are given as
follows.

3.1 Results on randomly generated RC lines

The accuracy of any interconnect delay model can be eval-
uated by comparing it to true delays obtained using a device
level simulator such as SPICE or AS/X [1]. We generated
10 random instances of a 15 segment RC-line driven by a in-
verter with 20pum PMOS and 10um NMOS in IBM’s 0.12um
Lcss CMOS technology. The input to the inverter is a sig-
nal with a slew of 100ps. We simulated these instances with
AS/X simulator and also computed the delay at each node
with iterative refinement method. Then we computed the
ratio of iterative refinement delay to the AS/X delay at each
node. Also, at each node, we computed an average, a maxi-
mum, and a minimum ratio over all the randomly generated
RC-lines.

Table 1 enumerates the results of our experiments. Col-
umn 1 gives the node number in the RC-line with node 0
being the source of the RC-line, i.e., output of the driver and
node 15 being the farthest end of this 15 segment RC line.
Column 2, Column 3, and Column 4 give the average ratio,
the minimum ratio, and the maximum ratio of the iterative
refinement delay to the AS/X delay for all randomly gener-
ated RC-lines. It is clear that on an average the iterative
refinement method can achieve highly accurate delays at the
far-end of the line (closer to end nodes). The minimum and
maximum deviation from true delays is also within reason-
able bounds. In addition, the delays at difficult to match
source end of the RC-line are also very accurate considering

'AS/X is IBM’s electrical-level simulator similar to SPICE.

that fact that source end delays are smaller and thus a small
variation from true AS/X delays results in large percentage
variation. Our results show an improvement over the ECM
delay metrics results proposed by Kashyap et. al. (Table 2
in [8]). In fact, our results are significantly better for the
more difficult to match source end nodes. The task of an
interconnect delay calculator is not only to provide accurate
interconnect delays but to also provide accurate effective ca-
pacitance load to the CMOS drivers. This is measured by
the accuracy of the driver output slew (i.e., source slew)
w.r.t AS/X. This information is given in last row of Table 1
where it can be seen that on an average the source slew given
by the iterative refinement approach match very closely with
AS/X results.

3.2 Resultsonlarge industrial ASICswith phys-
ical synthesis

The real impact of any delay metrics in terms of its run-
time advantage and accuracy can be practically evaluated
by using it in a design tool that is timing-analysis intensive.
For the evaluation of interconnect delay metrics, physical
synthesis tool is such an application. In physical synthe-
sis environment, the physical location as well as size and
number of various circuits is constantly changing. Thus, the
interconnect topology as well as driver size of various nets is
also changing. These changing net topologies require several
hundred thousand evaluations of interconnect delays during
each iteration of placement and synthesis interaction. We
employed our iterative refinement delay calculator in IBM’s
physical synthesis tool known as PDS [3] to demonstrate its
practical advantage. The initial release of PDS employed
lumped delay model due to its simplicity and concerns re-
garding excessive run time for physical synthesis of large
industrial ASICs if a more complex delay model is used.

We integrated our iterative refinement delay calculator in
PDS environment and synthesized several large industrial
ASICs. The results are given in Table 2 and are compared
with the results when a lumped delay model is used (the pre-
vious delay calculator in PDS). Column 1 gives the design
name; Column 2 gives the number of gates in the design;
Column 3, and Column 4 give the worst optimized slack
(ns)?; Column 5, and Column 6 give the Figure of Merit
(ns); Column 7, and Column 8 give the number of nega-
tive data setups; Column 9, and Column 10 give the total
run-time in seconds. From Column 3 to Column 10, even
columns report the results when lumped delay model is used
in comparison to odd columns which report the results of it-
erative refinement delay calculator. Figure of merit is an
integer that gives the cumulative slack of all negative slack
circuits in the design and measures the quality of optimized
design.

As can be seen from the worst slack as well as figure
of merit, and the number of negative setups, lumped de-
lay model significantly overestimates the delays due to pes-
simistic interconnect delays and the absence of resistive-
shielding. It is clear from the results that the use of a more
accurate iterative refinement delay model removes the pes-
simism in interconnect and driver delay timing. In addition,
reducing timing pessimism also helps the physical synthe-
sis close on the timing earlier, thereby helping the timing-
closure problem. This leads to a reduction in total run-time

%Slack calculation in PDS is performed using IBM’s internal
static timing analysis tool, Einstimer [4].

Table 2: Delay and Run-time comparison of lumped delay and iterative refinement model during physical

synthesis.

Design Number | Worst final Slack Figure of # of Negative Total CPU run

Name of slack (ns) Merit (ns) data setups time (sec)

Gates | Lumped | Tterative | Lumped [Tterative | Lumped | Iterative | Lumped | Iterative

PPC405B3V2 | 41317 | -0.18 0.18 31 29 568 493 4836 4495
CREAM-0 67917 -0.61 -0.55 -716 -614 2000 1885 5088 4563
CHIP-TOP | 72144 | -1.01 -1.02 228 212 486 467 3653 3635
AXQ-TOP | 146642 | -0.92 -0.39 -1514 -175 6213 2052 10673 | 10984
APG 210217 | -2.97 -2.42 -8465 -5736 9359 6619 11526 | 11893
IPC-TOP | 265691 | -1.90 143 | -34144 | -20219 | 36994 | 32256 | 27016 | 22734
COBALT 318220 -4.25 -2.35 -10383 -3427 12846 5900 27774 26797
HERC-TOP 444472 -0.29 -0.02 -63 0 513 8 33074 27839

for almost all the designs, which goes against the initial in-
tution that selecting a more accurate delay model results in
increased run-time. In general, for all the ASICs listed in
Table 2, we obtained a reduction in run time from a total of
123640 seconds to 112942 seconds, i.e., a reduction of 8.7%.
This run time advantage depends on the number of negative
data setups, i.e., the size of the critical region, i.e, a larger
critical region introduces more pessimism with lumped delay
model and yields a higher run-time benefit with the new it-
erative approach. Due to its run-time advantage, and its ac-
curacy of delay modeling, the iterative refinement approach
is now the default delay model in IBM’s Placement Driven
Synthesis tool, PDS.

4. CONCLUSIONS

In this paper, we proposed a new computationally effi-
cient and accurate delay model for estimating interconnect
delays. This new estimation method considers the effect
of slew as well as resistive shielding of capacitance to yield
more accurate delays for both interconnects and driver gate.
To account for interdependence of slew and effective capaci-
tance, we iteratively refine the source slew to yield accurate
node delays. In addition, it is computationally similar in
efficiency to the elmore delay model. Experimental results
show that the proposed approach gives not only highly ac-
curate results for far end RC-line delays but also compares
very favorably to more difficult to match source end delays
and source slews. In addition, use of the proposed delay
model in physical synthesis yields significant performance
improvement on several large industrial ASICs.

5. REFERENCES

[1] AS/X User’s Guide, IBM Corp., 1996.

[2] J. Cong, L. He, C. K. Koh, and P. H. Madden.

Performance Optimization of VLSI Interconnect

Layout. Integration: VLSI Journal, 21:1-94, 1996.

W. Donath, P. Kudva, L. Stok, P. Villarrubia,

L. Reddy, A. Sullivan, and K. Chakraborty.

Transformational Placement and Synthesis. In DATE,

pages 194-201, 2000.

[4] Einstimer User’s Guide, IBM Corp., 2001.

[5] W. C. Elmore. The Transient Response of Damped
Linear Networks with Particular Regard to Wideband
Amplifiers. Journal of Applied Physics, 19(1):55-63,
1948.

3

[’

[6] A. B. Kahng and S. Muddu. Two-Pole Analysis of
Interconnect Trees. In Multi-Chip Module Conference,
pages 105-110, 1995.

[7] A. B. Kahng and S. Muddu. An Analytical Delay
model for RLC Interconnects. IEEE Trans. on CAD,
16(12):1507-1514, 1997.

[8] C. V. Kashyap, C. J. Alpert, and A. Devgan. An
Effective Capacitance based Delay Metric for RC
Interconnect. In ICCAD, pages 229-234, 2000.

[9] R. Kay and L. Pileggi. PRIMO: Probability
Interpretation of Moments for Delay Calculation. In
DAC, pages 463-468, 1998.

[10] R. Puri, D. S. Kung, and A. D. Drumm. System and
Method for Fast Interconnect Delay Estimation
through Iterative Refinement, US patent application,
(filed) September, 2000.

[11] J. Qian, S. Pullela, and L. Pillage. Modeling the
Effective Capacitance for the RC Interconnects of
CMOS Gates. IEEE Trans. on CAD,
13(12):1526-1535, 1994.

[12] C. L. Ratzlaff, S. Pullela, and L. Pillage. Modeling the
RC-Interconnect Effects in a Hierarchical Timing
Analyzer. In CICC, pages 15.6.1-15.6.4, 1992.

[13] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal
Delay in RC Tree Networks. IEEE Trans. on CAD,
2(3):202-210, 1983.

[14] B. Tutuianu, F. Dartu, and L. Pileggi. Explicit
RC-Circuit Delay Approximation Based on the First
Three Moments of the Impulse Response. In DAC,
pages 611-616, 1996.

	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

