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ABSTRACT

This paper presents a voltage scaling approach that is based
on an enhanced variant of clustered voltage scaling originally
proposed by Usami and Horowitz ([1]) The results show that
subtituting the original depth first strategy with a breadth
first one results in improved speed and quality of results.
Data are validated through power and timing analysis per-
formed with a commercial tool.

Categories & Subjects Descriptors
B. Hardware, B.7 Integrated Circuits, B.7.0 General.

General Terms

Design.

1. INTRODUCTION

Although static power consumption is becoming increas-
ingly significant in current technologies, dynamic power is
still the predominant source of power consumption in CMOS
designs. This fact, together with the well-known quadratic
dependency of dynamic power with respect to the supply
voltage, explains the popularity of supply woltage scaling
techniques as power reduction approaches.

Recently, voltage scaling has been increasingly applied at
higher abstraction levels, where the benefits of voltage scal-
ing can be combined to those derived from addressing the
problem in the early stages of the design flow, possibly al-
lowing voltage levels to change over time (dynamic voltage
scaling).

Clearly, voltage cannot be scaled arbitrarily, because the
delay of a CMOS device is roughly inversely proportional
to the supply voltage. Therefore, the possibility of running
accurate timing analysis on a design is essential, in order to
assess the validity of voltage scaling approaches. This issue
represents somehow the weakness of high-level approaches:
Although they potentially provide sizable energy savings,
they tend to be excessively conservative because of the lack
of a reliable validation of their effect on timing. For example,
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techniques that operate at the task level evaluate the effects
of scaling on latency by using estimates of the worst-case
execution time of the tasks, an extremely pessimistic figure
that may cancel most of the potentially achievable energy
savings.

For this reason, gate or circuit-level solutions are usually
more well accepted by designers, because they can guarantee
that timing constraints are not violated by introducing lower
supply voltages.

Several authors have addressed the voltage scaling prob-
lem at the gate level. All the approaches share two main
features:

e Voltage scaling is applied locally, in the sense that the
supply voltage-delay tradeoff allows to scale voltage
only in some portions of a design;

e Voltage is considered a discrete quantity, that can as-
sume a limited set of voltage levels (typically two).
This is mainly due to technological reasons, because
technology library are designed for specific supply volt-
age values. The small number of allowable voltages is
instead due to efficiency reasons, because the routing
of too many supply voltages would results in an unac-
ceptable wiring overhead.

The various approaches basically differ in the way they try
to solve the power-delay tradeoff. The problem of voltage
scaling shares many similarities with that of gate resizing,
in the sense that both methods consist of the replacement
of some library cells with functionally equivalent ones.

Usami and Horowitz [1] propose the idea of clustered volt-
age scaling (CVS), where gates are clustered in two sets
(corresponding to the high and low voltage levels), in such a
way that the number of level shifters between the two volt-
age levels is minimized; shifters only needed at the primary
outputs to restore the nominal (high) voltage level. In [9],
Sundararajan and Parhi approach the problem in a similar
way, and solved it using linear programming.

Chen and Sarrafzadeh [8] propose a more effective real-
ization of the phase of cluster construction, that is based
on a formulation of the problem as a maximum-weighted
independent set problem.

Some other approaches combine voltage scaling with gate
resizing, typically adopting a two-phase approach. Yeh and
Chang [6] build clusters using the same formulation as in [8],
and allow scaling and sizing to be carried out independently.
Energy reductions provided by the scaling alone are however
marginal with respect to the basic CVS.



In this work, we propose a voltage scaling technique that
provides some basic variants to the basic CVS approach
of [1] to improve effectiveness and performance. The re-
sults show that average improvements of up to 9 % can be
achieved, using an accurate, pre-characterized energy model
for the level shifters.

The paper is organized as follows: Section 2 reviews the
basics of CVS, that constitutes the basis of the proposed
algorithm, which is described in Section 3. Section 4 pro-
vides some experimental data that compare the plain and
our modified CVS. Finally, Section 5 draws a few conclusion
about the proposed solution.

2. CLUSTERED VOLTAGE SCALING

In this section we will describe the details of the clustered

voltage scaling originally presented Usami and Horowitz ([1]):

Its basic idea was that of preserving a clustered structure as
a means to both achieve simplicity of algorithm and good
quality of results. As in all voltage scaling algorithms, this
proposal tries to reduce voltage supply level for those gates
that are not critical for the circuit performance (i.e. gates
that have a sufficiently high slack), without modifying sizes
of gates and circuit topology. The method was originally
proposed for a dual-voltage scenario that seems to be the
most viable from technological point of view as discussed
in the previous section. In the following, we will indicate
with Vppr and Vppr respectively, the high and low volt-
age levels. The algorithm tries to optimize power consump-
tion without worsening performance figures, and therefore
compares with the case of all cells supplied with Vppg.
This case provides the most performing solution, due to the
monotonical behavior of the curves delay versus supply volt-
age. The algorithm’s core is a strategy to successively sup-
ply cells with Vppr, while maintaining the maximum perfor-
mance. The main problem of a multiple voltage scheme in
a netlist consists in the possibility of connecting gates with
the “wrong” relationships of voltage levels. As a matter of
fact, while a connection between a cell supplied by Vbpw
to a cell supplied by Vppr does not introduce particular
problems, the opposite is not acceptable. This is due to the
fact that a logical ‘1’ corresponds to an electrical level of
Vbpr, that might be too small to drive correctly the fol-
lowing gate. The consequence of this connection is thus a
significant degradation of noise margins, and, possibly, the
introduction of a non-valid electrical level (the gate down-
stream may not interpret it as a ‘1’), as well as some static
dissipation in the second gate (see Figure 1). Since this
type of connections cannot be eliminated in a dual-voltage
scheme, the use of level shifters is mandatory to compensate
the uneveness of voltage levels [3, 4]. Level shifters take as
inputs low-voltage swing signals and return full-swing sig-
nals as outputs. An example of a typical level shifter is
shown in Figure 1. Even if the introduction of level shifters
solves all the electrical problems of low-to-high voltage con-
nections they do not come for free: They introduce a new
source of power dissipation, take more silicon area, and can
add to the delay of the circuit. Therefore, they should be
added as sparingly as possible.

The previous considerations make it interesting the idea
of a voltage scaling strategy that limits the number of level
shifters by construction: Every path from primary inputs to
primary outputs will meet only a sequence of Vppwu to Vbpr
gates and not the opposite one. Therefore, at most one level
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Figure 1: Level shifter

shifter will be needed, and only at the primary outputs, if
they need to be supplied to Vppr. Moreover, they can
be embedded into the latches that are usually put at the
POs of a cambinational circuit, thus reducing their impact
on the overall design [1]. This kind of structure has been
christened Clustered Voltage Structure because it results in
the clustering of gates in two sets: A set of gates at Vppumw,
connected to the primary inputs, followed by a set of gates
at Vppr feeding some primary outputs (see Figure 2).

CVS algorithm is a search algorithm on the netlist that
tries to substitute as many cells as possible with Vppr cells,
starting from the primary outputs, with the constraint that
the design performance is not changed. The details of the
algorithm are reported in Figure 3.

In step 6, a cell is found viable if and only if its entire
transitive fanout can be substituted without worsening the
overall timing. This analysis is performed through a forward
depth-first search (DFS), that stops when all the transitive
fanout is analyzed or a substituition cannot be performed.

The order of visit of the primary outputs can be either ob-
tained through decreasing slacks or decreasing loads. The
experimental results show that the results are practically
independent of this heuristics. An example of application
of the algorithm is shown in Figure 4: the algorithm con-
siders gate G8 first, substitutes it with a Vppr cell, checks
the new timing and concludes that substitution can be ac-
cepted. Then moves to cell G5. There is one child that is
yet to be analyzed for substitution (G9), that is therefore
substituted with a cell with Vppr. Timing analysis reports
an acceptable timing, therefore its substitution is retained.
Then cell G5 is analyzed again: Its children are all Vppr,
and therefore its own substitution is analyzed. It is accepted
as well. then the analysis moves to cell G1, G3, G4, all of
which give an unacceptable timing. In the end cell G10 is
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Figure 2: Clustered Voltage Structure

1 Pick a new cell C connected to a primary output

2 Substitute it with a Vppr analogous cell

3 Perform a new static timing analysis

4 If the new timing worsen the original one go back to step 1
5 Pick a cell feeding the last substituted

6 Verify its viability for substitution through a DFS

7 If the new timing worsen the original one go back to step 5
8 If there are unanalyzed PO cells go back to step 1

Figure 3: Original CVS Algorithm.

G1
2
PI1 G5 G8
G3
3 POL
— »
G2 I i
™ G9
PI2
PO2
\ G6
PI3 o0
— 3
L3 PO3
G4
G7
\ PO4
P4

PIS

Figure 4: Original CVS algorithm: Example

considered, but it is not considered because it lies on the
critical path.

The algorithm as it is suffers of some drawbacks, that are
related mainly to the way search proceeds more than the
rationale behind it (clustered voltage scheme). The next
two sections show possible changes in the algorithm which
will prove to be more efficient and/or effective.

3. ENHANCED CLUSTERED VOLTAGE
SCALING

As explained in the previous section, search strategy of
the original CVS algorithm doesn’t strictly depend on the
clustered structure. Therefore we looked for alternative im-
plementations that improve results and/or execution time
without changing the basic CVS.

3.1 Partial Depth First Search

The first observation on original CVS algorithm search is
that the forward DFS might take a long time. In fact, when-
ever a node in the netlist is checked for its feasibility, if its
fanout is greater than one, the algorithm runs forward DFS
to check whether substitution is feasible for all its transitive
fanout. The first modification we propose consists of stop-
ping the search whenever a node is declared unfeasible. In
practice, we perform a partial backward search following the
flow of Figure 5.

Pick a new cell C connected to a primary output
Substitute C with a Vppr analogous cell

Perform a new static timing analysis

If timing worsen

resubstitute C with the original one and go to step 9
Pick a cell C feeding the last substituted

Verify its viability for substitution through a DFS
Substitute C with a Vppr analogous cell

If timing does not worsen go back to step 5

Else resubstitute C with the original one and go to step 9
If there are unanalyzed PO cells go back to step 1
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Figure 5: Partial DFS Algorithm.

In this case, when a single DFS search on the transitive
fanout is aborted, we skip to the following PO. The rationale
behind this choice is that the search space will be pruned
by cutting many subsitutions that are not likely to affect
substantially the results, but saving computation time.

To show with an example the difference between the two
approaches, let us consider Figure 6. All shaded nodes repre-
sent cells that could be substituted simultaneously without
incurring in timing penalty. This is obviously possible only
if the complete circuit has other - not shown - nodes, as the
critical path is invariably made of Vppn gates.

If we apply the Partial DFS algorithm, starting from node
110, we first substitute 110 with a Vppr cell, then its parent
node I7. In the following step the algorithm checks node 12
for feasibility and, as it has more than 1 children, its en-
tire transitive fanout is checked. Node I3 turns out to be
unfeasible, and therefore the entire search stops and no fur-
ther nodes are analyzed. This concludes the search starting
from PO I10. Analogously, starting from node 19, we sub-
stitute nodes I9 and I8 and then stop (I4 should feed I3 that
has been already marked as unfeasible). The final result is
shown in Figure 7: Only the four nodes 17, I8, I9 and I10



Figure 6: Example netlist

Figure 7: Application of Partial DFS algorithm

Figure 8: Application of original CVS algorithm

are implemented with Vppr cells. If on the other hand we
apply the original algorithm, after the visit of nodes I10 and
17, the recursive visit on node 12, before stopping for I3 in-
feasibility, analyzes node I5, which turns out to be feasible,
and substitutes it. Analogously, node I6 is changed. The
final result would be that of Figure 8, with two more Vppr,
cells introduced. In the experimental section we will see that
in fact the two algorithms differ slightly in their results.

3.2 Breadth First Search

An alternative implementation of the search algorithm
consists of switching from a depth first to a breadth first
search. This approach seems to be more suitable to the de-
sired kind of optimization, as it visits the netlist level by
level, starting from the POs and automatically building the
clusters. The algorithm is detailed in Figure 9.

Put all POs but those on the critical path in list NodeList
Pick a new cell C from NodeList
Substitute C with a Vppr analogous cell
Perform a new static timing analysis
If the new timing worsen the original one
resubstitute C with the original Vpp g cell
Else
add all C’s parents to NodeList
Delete C from NodeList
If Nodelist is not empty, go back to step 2
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Figure 9: Full BFS Algorithm.

The algorithm implements a search strategy that subse-
quently analyzes gates that are increasingly farther from the
POs; this solution represent a more “natural” ordering with
respect to the desired clustering. This intuition is confirmed
by the experimental results reported below.

4. EXPERIMENTAL RESULTS

In order to assess the advantages and drawbacks of the
various algorithms, we have integrated them within Syn-
opsys DesignCompiler [10], that allows to provide accurate
power and timing figures to compare the various CVS im-
plementations. The workflow is shown in Figure 10.

The given circuit is first analyzed, compiled and bound
to a reference library with DesignCompiler. The results of
the synthesis process are stored as structural VHDL files.
These files are supplied to our parser which starts the pro-
cess with an initial power estimation. Then the tool ap-
plies the chosen voltage assignment algorithm to the parsed
netlist, and outputs an optimized VHDL netlist with some
gates substituted with low-Vpp gates. The resulting netlist
can therefore be fed back to DesignCompiler to provide the
final power estimation together with timing verification (to
guarantee that the flow does not increase the circuit delay).

The design flow has been validated through application
to combinational ISCAS benchmarks [5], through evaluation
of two parameters (percentage reduction of power, number
of substituted instances) and their variance with respect to
various input choices (technology library, PO visit heuristics,
supply values).

The reference comparison has been made on the origi-
nal CVS algorithm with respect to the case Vppr = 4V,
decreasing capacitance values for PO visit, and linear re-
duction of cell delay with respect to supply voltage increase.
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Figure 10: Work flow

Circuit Initial Final Power | Subst.
Power Power Red. Gates
W W
cl7 4.46 3.868 | 13.27% | 50.00%
c482 168.783 154.427 8.51% | 14.04%
c499 356.804 352.210 1.3% 26.8%
c880 215.563 181.566 | 15.77% | 51.53%
c1355 405.087 400.84 1.05% | 28.83%
c1908 273.217 260.892 4.51% | 30.34%
c2670 569.65 486.108 | 14.66% | 51.16%
c3540 781.1 749.862 4% | 14.31%
ch315 1667.298 | 1464.582 | 12.15% 51.1%
c6288 5559.858 | 5540.156 0.35% 2.73%
c7552 2314.236 | 1999.324 13.6% 55.5%

Table 1: Results for original CVS algorithm, nomi-
nal conditions: Vppr = 4V, C decreasing heuristics.

Under these conditions the results show an average reduc-
tion of power dissipation of 8.1% with the substitution of
an avarage of 25.95% of gates. Table 1 reports the results
for each benchmark circuit. Benchmark c¢6288 has proven
to be particularly refractary to any power gain, due to the
presence of a great number of gates in its critical path.

4.1 Algorithm comparison

Partial DFS algorithm shows a modest decrease in av-
erage power savings (8.1% to 7.7%). However, there is a
significant gain (up to 2 times) in execution time (the num-
ber of visited instances is typically much smaller than the
original CVS algorithm). For example for c6288, the biggest
benchmark we have considered, the partial DFS algorithm
requires 8 minutes of CPU time (linux workstation, PIII 256
Mb RAM), while the original CVS takes 20 minutes. Table
2 shows the details on the various benchmarks.

Circuit Initial Final Power | Subst.
Power Power Red. Gates
W W
cl7 4.46 3.868 | 13.27% | 50.00%
c432 168.783 154.427 8.51% | 14.04%
c499 356.804 353.227 1.00% | 26.34%
c880 215.563 181.566 | 15.77% | 51.53%
c1355 405.087 400.84 1.05% | 28.83%
c1908 273.217 260.892 4.51% | 30.34%
c2670 569.65 492.485 | 13.55% | 47.37%
c3540 781.1 750.142 3.96% | 14.11%
ch315 1667.298 | 1478.378 | 11.33% | 47.59%
c6288 5559.858 | 5540.156 0.35% 2.73%
c7552 2314.236 | 2044.398 | 11.66% | 47.80%

Table 2: Results for Partial DFS algorithm, nominal
conditions: Vppr =4V, C decreasing heuristics.

As for BFS algorithm, results show this version of the
algorithm is the best for both efficiency and performance
(elaboration time 4 minutes, benchmark c6288 ): The power
savings increase to an average of 9.34%, with the smallest
values of CPU time. Table 3 shows the details on the various
benchmarks.

4.2 Sensitivity Analysis

The first among the considered parameters is the intrinsic
delays of gates, that influences overall timing and feasibility
analysis. In order to test the sensitivity of the optimization
results with respect to these parameters, experiments have
been run with superlinear and sublinear variations of delays
(20% wvariation in the nominal case, 15% and 25% in the
sublinear and superlinear cases). The results show a negli-
gible variation of substituted gates and power savings, thus
illustrating the robustness of the approach with respect to
the accuracy of timing models.

To investigate the influence of the heuristics on PO or-
dering, we ran the experiments by varying the optimization
conditions: POs were ordered according to capacitance val-
ues, decreasing slacks and randomly. The results (not re-
ported) show the limited influence of this heuristic to the
quality of optimization.

Vpbpr variations, on the other hand, turned to be im-
portant for the overall quality of optimization, as it might



Circuit Initial Final Power | Subst.
Power Power Red. Gates
W W
cl7 4.46 3.868 | 13.27% | 50.00%
c482 168.783 154.427 8.51% | 14.04%
c499 356.804 352.210 1.3% 26.8%
c880 215.563 179.732 | 16.62% 55.1%
c1355 405.087 400.84 1.05% | 28.83%
c1908 273.217 260.606 4.6% | 30.89%
c2670 569.65 457.539 | 19.68% 64.9%
c3540 781.1 747.315 4.3% | 15.92%
ch315 1667.298 | 1430.295 14.2% 55.8%
c6288 5559.858 | 5540.156 0.35% 2.73%
c7552 2314.236 | 1878.539 | 18.82% 72.5%

Table 3: Results for BFS algorithm, nominal condi-
tions: Vppr = 4V, C decreasing heuristics.

have been guessed. We repeated the experiments with Vppr
equal to 3.3V and 2.5V. The results show a progressively de-
creasing number of substitution together with an increase of
power savings (11.69 % and 15.45% respectively). This can
be explained by the fact that the substituted instances, even
if less in number, contribute with quadratically increasing
power savings.

4.3 Timing verification

As outlined above, timing verification is performed with
DesignCompiler. The resulting timing figures for the origi-
nal and the modified circuits are compared in order to check
potential discrepancies between their critical delays. The
differences turned out to be negligible (less than 1 % of the
total delay), well below the tolerance of timing models.

5. CONCLUSIONS

We proposed two alternative approaches of the clustered
voltage scaling (CVS) algorithm, based on modified imple-
mentations of the underlying search strategy. The results
show the possibility of meaningful power reduction with
a limited impact on the design flow. The advantages are
highly dependent on features of implemented circuits. How-
ever, even with delay-optimized designs, therefore having

very small margins for intervention, savings are non-negligible.
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